FEATURES

Broadband frequency range: 0.1 GHz to 20 GHz
Nonreflective $\mathbf{5 0 \Omega}$ design

High isolation: $\mathbf{4 0} \mathbf{d B}$ up $\mathbf{2 0 ~ G H z}$
High input linearity at $\mathbf{2 5 0} \mathbf{~ M H z}$ to 20 GHz
P1dB: 24 dBm typical, $\mathrm{V}_{\text {ss }}=-5 \mathrm{~V}$
IP3: 41 dBm typical
High power handling, $\mathrm{V}_{\mathrm{ss}}=-5 \mathrm{~V}$
26.5 dBm through path

23 dBm terminated path
Integrated 2 to 4 line decoder
24-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP
ESD sensitivity, HBM: 250 V (Class 1A)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
 Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 Controlled manufacturing baseline
 One assembly/test site
 One fabrication site
 Enhanced product change notification
 Qualification data available on request

APPLICATIONS

Test instrumentation

Microwave radios and very small aperture terminals (VSATs)
Military radios, radars, and electronic counter measures (ECMs)
Broadband telecommunications systems

GENERAL DESCRIPTION

The HMC641ATCPZ-EP is a general-purpose, nonreflective, single-pole, four-throw (SP4T) switch manufactured using a gallium arsenide (GaAs) process. This switch offers high isolation, low insertion loss, and on-chip termination of the isolated ports.

The switch operates with a negative supply voltage range of -5 V to -3 V and requires two negative logic control voltages.

FUNCTIONAL BLOCK DIAGRAM

HMC641ATCPZ-EP

Figure 1.

The HMC641ATCPZ includes an on-chip, binary 2 to 4 line decoder that provides logic control from two logic input lines.

The HMC641ATCPZ comes in a 24 -lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP and operates from 0.1 GHz to 20 GHz .
Additional application and technical information can be found in the HMC641ALP4E data sheet.

[^0]
TABLE OF CONTENTS

Features .. 1
Enhanced Product Features .. 1
Applications.. 1
Functional Block Diagram .. 1
General Description ... 1
Revision History .. 2
Specifications... 3
Absolute Maximum Ratings... 4
Power Derating Curves.. 4

REVISION HISTORY

11/2017—Rev. 0 to Rev. A
Changes to Reflow (MSL3 Rating) Parameter, Table 2................ 4
Changes to Ordering Guide ... 8

8/2017—Revision 0: Initial Version
ESD Caution 4
Pin Configuration and Function Descriptions 5
Interface Schematics 5
Truth Table 6
Typical Performance Charcteristics 7
Outline Dimensions 8
Ordering Guide 8

Enhanced Product

SPECIFICATIONS

$\mathrm{V}_{\text {SS }}=-3 \mathrm{~V}$ or -5 V , control voltage $\left(\mathrm{V}_{\text {CTRL }}\right)=0 \mathrm{~V}$ or $\mathrm{V}_{\text {SS }}$, case temperature $\left(\mathrm{T}_{\text {CASE }}\right)=25^{\circ} \mathrm{C}$, and 50Ω system, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		0.1		20	GHz
INSERTION LOSS Between RFC and RF1 to RF4 (On)		0.1 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
ISOLATION Between RFC and RF1 to RF4 (Off)		0.1 GHz to 12 GHz 12 GHz to 20 GHz		$\begin{aligned} & 42 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
RETURN LOSS RFC and RF1 to RF4 (On) RF1 to RF4 (Off)		0.1 GHz to 12 GHz 12 GHz to 20 GHz 0.1 GHz to 20 GHz		$\begin{aligned} & 18 \\ & 17 \\ & 13 \end{aligned}$		dB dB dB
SWITCHING Rise Time and Fall Time On Time and Off Time	$\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {fall }}$ ton, toff	10% to 90% of radio frequency (RF) output $50 \% \mathrm{~V}_{\text {ctRL }}$ to 90% of RF output		$\begin{aligned} & 30 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
INPUT LINEARITY ${ }^{1}$ 1 dB Power Compression Third-Order Intercept	P1dB IP3	$\begin{aligned} & 250 \mathrm{MHz} \text { to } 20 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{ss}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}=-3 \mathrm{~V} \end{aligned}$ 10 dBm per tone, 1 MHz spacing $\begin{aligned} & \mathrm{V}_{\mathrm{ss}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}=-3 \mathrm{~V} \end{aligned}$	20	$\begin{aligned} & 24 \\ & 22 \\ & 41 \\ & 41 \end{aligned}$		dBm dBm dBm dBm
SUPPLY Voltage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}} \\ & \mathrm{I} s \mathrm{ss} \end{aligned}$	$\mathrm{V}_{\text {ss }} \mathrm{pin}$	-5		$\begin{aligned} & -3 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$
	$V_{\text {Ctrl }}$ $\mathrm{V}_{\mathrm{INL}}$ $\mathrm{V}_{\text {INH }}$ $I_{\text {ctrl }}$ IINL Inn	CTRLA and CTRLB pins $\begin{aligned} & \mathrm{V}_{\mathrm{ss}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}=-3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}=-3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -3 \\ & -1 \\ & -5 \\ & -3 \end{aligned}$	$\begin{aligned} & 30 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & -4.2 \\ & -2.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.
Table 2.

Parameter	Rating
Negative Supply Voltage (Vss)	-7V
Digital Control Input Voltage	$\mathrm{V}_{5 s}-0.5 \mathrm{~V}$ to +1 V
RF Input Power ${ }^{1}$ ($\mathrm{f}=250 \mathrm{MHz}$ to 20 GHz , $\left.\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}\right)$	
$\mathrm{V}_{\text {SS }}=-5 \mathrm{~V}$	
Through Path	26.5 dBm
Terminated Path	23 dBm
Hot Switching	20 dBm
$\mathrm{V}_{\text {SS }}=-3 \mathrm{~V}$	
Through Path	21 dBm
Terminated Path	20 dBm
Hot Switching	17 dBm
Temperature	
Junction, $\mathrm{T}_{\text {J }}$	$150^{\circ} \mathrm{C}$
Case, Case $^{\text {a }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow (MSL3 Rating) ${ }^{2}$	$260^{\circ} \mathrm{C}$
Junction to Case Thermal Resistance, $\theta_{\text {J }}$	
Through Path	$201^{\circ} \mathrm{C} / \mathrm{W}$
Terminated Path	$321^{\circ} \mathrm{C} / \mathrm{W}$
Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM)	250 V (Class 1A)

${ }^{1}$ For power derating at frequencies less than 250 MHz , see Figure 2, and for the maximum input power vs. the case temperature, see Figure 3.
${ }^{2}$ See the Ordering Guide section.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

POWER DERATING CURVES

Figure 2 shows power derating vs. frequency at $<250 \mathrm{MHz}$, and Figure 3 shows the maximum power dissipation vs. the case temperature.

Figure 2. Power Derating at Frequencies Less than 250 MHz

Figure 3. Maximum Input Power vs. Case Temperature ($T_{\text {CASE }}$)

ESD CAUTION

 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	O	
NIC	1) ,------------18	NIC
GND	2) HMC641ATCPZ-EP ${ }^{17}$	GND
RFC	3) $\mathrm{HMC641ATCPZ-EP}{ }_{16}$	CTRLA
GND	4) (Not to Scale) 15	CTRLB
NIC	5) 14	$\mathrm{V}_{\text {SS }}$
NIC	6) ------------13	NIC

NOTES

1. NIC = NOT INTERNALLY CONNECTED. THE PINS ARE NOT CONNECTED INTERNALLY; HOWEVER, ALL DATA SHOWN IN THIS DATA SHEET IS MEASURED WITH THESE PINS CONNECTED TO RF/DC GROUND
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO THE RF/DC GROUND OF THE PCB.

Figure 4. Pin Configuration
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,5,6,13, 18	NIC	Not Internally Connected. The pins are not connected internally; however, all data shown in this data sheet is measured with these pins connected to RF/dc ground externally.
$\begin{aligned} & 2,4,7,9,10,12,17 \\ & 19,21,22,24 \end{aligned}$	GND	Ground. These pins must be connected to the RF/dc ground of the printed circuit board (PCB).
3	RFC	RF Common Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc . See Figure 5 for the interface schematic.
8	RF4	RF4 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc . See Figure 5 for the interface schematic.
11	RF3	RF3 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc . See Figure 5 for the interface schematic.
14	Vss	Negative Supply Voltage Pin. See Figure 6 for the interface schematic.
15	CTRLB	Control Input 2 Pin. See Table 4 for the control voltage truth table. See Figure 6 for the interface schematic.
16	CTRLA	Control Input 1 Pin. See Table 4 for the control voltage truth table. See Figure 6 for the interface schematic.
20	RF2	RF2 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc . See Figure 5 for the interface schematic.
23	RF1	RF1 Port. This pin is dc-coupled and matched to 50Ω. A dc blocking capacitor is required if the RF line potential is not equal to 0 V dc . See Figure 5 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF/dc ground of the PCB.

INTERFACE SCHEMATICS

Figure 5. RFC to RF4 Interface Schematic

Figure 6. CTRLA, CTRLB, and Vss Interface Schematic

TRUTH TABLE

Table 4. Control Voltage Truth Table

Digital Control Input					
RF Paths					
CTRLA	CTRLB	RFC to RF1	RFC to RF2	RFC to RF3	RFC to RF4
High	High	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)
Low	High	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)
High	Low	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)
Low	Low	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)

TYPICAL PERFORMANCE CHARCTERISTICS

Figure 7. Insertion Loss Between RFC and RF1 vs. Frequency for Various Temperatures

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.
Figure 8. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.85 mm Package Height (CP-24-22)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	MSL Rating 	Package Description	Package Option
HMC641ATCPZ-EP-PT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MSL3	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-22
HMC641ATCPZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MSL3	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-22

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2}$ See the Absolute Maximum Ratings section.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Technical Support 02017 Analog Devices, Inc. All rights reserved. www.analog.com

[^1]: ${ }^{1}$ Input linearity performance degrades at frequencies less than 250 MHz .

