26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

Typical Applications

The HMC679LC3C is ideal for:

- Serial Data Transmission up to 26 Gbps
- High Speed Frequency Divider (up to 26 GHz)
- Broadband Test \& Measurement
- RF ATE Applications

Functional Diagram

Features

Supports Clock Frequencies up to 26 GHz
Differential or Single-Ended Operation
Fast Rise and Fall Times: 18 / 17 ps
Low Power Consumption: 270 mW typ.
Programmable Differential Output Voltage Swing:
600-1100 mVp-p
Propagation Delay: 95 ps
Single Supply: -3.3 V
16 Lead Ceramic $3 \times 3 \mathrm{~mm}$ SMT Package: $9 \mathrm{~mm}^{2}$

General Description

The HMC679LC3C is a T Flip-Flop w/Reset designed to support clock frequencies as high as 26 GHz . During normal operation, with the reset pin not asserted, the output toggles from its prior state on the positive edge of the clock. This results in a divide-bytwo function of the clock input. Asserting the reset pin forces the Q output low regardless of the clock edge state (asynchronous reset assertion). Reversing the clock inputs allows for negative-edge triggered applications.

All differential inputs to the HMC679LC3C are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. Outputs can be connected directly to a 50 Ohm ground-terminated system or drive devices with CML logic input. The HMC679LC3C also features an ouput level control pin, VR, which allows for loss compensation or signal level optimization. The HMC679LC3C operates from a single -3.3 V supply and is available in ROHS-compliant 3×3 mm SMT package.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, vee $=-3.3 \mathrm{~V}, \mathrm{VR}=0 \mathrm{~V}$

Parameter	Conditions	Min.	Typ.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	\checkmark
Power Supply Current			82		mA
Maximum Clock Rate			26		GHz
Input Voltage Range		-1.5		0.5	V
Input Differential Range		0.1		2.0	Vp-p
Input Return Loss	Frequency $<23 \mathrm{GHz}$		10		dB
Output Amplitude	Single-Ended, peak-to-peak		550		mVp-p
	Differential, peak-to-peak		1100		mVp-p
Output High Voltage			-10		mV
Output Low Voltage			-560		mV

26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

Electrical Specifications (continued)

Parameter	Conditions	Min.	Typ.	Max
Units				
Output Rise / Fall Time	Differential, $20 \%-80 \%$		$18 / 17$	
Output Return Loss	Frequency $<13 \mathrm{GHz}$		10	
Random Jitter Jr	rms $^{[1]}$		ps	
Deterministic Jitter, Jd	peak-to-peak, $2^{15}-1$ PRBS input ${ }^{[2]}$		0.2	
Propagation Delay Clock to Q, td			ps rms	
Propagation Delay Reset to Q, tdr	VR $=0.0 \mathrm{~V}$		$\mathrm{ps}, \mathrm{p}-\mathrm{p}$	
VR Pin Current	VR $=+0.4 \mathrm{~V}$		125	ps
VR Pin Current		2	ps	

[1] Upper limit of random jitter, J_{R}, determined by measuring and integrating output phase noise with a sinusodal input at 5 , 10 , and 13.5 GHz over temperature.
[2] Deterministic jitter calculated by simultaneously measuring the jitter of a $200 \mathrm{mV}, 12.5 \mathrm{GHz}, 2^{15}-1$ PRBS input, and a single-ended output

DC Current vs. Supply Voltage ${ }^{[1][2]}$

Rise / Fall Time vs. Supply Voltage [1][3]

Output Differential Voltage vs. Supply Voltage [1][2]

Output Differential Voltage
vs. Input Frequency ${ }^{[1]}$

[1] VR $=0.0 \mathrm{~V}$ [2] Frequency $=13 \mathrm{GHz}$ [3] Frequency $=24 \mathrm{GHz}$

[^0]HMC679LC3C
v06.0514

26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

SMT
 I

Output Differential Voltage vs. VR ${ }^{[2]}$

Input Return Loss vs. Frequency ${ }^{[4]}$

Rise / Fall Time vs. VR [3]

Output Return Loss vs. Frequency ${ }^{[4]}$

Reset Input Return Loss vs. Frequency ${ }^{[4]}$

[1] VR $=0.0 \mathrm{~V}$
[2] Frequency $=13 \mathrm{GHz}$
[3] Frequency $=24 \mathrm{GHz}$
[4] Device measured on evaluation board with singleended, time-domain gating

26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

Output Waveform

Waveform generated with a CW signal source input at 26 GHz . Diagram data presented on a Tektronix CSA 8000.

Timing Diagram

26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

Absolute Maximum Ratings

Power Supply Voltage (Vee)	-3.75 V to +0.5 V
Input Signals	-2 V to +0.5 V
Output Signals	-1.5 V to +1 V
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right)$ (derate $17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$)	0.68 W
Thermal Resistance $\left.\left(\mathrm{R}_{\text {th }-\mathrm{p}}\right) \mathrm{W}\right) \mathrm{Worst}$ Case Junction to Package Paddle	$59^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

1. PACKAGE BODY MATERIAL: ALUMINA
2. LEAD AND GROUND PADDLE PLATING:

30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C
6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
7. PADDLE MUST BE SOLDERED TO Vee.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[2]}$
HMC679LC3C	Alumina, White	Gold over Nickel	MSL3 ${ }^{[1]}$	H679
			XXXX	

[1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[2] 4-Digit lot number XXXX

26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	$\frac{\text { OGND }}{\underline{=}}$
2, 3	RP,RN	Differential Reset Inputs: Current Mode Logic (CML) referenced to positive supply.	
6, 7	CP,CN	Differential Clock Inputs: Current Mode Logic (CML) referenced to positive supply.	
10, 11	QN, QP	Differential Clock Outputs: Current Mode Logic (CML) referenced to positive supply.	
13, 16	GND	Supply Ground	$\frac{\text { OGND }}{=}$
14	VR	Output level control. Output level may be increased or decreased by applying a voltage to VR per "Output Differential vs. VR" plot.	VRO—m
$\begin{gathered} 15, \\ \text { Package Base } \end{gathered}$	Vee	This pin and the exposed paddle must be connected to the negative voltage supply.	

26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

Evaluation PCB

List of Materials for Evaluation PCB $123585{ }^{[1]}$

Item	Description
J1, J2, J5, J6	PCB Mount SMA RF Connectors
J3, J4	PCB Mount 2.92mm RF Connectors
J7 - J9	DC Pin
JP1	0.1 " Header with Shorting Jumper
C1, C2	100 pF Capacitor, 0402 Pkg.
C3, C4	4.7μ F Capacitor, Tantalum
R1	10 Ohm Resistor, 0603 Pkg.
U1	HMC679LC3C
PCB [2]	118775 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed packaged base should be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. Install jumper on JP1 to short VR to GND for normal operation.

26 GHz, T FLIP-FLOP w/ RESET \& PROGRAMMABLE OUTPUT VOLTAGE

Application Circuit

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B NLV14013BDR2G NTE4598B 74LVC74APW-Q100J 74HCT374D,653
74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX HMC723LC3CTR MM74HCT273WM
SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR
74ALVTH32374ZKER 74VHC9273FT(BJ) 74VHCV374FT(BJ) 74VHCV574FT(BJ) SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC574D.652 74HCT173D.652 74HCT374D. 652 74AHC574D. 118 74HCT273D. 652 HEF4013BT. 653 MC74HCT273ADTR2G 74AHC574PW,112 CY74FCT374ATSOCT 74HC173PW. 112 74HC174PW. 112 74HC175PW. 112 74HC377DB. 118 74HC73D. 652 74HCT175D.652 74HCT273DB. 118

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

