Typical Applications

The HMC682LP6C(E) is Ideal for:

- Cellular/3G \& LTE/WiMAX/4G
- Basestations \& Repeaters
- GSM, CDMA \& OFDM
- Dual Density Receivers

Functional Diagram

Features

High Input IP3: +25 dBm
Conversion Gain: 6 dB
Low LO Drive: 0 dBm
High Channel Isolation
40 Lead 6x6mm SMT Package: $36 \mathrm{~mm}^{2}$

General Description

The HMC682LP6C(E) is a high linearity, dual channel downconverter with integrated LO amplifier in a 6x6 SMT QFN package covering 1.7-2.2 GHz. Excellent input IP3 performance of +25 dBm for down conversion is provided for 3G \& 4G GSM/CDMA applications at an LO drive of 0 dBm . With an input 1 dB compression of +15 dBm , the RF port will accept a wide range of input signal levels. Conversion gain is 6 dB typical. The $60-400 \mathrm{MHz}$ IF frequency response will satisfy various GSM/CDMA receive frequency plans.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, IF $=200 \mathrm{MHz}, L O=0 \mathrm{dBm}$
Vcc1, 2 = Vcc_BAL1, 2 = Vcc_AMP1, $2[1]=$ Vcc_IF1P, $N=V c c _I F 2 P, N=+5 V, B I A S 1,2=+2.5 V$

Parameter	Min.	Typ.	Max.	Units
Frequency Range, RF		-2.2		GHz
Frequency Range, LO		-2.0		GHz
Frequency Range, IF		-0.4		GHz
Conversion Gain	4	6		dB
Noise Figure (SSB)		12		dB
LO to RF Isolation	17	25		dB
LO to IF Isolation	15	22		dB
RF to IF Isolation	15	30		dB
IP3 (Input)		25		dBm
$1 \mathrm{~dB} \mathrm{Compression} \mathrm{(Input)}$		15		dBm
Channel to Channel Isolation		55		dB
LO Drive Input Level (Typical)	-3 to +3			dBm
Supply Current (Icc)		450	550	mA

[1] See application circuit [2] Unless otherwise noted all measurements with low side LO \& IF = 200 MHz .
(E)

Single Channel:

Conversion Gain vs. Temperature

Single Channel:
Conversation Gain vs. LO Drive

Single Channel: IF Bandwidth

HMC682LP6C / 682LP6CE
v00.0308
HIGH IP3 DUAL CHANNEL
DOWNCONVERTER w/ LO SWITCH, 1.7-2.2 GHz

Single Channel: Isolation

Single Channel: Return Loss

Single Channel:
Input P1dB vs. Temperature

v00.0308
 HIGH IP3 DUAL CHANNEL
 DOWNCONVERTER w/ LO SWITCH, 1.7-2.2 GHz

Single Channel: Input IP3 vs. LO Drive

Dual Channel:

Channel to Channel Isolation ${ }^{[1]}$

Noise Figure vs. Temperature

Single Channel: Input IP3 vs. Temperature

Dual Channel: LO1 to LO2 Isolation ${ }^{[2]}$

[1] For 1900 MHz, RF1 $=1900 \mathrm{MHz} @ 0 \mathrm{dBm}$, RF2 = 1901 $\mathrm{MHz} @ 0 \mathrm{dBm}, \mathrm{LO}=1700 \mathrm{MHz} @ 0 \mathrm{dBm}$, IF2 terminated with 50 Ohms. Channel isolation is the dBc difference at IF1 port between the fundamental tone @ 200 MHz and the leakage tone at 201 MHz .
[2] For $1900 \mathrm{MHz}, \mathrm{LO} 1=1700 \mathrm{MHz}$ @ 0 dBm, LO2 = 1699 MHz @ 0 dBm , LO1 is selected, RF1 = RF2 = 1900 MHZ @ 0 dBm , IF2 terminated with 50 Ohms. LO1-LO2 isolation is the dBc difference measured at the IF1 port between the fundamental tone at 200 MHz and the leakage tone at 201 MHz.
+2RF -2LO Response vs. Temperature ${ }^{[3]}$

$+3 R F-3 L O$ Response vs. Temperature ${ }^{[3]}$

+2RF -2LO Response vs. LO Drive ${ }^{[3]}$

+3RF -3LO Response vs. LO Drive ${ }^{[3]}$

HMC682LP6C / 682LP6CE

Hoo..308 HIGH IP3 DUAL CHANNEL
DOWNCONVERTER w/ LO SWITCH, 1.7-2.2 GHz

Harmonics of LO

	nLO Spur @ RF Port			
LO Freq. (GHz)	1	2	3	4
1.4	25	29	38	19
1.5	24	28	31	21
1.6	25	23	30	21
1.7	26	19	38	14
1.8	29	16	43	16
1.9	31	15	40	19
2.0	32	14	43	22
LO = 0 dBm All values in dBc below input LO level measured at RF port.				

Typical Supply Current vs. Vdd

Vcc	ICc (mA)
4.75	415
5.00	450
5.25	490
Downconverter will operate over full voltage range shown above.	

MxN Spurious @ IF Port

	nLO					
mRF	0	1	2	3	4	
0	xx	39	20	46	47	
1	35	0	40	24	66	
2	72	61	63	54	83	
3	107	73	90	70	101	
4	116	125	114	106	108	

RF Freq. $=1.9 \mathrm{GHz} @-5 \mathrm{dBm}$
LO Freq. $=1.7 \mathrm{GHz} @ 0 \mathrm{dBm}$
All values in dBc below IF power level (1RF - 1LO)

Truth Table

LO_SEL (V)	LO Signal Path
0	LO1
5	LO2

Absolute Maximum Ratings

RF / IF Input (Vcc $=+5 \mathrm{~V}$)	+15 dBm
LO Drive (Vcc $=+5 \mathrm{~V}$)	+6 dBm
Vcc (LO or IF)	5.5 V
Channel Temperature	$12.5^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right)$ (derate $110.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.85^{\circ} \mathrm{C}\right)$	4.42 W
Thermal Resistance (channel to ground paddle)	$9.05^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[3]}$
HMC682LP6C	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 $^{[1]}$	H682 XXXX
HMC682LP6CE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$\frac{\text { H682 }}{\text { XXXX }}$

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 10	RF1, RF2	These are the RF inputs of the mixers. See application circuit for the off-chip matching components	
2, 9	TAP1, TAP2	These are the center taps of the internal RF baluns. Connect these pins to the AC ground via external capacitors. See application circuit.	
$\begin{gathered} 3,5,8,15, \\ 16,22,23, \\ 26-29,36,35 \end{gathered}$	GND	These pins must be connected to RF ground.	$\underline{\underline{q}}$
4, 7	BIAS1, BIAS2	Bias pins for mixer cores. See application circuit for the nominal value.	
$\begin{gathered} 6,17,18 \\ 24,33,34 \end{gathered}$	Vcc1, Vcc_BAL2, Vcc_AMP2, Vcc2, Vcc_AMP1, Vcc_BAL1	Power supply voltage pins. See application circuit for required external components.	
11, 20, 31, 40	N/C	No Connection required. These pins may be connected to RF GND without affecting performance.	
12, 39	IND1, IND2	Current source inductors for IF amplifiers.	
$\begin{aligned} & 13,14, \\ & 38,37 \end{aligned}$	IF2P, IF2N, IF1P, IF1N	Differential IF outputs and DC BIAS for IF Amps.	
19, 32	BIAS_ADJ1, BIAS_ADJ2	Adjusts LO buffer amplifies current via external resistor. See application circuit.	
21, 30	LO2, LO1	These are LO inputs of the mixers. See application circuit for off-chip matching components.	
25	LO_SEL	Control voltage for LO1 or LO2 selection. LO1 is selected when LO SEL is set low. LO2 is selected when LO SEL is set high. See application circuit and truth table for low and high voltage levels.	

Evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

List of Materials for Evaluation PCB $119925{ }^{[1]}$

Item	Description
J1- J6	PCB Mount SMA Connector
J7- J10	2 mm Vertical Molex 8pc Connector
L1, L2	51 nH Inductor, 0603 Pkg.
L3- L6	390 nH Inductor, 0603 Pkg.
L7- L10	2.2 nH Inductor, 0402 Pkg.
C7, C8, C26, C38	22 pF Capacitor, 0402 Pkg.
C9, C10	10 nF Capacitor, 0603 Pkg.
C11, C17, C19, C24, C27, C29, C34, C37, C40, C48, C50	1 nF Capacitor, 0402 Pkg.
C12, C15, C16, C18, C20, C25, C28, C30, C35, C36, C39, C47, C49	0.1μ F Capacitor, 0603 Pkg.
C13, C14, C60-C63	100 pF Capacitor, 0402 Pkg.
C21, C22, C32, C33	0.01μ F Capacitor, 0402 Pkg.
C51 - C59	0.47μ F Capacitor, 0603 Pkg.
R7, R8	330 Ohm Resistor, 0603 Pkg.
T1, T2	$1: 1$ Transformer - Tyco ETC1-1T
U1	HMC682LP6C(E)
PCB [2]	118274 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Arlon-25FR and FR4

RoHS $\sqrt{ }$

Application Circuit

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Up-Down Converters category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
HMC7586-SX HMC7587 HMC8119-SX HMC7587-SX HMC6147ALC5ATR MDS-158-PIN HMC7912LP5ETR HMC377QS16GETR
MY87C CSM2-10 CHR3762-QDG AD6620ASZ-REEL ADF5904ACPZ ADF5904WCCPZ AD6623ASZ AD6633BBCZ AD6634BBCZ
AD9957BSVZ AD9957BSVZ-REEL ADMV1009AEZ ADMV1010AEZ ADMV1011AEZ ADMV1012AEZ ADRF6658BCPZ
HMC1065LP4E HMC951ALP4E HMC571 HMC6146BLC5A HMC6146BLC5ATR HMC572LC5 HMC925LC5 HMC6787ALC5A
HMC6787ALC5ATR HMC682LP6CE HMC571LC5TR HMC7911LP5E HMC7912LP5E HMC908ALC5 HMC951BLP4ETR
HMC967LP4E HMC977LP4E AD6634BBC HMC6505ALC5 MAUC-011003-TR0500 MAX9996ETP+T MAX19996AETP+
MAX19996ETP+ MAX2039ETP+ MAX2410EEI+ MAX2411AEEI+

