

Typical Applications

The HMC726LC3C is ideal for:

- 16 G Fiber Channel
- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 14 Gbps
- Digital Logic Systems up to 14 GHz
- NRZ-to-RZ Conversion

Functional Diagram

Electrical Specifications, T_A = +25°C, Vee = -3.3 V

Parameter Conditions Units Min Тур. Max Power Supply Voltage -3.6 -3.3 -3.0 V Power Supply Current 70 mΑ Gbps Maximum Data Rate 14 Maximum Clock Rate 14 GHz Input Voltage Range -1.5 0.5 V Input Differential Range 0.1 Vp-p 2.0 Input Return Loss dB Frequency <14 GHz 10 Single-Ended, peak-to-peak 550 mVp-p **Output Amplitude** 1100 Differential, peak-to-peak mVp-p **Output High Voltage** -10 mV **Output Low Voltage** -560 mV Output Rise / Fall Time Differential, 20% - 80% 19/18 ps

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

HMC726LC3C

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Features

Supports High Data Rates: up to 14 Gbps Differential or Single-Ended Operation Fast Rise and Fall Times: 19 / 18 ps Low Power Consumption: 230 mW typ. Propagation Delay: 95 ps Single Supply: -3.3 V 16 Lead Ceramic 3x3 mm SMT Package: 9mm²

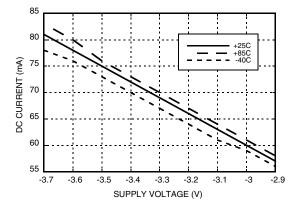
General Description

The HMC726LC3C is an AND/NAND/OR/NOR function designed to support data transmission rates of up to 14 Gbps, and clock frequencies as high as 14 GHz. The HMC726LC3C may be easily configured to provide any of the following logic functions: AND, NAND, OR and NOR.

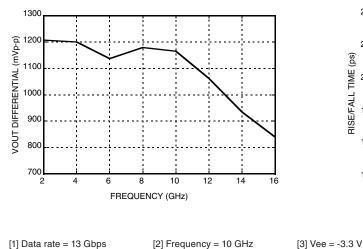
All differential inputs to the HMC726LC3C are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. The differential CMI outputs are source terminated to to 50 Ohms and may also be AC or DC coupled. Outputs can be connected directly to a 50 Ohm ground-terminated system or drive devices with CML logic input. The HMC726LC3C operates from a single -3.3 V supply and is available in ROHS-compliant 3x3 mm SMT package.

HMC726LC3C

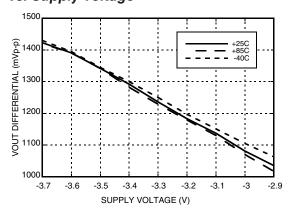
14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

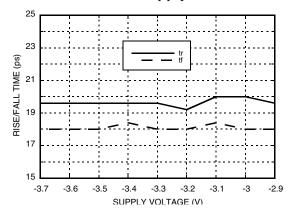


Electrical Specifications (continued)


Parameter	Conditions	Min.	Тур.	Мах	Units
Output Return Loss	Frequency <14 GHz		10		dB
Small Signal Gain			27		dB
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input ^[1]		2		ps, p-p
Propagation Delay, td			95		ps

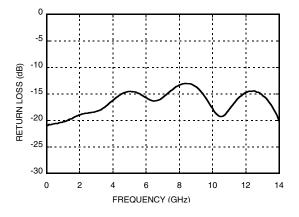
[1] Deterministic jitter calculated by simultaneously measuring the jitter of a 300 mV, 13 GHz, 2¹⁵-1 PRBS input, and a single-ended output


DC Current vs. Supply Voltage [1]

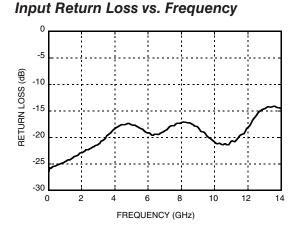

Output Differential Voltage vs. Frequency [3]

Output Differential Voltage vs. Supply Voltage [2]

Rise / Fall Time vs. Supply [1]



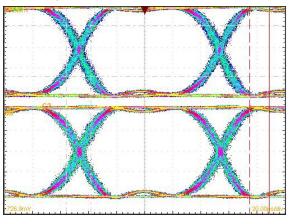
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



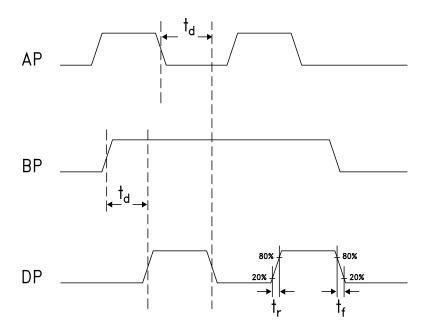
Output Return Loss vs. Frequency

HMC726LC3C

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



Eye Diagram

Timing Diagram

Truth Table

Input		Outputs
A	В	D
L	L	L
L	н	L
Н	L	L
Н	Н	Н
Notes: A = AP - AN B = BP - BN D = DP - DN	H - Positive voltage level L - Negative voltage level	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

and to place orders: Applag Davises Inc

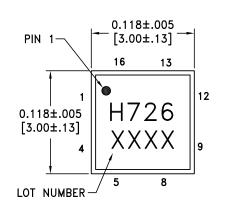
14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

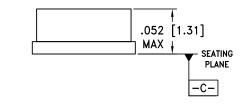
[1] Test Conditions:

Pattern generated with an Agilent N4903A Serial BERT. Eye Diagram presented on a Tektronix CSA 8000. Device input = 10 Gbps PN code, Vin = 300 mVp-p differential.

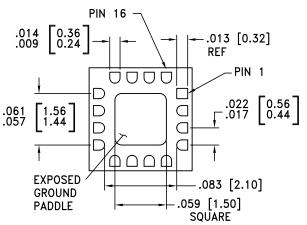
HMC726LC3C

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE


ELECTROSTATIC SENSITIVE DEVICE


OBSERVE HANDLING PRECAUTIONS

Absolute Maximum Ratings


	J	
Power Supply Voltage (Vee)	-3.75 V to +0.5 V	
Input Signals	-2 V to +0.5 V	
Output Signals	-1.5 V to +1 V	
Continuous Pdiss (T = 85 °C) (derate 17 mW/°C above 85 °C)	0.68 W	
Thermal Resistance (R _{th j-p}) Worst case junction to package paddle	59 °C/W	
Maximum Junction Temperature	125 °C	
Storage Temperature	-65 °C to +150 °C	
Operating Temperature	-40 °C to +85 °C	
ESD Sensitivity (HBM)	Class 1C	

BOTTOM VIEW

NOTES: 1. PACKAGE BODY MATERIAL: ALUMINA

2. LEAD AND GROUND PADDLE PLATING:

30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.

3. DIMENSIONS ARE IN INCHES [MILLIMETERS].

- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-

6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

7. PADDLE MUST BE SOLDERED TO GND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC726LC3C	Alumina, White	Gold over Nickel	MSL3 ^[1]	H726 XXXX

[1] Max peak reflow temperature of 260 $^\circ\text{C}$

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC726LC3C

v05.0514

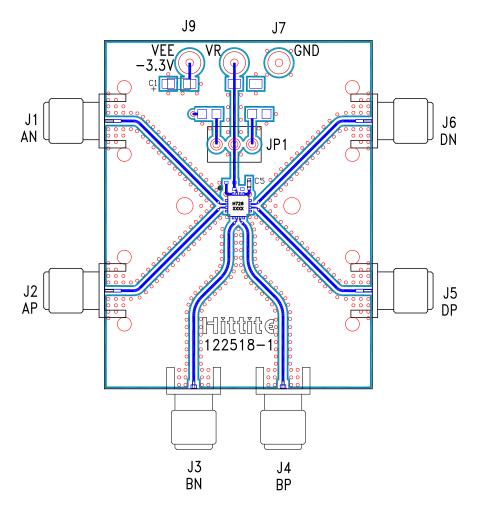
RoHS

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	
2, 3 6, 7	AN, AP BN, BP	Differential Data Inputs, Current Mode Logic (CML) referenced to positive supply.	
10, 11	DP, DN	Differential Data Outputs, Current Mode Logic (CML) referenced to positive supply.	GND O GND O GND O DN
13, 16	Vee	Negative Supply	
14, Package Base	GND	Supply Ground	
15	N/C	No Connection required. This pin may be connected to RF/DC ground without affecting performance.	

HMC726LC3C


14 Gbps, FAST RISE TIME

AND / NAND / OR / NOR GATE

v05.0514

Evaluation PCB

List of Materials for Evaluation PCB 122520^[1]

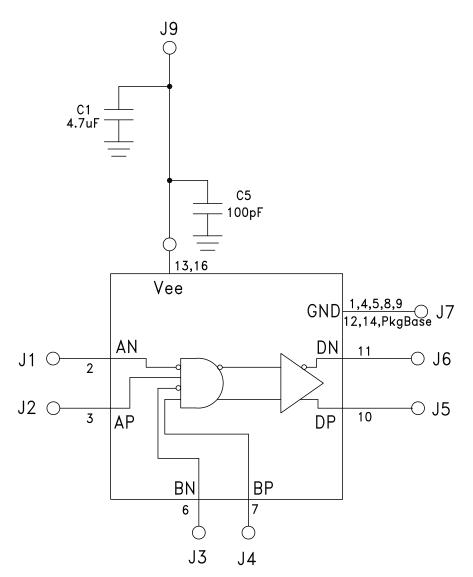
Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7, J9	DC Pin	
C1	4.7 μF Capacitor, Tantalum	
C5	100 pF Capacitor, 0402 Pkg.	
U1	HMC726LC3C High Speed Logic, AND / NAND / OR / NOR	
PCB ^[2]	122518 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC726LC3C

v05.0514

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

74HC85N NLU1G32AMUTCG NLVHC1G08DFT1G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLV74HC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G