

13 Gbps, Fast Rise Time XOR/XNOR Gate with **Programmable Output Voltage and Positive Supply**

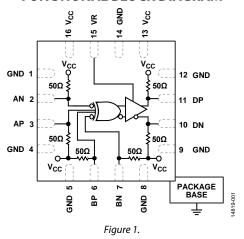
HMC745 Data Sheet

FEATURES

Inputs terminated internally at 50 Ω Differential and single-ended operation Fast rise and fall times: 21 ps and 19 ps Low power consumption: 240 mW (typical) **Programmable differential** Output voltage swing: 600 mV to 1200 mV Propagation delay: 95 ps Single supply: 3.3 V

16-terminal, ceramic 3 mm × 3 mm LCC package

APPLICATIONS


RF automatic test equipment (ATE) applications **Broadband test and measurement** Serial data transmission up to 13 Gbps Digital logic systems up to 13 GHz

GENERAL DESCRIPTION

The HMC745 is a XOR/XNOR gate function designed to support data transmission rates of up to 13 Gbps, and clock frequencies as high as 13 GHz. The HMC745 also features an output level control pin, VR, which permits loss compensation or signal level optimization.

All input and output signals to the HMC745 are terminated with 50 Ω to V_{CC} on-chip, and can be either ac-coupled or dc-coupled.

FUNCTIONAL BLOCK DIAGRAM

Inputs or outputs can be connected directly to a 50 Ω V_{CC} terminated system, while dc blocking capacitors may be used if the terminating system is 50 Ω to ground. The HMC745 operates from a single 3.3 V dc supply, and is available in a ceramic, RoHS compliant, 3 mm × 3 mm LCC package.

Document Feedback

TABLE OF CONTENTS

Features	
Applications	
Applications	1
Functional Block Diagram	1
General Description]
Revision History	2
Specifications	3
Electrical Specifications	3
Absolute Maximum Ratings	4
ESD Caution	4

Pin Configuration and Function Descriptions	
Interface Schematics	
Typical Performance Characteristics	t
Theory of Operation	8
Applications Information	
Evaluation Printed Circuit Board (PCB)	9
Outline Dimensions	11
Ordering Guide	11

REVISION HISTORY

6/2018—Rev. C to Rev. D

Changes to Power Supply Voltage Parameter, Table 1	3
Changes to Input Signals Parameter and Output Signals	
Parameter, Table 2	4
Changes to Pin 14, Pin No. Column, Table 3	5
Change to Figure 19	10
Changes to Ordering Guide	

10/2017—Rev. 02.0514 to Rev. C

This Hittite Microwave Products data sheet has been reformatted to meet the styles and standards of Analog Devices, Inc.

Updated FormatUnive	ersal
Change to Features Section, General Description Section, and	
Figure 1 Caption	1
Changes to Table 2	4
Changes to Figure 2 Caption	5
Deleted Figure 7; Renumbered Sequentially	5
Changes to Theory of Operation Section	8
Changes to Evaluation Printed Circuit Board (PCB) Section	9
Changes to Figure 18 Caption	10
Changes to Figure 19 Caption	11
Updated Outline Dimensions	12
Changes to Ordering Guide	12

SPECIFICATIONS ELECTRICAL SPECIFICATIONS

 $T_A = 25$ °C and $V_{CC} = 3.3$ V, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY VOLTAGE					
Voltage		3.0	3.3	3.6	V
Current			72		mA
MAXIMUM DATA RATE			13		Gbps
MAXIMUM CLOCK RATE			13		GHz
INPUT VOLTAGE					
High		2.8		3.8	V
Low		2.1		3.3	V
INPUT RETURN LOSS	Frequency < 13 GHz		10		dB
OUTPUT AMPLITUDE					
Single-Ended			550		mV p-p
Differential			1100		mV p-p
OUTPUT VOLTAGE					
High			3.25		V
Low			2		V
OUTPUT	Differential, 20 % to 80 %				
Rise Time			21		ps
Fall Time			19		ps
OUTPUT RETURN LOSS Frequency < 13 GHz			10		dB
SMALL SIGNAL GAIN			27		dB
JITTER					
Random, J _R				0.2	ps, rms
Deterministic, J _D	erministic, J _D $2^{15} - 1$ PRBS input ¹		2		ps p-p
PROPAGATION DELAY, t _D			95		ps

¹ Deterministic jitter is calculated by simultaneously measuring the jitter of a 300 mV input, 13 GHz input, a 2¹⁵ – 1 PRBS input, and a single-ended output.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Table 2.	
Parameter	Rating
Power Supply Voltage (Vcc)	$V_{CC} - 0.5 V$ to
	3.75 V
Input Signals	V_{CC} – 2 V to
	$V_{CC} + 0.5 V$
Output Signals	$V_{CC} - 1.5 V to$
	V _{CC} + 0.5 V
Continuous Power Dissipation, PDISS	0.68 W
$(T_A = 85^{\circ}C, Derate 17 \text{ mW/}^{\circ}C \text{ Above } 85^{\circ}C)$	
Thermal Resistance (R _{TH-JP}), Worst Case	59°C/W
Junction to Package Pad	
Maximum Junction Temperature	125°C
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	−40°C to +85°C
Electrostatic Discharge (ESD) Sensitivity	
Human Body Model (HBM)	Class 1C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

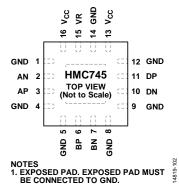


Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 4, 5, 8, 9, 12	GND	Signal Ground.
2, 3	AN, AP	Clock/Data Input A.
6, 7	BP, BN	Clock/Data Input B.
10, 11	DN, DP	Clock/Data Output.
13, 16	V cc	Positive Supply.
14	GND	Supply Ground.
15	VR	Output Level Control. Output level can be adjusted by applying a voltage to VR per Figure 10.
	EPAD	Exposed Pad. Exposed pad must be connected to GND.

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

Figure 4. AN, AP Interface Schematic

Figure 5. BP, BN Interface Schematic

Figure 6. DN, DP Interface Schematic

Figure 7. VR Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

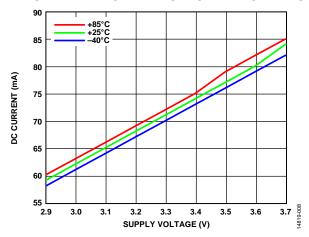


Figure 8. DC Current vs. Supply Voltage, VR = 3.3 V, Frequency = 13 GHz

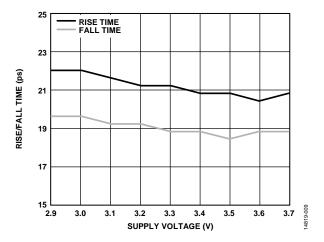


Figure 9. Rise/Fall Time vs. Supply Voltage, Frequency = 13 GHz

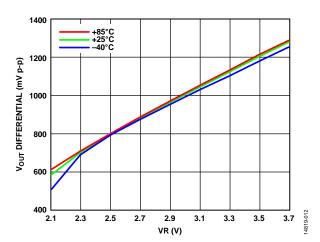


Figure 10. Output Voltage (V_{OUT}) Differential vs. VR, Frequency = 13 GHz

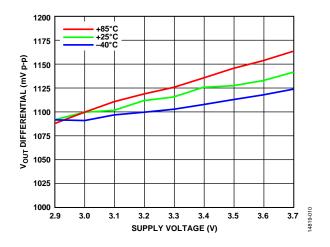


Figure 11. Output Voltage (V_{OUT}) Differential vs. Supply Voltage, VR = 3.3 V, Frequency = 13 GHz



Figure 12. Output Voltage (V_{OUT}) Differential vs. Frequency, VR = 3.3 V

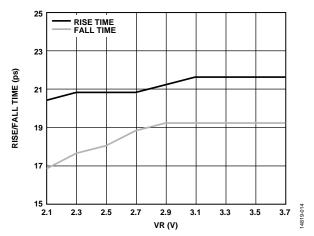


Figure 13. Rise/Fall Time vs. VR, Frequency = 13 GHz

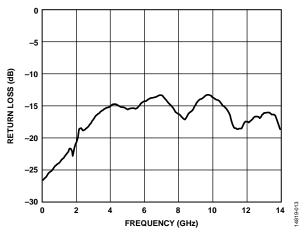


Figure 14. Input Return Loss vs. Frequency

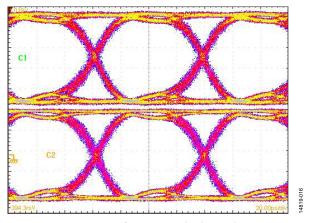


Figure 15. Eye Diagram, Waveform Generated with an Agilent N4903A J-Bert, Rate = 13 Gbps, Eye Diagram Data Presented on a Tektronix CSA 8000, Device is AC-Coupled to Scope

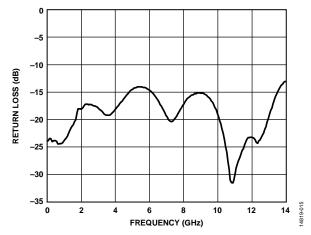


Figure 16. Output Return Loss vs. Frequency

THEORY OF OPERATION

The HMC745 consists of an XOR/XNOR stage followed by an output driver stage. The XOR/XNOR stage accepts two differential input pairs; AN/AP and BN/BP, and gives one differential output. The following output driving stage drives

the line with a 50 Ω single-ended or 100 Ω differential. The output stage has a tunable voltage swing feature that allows the tune to swing between 600 mV p-p to 1200 mV p-p. All input and output interfaces are referenced to 3.3 V with a 50 Ω resistor.

APPLICATIONS INFORMATION

Table 4 is the truth table, and Figure 17 is the timing diagram.

Table 4. Truth Table

Input ¹		Outputs ¹
A	В	D
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

 1 A = AP - AN, B = BP - BN, D = DP - DN, H is the positive voltage level, and L is the negative voltage level.

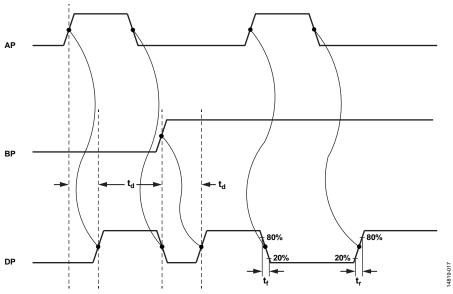


Figure 17. Timing Diagram

EVALUATION PRINTED CIRCUIT BOARD (PCB)

The circuit board used in the application must use RF circuit design techniques. Signal lines must have 50 Ω impedance while the package ground leads must be connected directly to the ground plane. The exposed package base must be connected to GND. A sufficient number of via holes must be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices, Inc., upon request.

Table 5. Connector Description

Item	Description
J1	AN
J2	AP
J3	BP
J4	BN
J5	DN
J6	DP
J7	GND
J8	VR
J9	V _{CC}

Table 6. List of Materials for Evaluation PCB 1225171

Item	Description
J1 to J6	PCB mount SMA RF connectors
J7 to J9	DC pin
JP1	Shorting jumper
C1, C2	4.7 μF capacitor, tantalum
C3 to C5	100 pF capacitor, 0402 package
R2	10Ω resistor, 0603 package
U1	HMC745LC3, high speed logic, XOR/XNOR
PCB ²	122515 evaluation board

¹ Reference this number when ordering complete evaluation PCB.

² The circuit board material is Arlon 25FR.

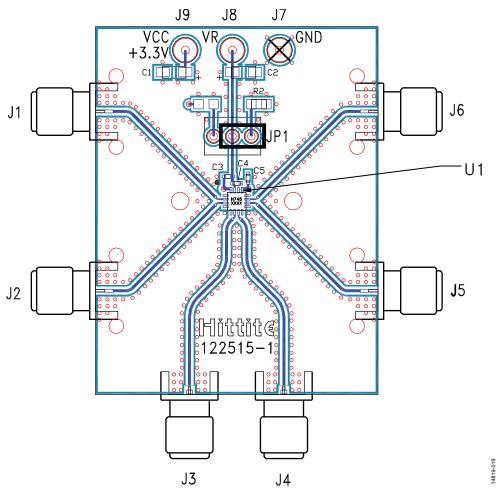


Figure 18. Evaluation Board

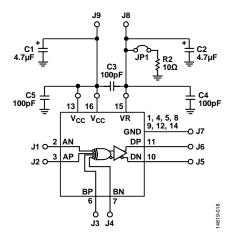


Figure 19. Evaluation Board Schematic

OUTLINE DIMENSIONS

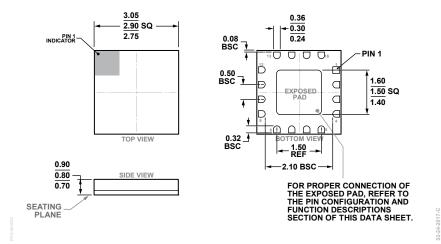


Figure 20. 16-Terminal Ceramic Leadless Chip Carrier [LCC] (E-16-1) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	MSL Rating ²	Temperature Range	Package Description	Package Option
HMC745LC3	MSL3	−40°C to +85°C	16-Terminal Ceramic Leadless Chip Carrier [LCC]	E-16-1
HMC745LC3TR	MSL3	-40°C to +85°C	16-Terminal Ceramic Leadless Chip Carrier [LCC]	E-16-1
HMC745LC3TR-R5	MSL3	−40°C to +85°C	16-Terminal Ceramic Leadless Chip Carrier [LCC]	E-16-1
122517-HMC745LC3			Evaluation Board	

¹ All models are RoHS compliant.

² Maximum peak reflow temperature of 260°C.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

74HC85N NLU1G32AMUTCG NLVHC1G08DFT1G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G
NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G
NLV74HC02ADR2G 74HC32S14-13 74LS133 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G
NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG
74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG
NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG
NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G