HMC784AMS8GE

v01.0117

GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

Typical Applications

The HMC784AMS8GE is ideal for:

- Cellular/4G Infrastructure
- WiMAX, WiBro \& Fixed Wireless
- Automotive Telematics
- Mobile Radio
- Test Equipment

Functional Diagram

Features

Input P1dB: $+40 \mathrm{dBm} @ \mathrm{Vdd}=+8 \mathrm{~V}$
High Third Order Intercept: +60 dBm
Positive Control: +3 to +8 V
Low Insertion Loss: 0.3 dB
MSOP8G Package: $14.8 \mathrm{~mm}^{2}$

General Description

The HMC784AMS8GE is a high power SPDT switch in an 8-lead MSOPG package for use in transmit-receive applications which require very low distortion at high input signal power levels. The device can control signals from DC to 4 GHz . The design provides exceptional intermodulation performance; > +60 dBm third order intercept at +5 V bias. RF1 and RF2 are reflective shorts when "OFF". On-chip circuitry allows single positive supply operation from +3 Vdc to +8 Vdc at very low DC current with control inputs compatible with CMOS logic families.

Electrical Specifications,
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vctl}=0 / \mathrm{Vdd}$, Vdd $=+5 \mathrm{~V}$ (Unless Otherwise Stated), 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	DC -1.0 GHz DC -2.0 GHz DC -2.5 GHz DC -3.0 GHz DC -4.0 GHz		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.8 \\ & 0.9 \\ & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	DC - 4.0 GHz	24	28		dB
DC -1.0 GHz Return Loss (On State) DC -2.0 GHz DC -3.0 GHz DC -4.0 GHz			$\begin{aligned} & 30 \\ & 26 \\ & 20 \\ & 14 \end{aligned}$		dB dB dB dB
$\begin{array}{ll}\text { Input Power for 0.1dB Compression } & \mathrm{Vdd}=+3 \mathrm{~V} \\ \mathrm{Vdd}=+5 \mathrm{~V} \\ \mathrm{Vdd}=+8 \mathrm{~V}\end{array}$	$1.0-4.0 \mathrm{GHz}$		$\begin{aligned} & 31 \\ & 36 \\ & 38 \end{aligned}$		dBm dBm dBm
$\begin{array}{ll} \\ \text { Input Power for 1dB Compression } & \mathrm{Vdd}=+3 \mathrm{~V} \\ \mathrm{Vdd}=+5 \mathrm{~V} \\ \mathrm{Vdd}=+8 \mathrm{~V}\end{array}$	0.1-4.0 GHz	$\begin{aligned} & 32 \\ & 35 \\ & 38 \end{aligned}$	$\begin{aligned} & 33 \\ & 38 \\ & 40 \end{aligned}$		dBm dBm dBm
$0.02-0.1 \mathrm{GHz}$ Input Third Order Intercept $0.1-2.0 \mathrm{GHz}$ (Two-tone input power = +27 dBm each tone) $0.1-3.0 \mathrm{GHz}$ $0.1-4.0 \mathrm{GHz}$			$\begin{aligned} & 61 \\ & 62 \\ & 61 \\ & 60 \end{aligned}$		dBm dBm dBm dBm
Switching Characteristics tRISE, tFALL (10/90\% RF) tON, tOFF (50\% CTL to 10/90\% RF)	DC-4.0 GHz		$\begin{gathered} 82 \\ 112 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

[^0]HMC784AMS8GE
v01.0117

GaAs MMIC 10 WATT T/R SWITCH
DC - 4 GHz

Insertion Loss vs. Temperature

Insertion Loss vs. Vdd

Return Loss

Isolation

Isolation vs. Vdd

RF1 to RF2 Isolation

Input P1dB vs. Vdd

Input P1dB vs. Temperature @ Vdd = +5V

Input IP3 vs. Tone Power @ Vdd = +5V

Input P0.1dB vs. Vdd

Input IP3 vs. Tone Power @ Vdd = +3V

Input IP3 vs. Tone Power @ Vdd = +8V

Input IP3 vs. Temperature
27 dBm Tones, Vdd = +3V

Input IP3 vs. Temperature
27 dBm Tones, Vdd = +8V

Input IP3 vs. Temperature
27 dBm Tones, Vdd = +5V

Input P1dB vs. Vdd

Input IP3 vs. Tone Power @ Vdd = +5V

Bias Voltage \& Current

Vdd (V)	Typical Idd $(\mu \mathrm{A})$
+3	0.5
+5	2
+8	20

Truth Table

Control Input (Vctl)		Signal Path State	
A	B	RFC to RF1	RFC to RF2
High	Low	Off	On
Low	High	On	Off

Absolute Maximum Ratings

RF Input Power (Vdd $=+8 \mathrm{~V}$, 50 Ohm source \& load impedances)	$+39 \mathrm{dBm}\left(\mathrm{T}=+85^{\circ} \mathrm{C}\right)$
Supply Voltage Range $($ Vdd $)($ Vctl $=0 \mathrm{~V})$	-0.2 to +9 V
Control Voltage Range (A \& B)	-0.2 to Vdd +0.5 V
Channel Temperature	$150^{\circ} \mathrm{C}$
Continuous Pdiss (T $\left.=85^{\circ} \mathrm{C}\right)$ (derate $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.85^{\circ} \mathrm{C}\right)$	1.217 W
Thermal Resistance (Channel to ground paddle)	$53.4^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Rating	Class 1 A HBM

Note: DC blocking capacitors are required at ports RFC, RF1 and RF2. Their value will determine the lowest transmission frequency.

Control Voltages \& Currents

State	$\mathrm{Vdd}=+3 \mathrm{~V}$ $(\mu \mathrm{~A})$	$\mathrm{Vdd}=+5 \mathrm{~V}$ $(\mu \mathrm{~A})$	$\mathrm{Vdd}=+8 \mathrm{~V}$ $(\mu \mathrm{~A})$
Low $(0$ to $+0.2 \mathrm{~V})$	0.5	2.0	20
High $(\mathrm{Vdd} \pm 0.2 \mathrm{~V})$	0.1	0.1	0.1

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

MOTES:

1. PACKAGE BODY MATERALL: LOW STRESS MNECTON MOLDED PLASTIC. SUICA AND SILCON IMPRECMATED.
2. LEAD AND GROUND PADOLE MATERAL: COPPER ALOY
3. LEAD AND GROUND PADOLE PLATING: 100\% MATIE TIN.
4. DIMENSIONS ARE W INCHES [MILLMETERS]
5. CHARACTERS TO BE HELVEICA MEDIUM, . 030 HIGH, LASER OR WHITE INK, LOCATED APPROXIMATELY AS SHOWN.
A DIMENSION DOES MOT INCLWDE MOLDFLASH OF 0.15 mm PER SDE.
A DMMENSION DOES MOT MCLUDE MOLDFLASH OF 0.25 mm PER SDE.
6. all ground leads and ground padole must be soldered to pcr pf ground.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC784AMS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$\frac{\text { H784A }}{\text { XXXX }}$

[^1]
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	A	See truth table and control voltage table.	
2	B	See truth table and control voltage table.	
$3,5,8$	RFC, RF1, RF2	This pin is DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
4	Vdd		
6,7	GND		

Typical Application Circuit

Notes:

1. Set logic gate and switch Vdd:

For $V d d=+3 \mathrm{~V}$ to +7 V , use HCT series logic to provide a TTL driver interface.
For Vdd $=+3 \mathrm{~V}$ to +8 V , use NXP Hex Inverter, HEF 4069UB or similar.
2. Control inputs A / B can be driven directly with CMOS logic with Vdd of +3 to +8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
4. Highest RF signal power capability is achieved with V set to +8 V . The switch will operate properly (but at lower RF power capability) at bias voltages down to +3 V .

Evaluation Circuit Board

List of Materials for Evaluation EV1HMC784AMS8G ${ }^{[1]}$

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4- J7	DC Pin
C1 - C3	100 pF capacitor, 0402 Pkg.
C4	10 KpF capacitor, 0603 Pkg.
R1 - R3	100 Ohm Resistor, 0402 Pkg.
U1	HMC784AMS8GE T/R Switch
PCB [2]	104122 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices Inc. upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

[^1]: [1] 4-Digit lot number XXXX
 [2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$

