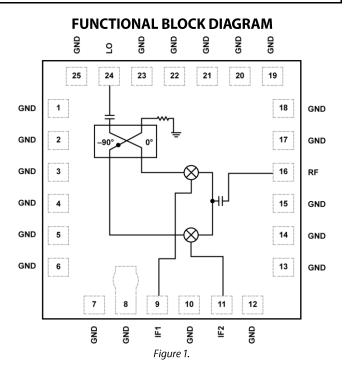


Preliminary Technical Data

FEATURES


Wideband Design: 20 – 42 GHz Wide IF Bandwidth: 0 – 5 GHz Conversion Loss: -8.5 dB High IIP3: 22 dBm High Image Rejection: 25 dB High LO-RF Isolation: 45 dB Reduces need for IF filtering

APPLICATIONS

Test and Measurement Instrumentation Military, Radar and Aerospace

20 GHz to 42 GHz Wideband I/Q Mixer

HMC8192

GENERAL DESCRIPTION

HMC8192 is a passive wideband I/Q MMIC mixer that can be used either as an image reject mixer for receiver operations or as a single sideband upconverter for transmitter operations. With an RF and LO range of 20 GHz to 42 GHz, and an IF bandwidth of DC to 5 GHz, the HMC8192 is ideal for applications requiring wide frequency range, excellent RF performance, and a simpler design with fewer parts and a smaller printed circuit board (PCB) footprint. A single HMC8192 can replace multiple narrowband mixers in a design.

The inherent I/Q architecture of the HMC8192 offers excellent image rejection and thereby eliminates the need for expensive filtering for unwanted sidebands. The mixer also provides

excellent LO to RF and LO to IF isolation and reduces the effect of LO leakage to ensure signal integrity

Being a passive mixer, the HMC8192 does not require any DC power sources. It offers a lower noise figure compared to an active mixer, ensuring superior dynamic range for high performance and precision applications.

The HMC8192 is fabricated on a GaAs MESFET process and uses Analog Devices, Inc., mixer cells and a 90-degree hybrid. It is available in a compact 4 mm \times 4 mm, 25-lead LGA package and operates over a -40° C to $+85^{\circ}$ C temperature range. An evaluation board for this device is also available.

Rev. PrA

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Specifications	. 3
Absolute Maximum Ratings	.4
ESD Caution	.4

Pin Configuration and Function Descriptions	5
Typical Performance Characteristics	6
f _{RF IN} at 100 MHz	6
$f_{\rm RFIN}$ at 2.5 GHz	7
$f_{\rm RFIN}$ at 5 GHz	8
Evaluation Board	9
Outline Dimensions	11

SPECIFICATIONS

 $f_{IFOUT} = f_{RFIN} - f_{LO}$ (downconverter, upper sideband), $f_{RFIN} = 0.1$ GHz to 5 GHz, $P_{RFIN} = -10$ dBm, $P_{LO} = +18$ dBm, $T_A = 25^{\circ}$ C.

Parameter	Test Conditions	Min	Тур	Max	Unit
RF INPUT INTERFACE					
Return Loss			TBD		dB
Input Impedance			TBD		Ω
RF Input Frequency Range		20		42	GHz
IF INTERFACE					
Return Loss			TBD		dB
IF Impedance			TBD		Ω
IF Frequency Range		DC		5	GHz
LO INTERFACE					
LO Power		15	18	22	dBm
Return Loss			TBD		dB
Input Impedance			TBD		Ω
LO Frequency Range		20		42	GHz
DOWNCONVERTER DYNAMIC PERFORMANCE at fifout = 100 MHz	2				
Conversion Loss			TBD		dB
Input Third-Order Intercept			TBD		dBm
Image Rejection			TBD		dB
LO to RF Isolation ¹			TBD		dB
LO to IF Isolation ¹			TBD		dB
RF to IF Isolation ¹			TBD		dB
Phase Balance			TBD		Degrees
Amplitude Balance			TBD		dB
DOWNCONVERTER DYNAMIC PERFORMANCE at $f_{IFOUT} = 2.5 \text{ GHz}$					
Conversion Loss			TBD		dB
Input Third-Order Intercept			TBD		dBm
Image Rejection			TBD		dB
LO to RF Isolation ¹			TBD		dB
LO to IF Isolation ¹			TBD		dB
RF to IF Isolation ¹			TBD		dB
Phase Balance			TBD		Degrees
Amplitude Balance			TBD		dB
DOWNCONVERTER DYNAMIC PERFORMANCE at $f_{IFout} = 5 \text{ GHz}$					
Conversion Loss			TBD		dB
Input Third-Order Intercept			TBD		dBm
Image Rejection			TBD		dB
LO to RF Isolation ¹			TBD		dB
LO to IF Isolation ¹			TBD		dB
RF to IF Isolation ¹			TBD		dB
Balance			TBD		Degrees
Amplitude Balance			TBD		dB

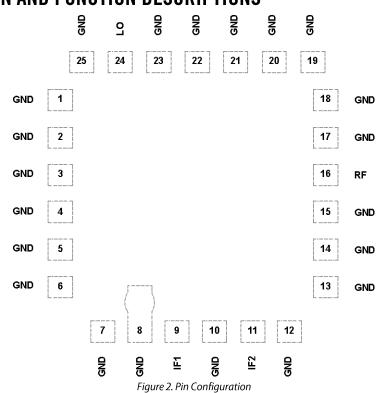
¹ See the Typical Performance Characteristics section.

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
RFIN Power	TBD
LO Drive	TBD
Channel Temperature	TBD
Continuous P _{DISS} (T = 85°C) (Derate 9.8 mW/°C above 85°C)	TBD
Thermal Resistance (R _{TH}) (Junction to Die Bottom)	TBD
Operating Temperature Range	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C
ESD Sensitivity (HBM)	TBD


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1 – 8, 10, 12 – 15, 17 – 23, 25	GND	Ground. These pins and package bottom must be connected to RF/dc ground.
9, 11	IF1, IF2	These pins are dc-coupled. For applications not requiring operations to dc, this port should be dc blocked externally using a series capacitor whose value is selected to pass the necessary IF frequency range. For operations to dc, this pin must not source/sink more than 3 mA of current, otherwise, the device does not function and may fail.
16	RF	This pin is dc-coupled and matched to 50 Ω .
24	LO	This pin is dc-coupled and matched to 50 Ω .

TYPICAL PERFORMANCE CHARACTERISTICS

$f_{\text{RF IN}}\,at\,100\,MHz$

 $f_{IF OUT} = f_{LO} - f_{RF IN}$ (downconverter, lower sideband), $f_{RF IN} = 100$ MHz, $P_{RF IN} = -10$ dBm, $P_{LO} = 18$ dBm, $T_A = 25^{\circ}$ C.

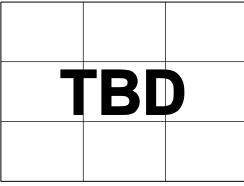


Figure 3. Image Rejection, Downconverter

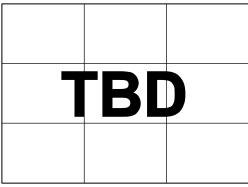


Figure 4. RF to IF Isolation, Downconverter

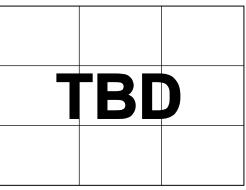


Figure 5. Input IP3, Downconverter

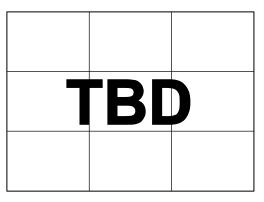


Figure 6. LO to IF Isolation, Downconverter

f_{RF IN} at 2.5 GHz

 $f_{\rm IF\,OUT} = f_{\rm LO} - f_{\rm RFIN} (downconverter, lower sideband), f_{\rm RFIN} = 2.5 \text{ GHz}, P_{\rm RFIN} = -10 \text{dBm}, P_{\rm LO} = 14 \text{ dBm}, 16 \text{ dBm}, 18 \text{ dBm}, 20 \text{ dBm}, T_{\rm A} = 25^{\circ}\text{C}.$

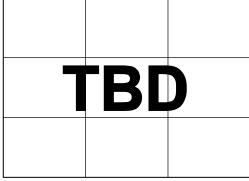


Figure 7. Conversion Loss, Downconverter

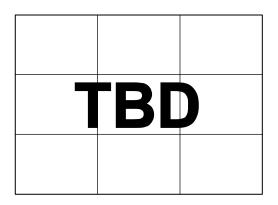
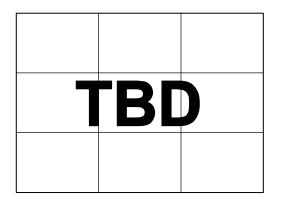



Figure 8. Image Rejection, Downconverter

Figure 9.Amplitude Balance, Downconverter

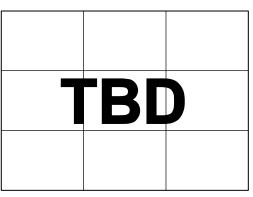


Figure 10. Input IP3, Downconverter

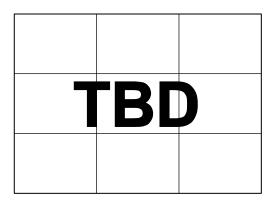


Figure 11. LO to RF Isolation, Downconverter

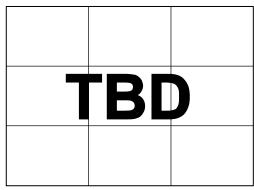


Figure 12. Phase Balance, Downconverter

HMC8192

f_{RF IN} at 5 GHz

 $f_{\rm IF\,OUT} = f_{\rm LO} - f_{\rm RF\,IN} \text{ (downconverter, lower sideband), } f_{\rm RF\,IN} = 5 \text{ GHz, } P_{\rm RF\,IN} = -10 \text{ dBm, } P_{\rm LO} = 14 \text{ dBm, } 16 \text{ dBm, } 18 \text{ dBm, } 20 \text{ dBm, } T_{\rm A} = 25^{\circ}\text{C}.$

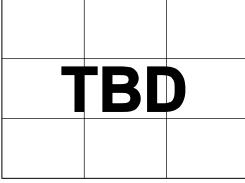


Figure 13. Conversion Loss, Downconverter

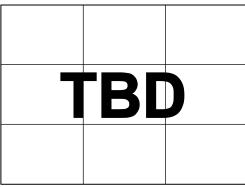


Figure 14. Image Rejection, Downconverter

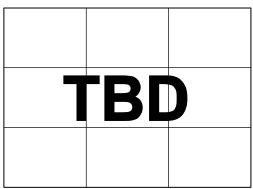


Figure 15. Input IP3, Downconverter

EVALUATION BOARD

An evaluation board is available for the HMC8192. The standard evaluation board is fabricated using Rogers[®] RO4003C material. The schematic for the evaluation board is shown in Figure 16.

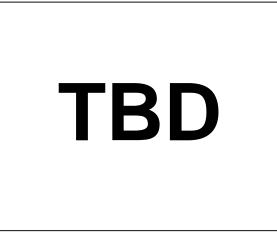


Figure 16. Evaluation Board Schematic

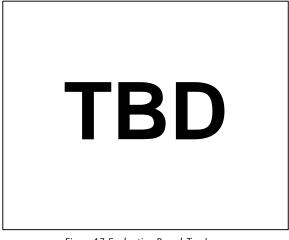


Figure 17. Evaluation Board, Top Layer

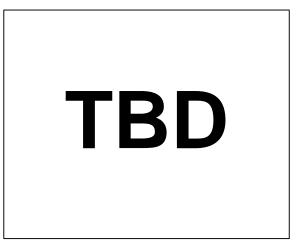


Figure 18. Evaluation Board, Bottom Layer

HMC8192

Table 4 describes the various configuration options for the evaluation board. Layouts for the board are shown in Figure 17 and Figure 18.

Table 4. Evaluation Board Configuration

Components	Function	Default Conditions
TBD		

OUTLINE DIMENSIONS

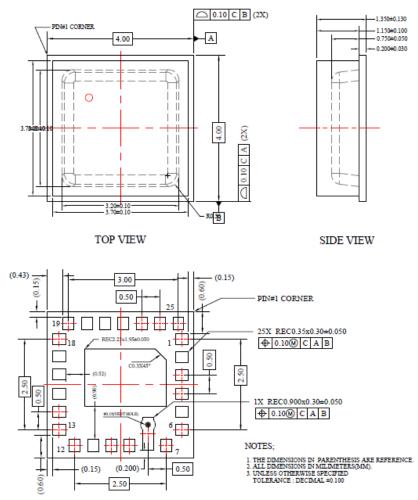


Figure 19. HMC8192 Outline Drawing and Dimensions

www.analog.com

©2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR15697-0-3/17 (PrA)

Rev. PrA | Page 11 of 11

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Mixer category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

HMC337-SX HMC404-SX mamx-009646-23dbml HMC339-SX HMC8192-SX MIQ24MS-2 HMC220BMS8GETR M85C HMC554A-SX HMC8192LG HMC521A-SX HMC521ACHIPS CMD258C4 LT5511EFE MAMX-011023-SMB HMC399MS8TR HMC333TR HMC214MS8TR HMC175MS8TR MAMXSS0012TR-3000 109728-HMC129LC4 CSM1-13 SA612AD/01.112 HMC785LP4ETR LT5526EUF#PBF LT5579IUH#PBF HMC773ALC3BTR HMC558ALC3B HMC329ALC3B MY63H AD8343ARUZ-REEL7 AD608AR AD608ARZ AD831APZ AD831APZ-REEL7 AD8342ACPZ-REEL7 AD8343ARUZ AD8344ACPZ-REEL7 ADL5350ACPZ-R7 ADL5363ACPZ-R7 ADL5365ACPZ-R7 ADL5801ACPZ-R7 ADL5802ACPZ-R7 HMC1056LP4BE HMC1057-SX HMC1063LP3E HMC1093-SX HMC1106-SX HMC129 HMC143