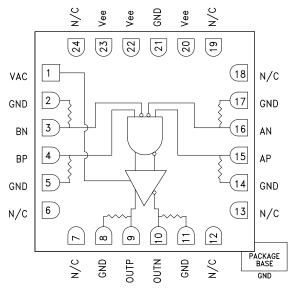


v01.0710


45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Typical Applications

The HMC843LC4B is ideal for:

- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 45 Gbps
- Digital Logic Systems up to 25 GHz
- NRZ-to-RZ Conversion

Functional Diagram

Features Supports High Data Rates: up to 45 Gbps Differential & Singe-Ended Operation Fast Rise and Fall Times: 10 / 10 ps Low Power Consumption: 530 mW Programmable Differential Output Voltage Swing: 200 - 900 mV

Single Supply: -3.3V

24 Lead 4x4mm SMT Package: 16mm²

General Description

The HMC843LC4B is an AND/NAND/OR/NOR function designed to support data transmission rates of up to 45 Gbps, and clock frequencies as high as 25 GHz. The HMC843LC4B may be easily configured to provide any of the following logic functions:

AND, NAND, OR and NOR. The HMC843LC4B also features an output level control pin, VAC, which allows for loss compensation or for signal level optimization.

All input signals to the HMC843LC4B are terminated with 50 Ohms to ground on-chip, and may be either AC or DC coupled. The differential outputs of the HMC843LC4B may be either AC or DC coupled. Outputs can be connected directly to a 50 Ohms-to-ground terminated system, while DC blocking capacitors should be used if the terminating system is 50 Ohms to a non-ground DC voltage. The HMC843LC4B operates from a single -3.3V DC supply, and is available in a ceramic RoHS compliant 4x4 mm SMT package.

Parameter Conditions Min. Typ. Max Units -3.3 -3.13 v **Power Supply Voltage** ±5 % Tolerance -3.47 VAC = -0.4V 160 Power Supply Current 145 175 mΑ Output Amplitude Control Voltage (VAC) -0.4 -1.7 -0.1 V Maximum Data Rate 45 Gbps Maximum Clock Rate 25 GHz Single-ended, peak-to-peak 100 300 Input Amplitude mVp-p 1000 Differential, peak-to-peak 100 Input High Voltage V -0.5 0.5 -1 v Input Low Voltage 0 Differential, peak-to-peak **Output Amplitude** 200 900 mVp-p @ 40 Gbps

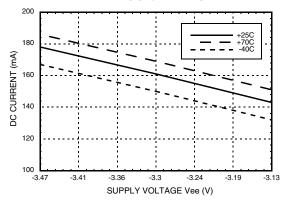
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

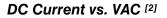
Electrical Specifications, $T_{A} = +25^{\circ}C$, Vee = -3.3V

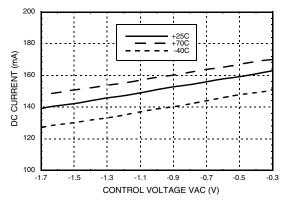
v01.0710

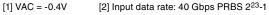
ROHSV EARTH FRIENDLY

45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE

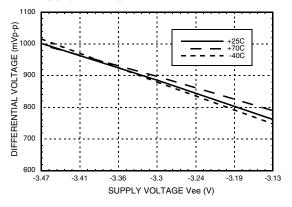

Electrical Specifications, (continued)

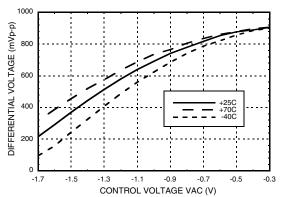

Parameter	Conditions	Min.	Тур.	Max	Units
Output High Voltage		VAC = -0.3	-70		mV
Output Low Voltage		VAC = -0.3	-570		mV
Input Return Loss	Frequency < 25 GHz		10		dB
Output Return Loss	Frequency < 25 GHz		10		dB
Deterministic Jitter, Jd ^[1]			3		ps, pp
Additive Random Jitter Jr ^[2]			0.2		ps rms
Rise Time, tr ^[1]			10		ps
Fall Time, tf ^[1]			10		ps
Propagation Delay, td			10		ps


[1] A Input: 40 Gbps PRBS 2²³-1 pattern, 150 mVp-p single-ended, B Input: 40 Gbps 10101... pattern, 200 mVp-p single-ended


[2] Random jitter is measured with 40 Gbps 10101... pattern

DC Current vs. Supply Voltage [1] [2]

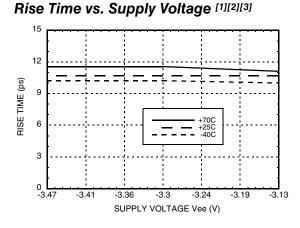


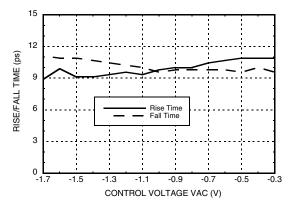


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

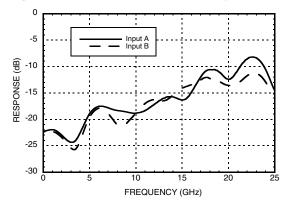
Differential Output Swing vs. Supply Voltage [1] [2]

Differential Output Swing vs. VAC [2]




45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE

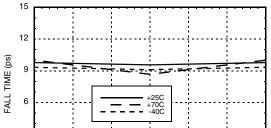
Fall Time vs. Supply Voltage [1][2][3]

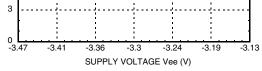


v01.0710

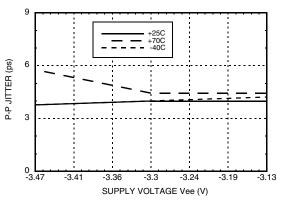
Rise / Fall Time vs. VAC [1][2][3]

Input Return Loss vs. Frequency [1][5]

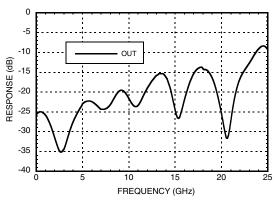

 [1] VAC = -0.4V
 [2] Input data rate: 40 Gbps PRBS 2²³-1


 [4] Source jitter was not deembeded
 [5] Device measu

 Gbps PRBS 2²³-1
 [3] Data was taken at single ended output


 [5] Device measured on evaluation board with single-ended time domain gating.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



Peak-to-Peak Jitter vs. Supply Voltage [1][2][3][4]

Output Return Loss vs. Frequency [1][5]

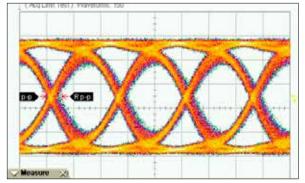
v01.0710

ROHS

45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE

40 Gbps RZ Differential Output Eye Diagram

Measurements				
	Current	Min	Мах	Total Meas.
Eye Amp	832 mV	830 mV	833 mV	48
Rise Time	10.67 ps	10.67 ps	10.67 ps	48
Fall Time	10.00 ps	9.67 ps	10.00 ps	48
p-p Jitter	3.667 ps	3.000 ps	3.667 ps	48

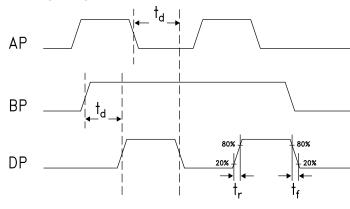

Time Scale: 10 ps/div Amplitude Scale: 200 mV/div

Test Conditions:

Vee = -3.3V, VAC = -0.4V

A Input: 40 Gbps PRBS 2²³-1 pattern, 150 mVp-p single-ended B Input: 40 Gbps 10101... pattern, 200 mVp-p single-ended

40 Gbps NRZ Differential Output Eye Diagram


	Measurements			
	Current	Min	Мах	Total Meas.
Eye Amp	769 mV	768 mV	770 mV	48
Rise Time	14.00 ps	13.78 ps	14.22 ps	48
Fall Time	12.67 ps	12.22 ps	12.89 ps	48
p-p Jitter	6.000 ps	4.889 ps	6.000 ps	48

Time Scale: 10 ps/div Amplitude Scale: 200 mV/div

Test Conditions:

Vee = -3.3V, VAC = -0.4V A Input: 40 Gbps PRBS 2^{23} -1 pattern, 150 mVp-p single-ended B Input: BP = 0V, BN = -0.3V

Timing Diagram

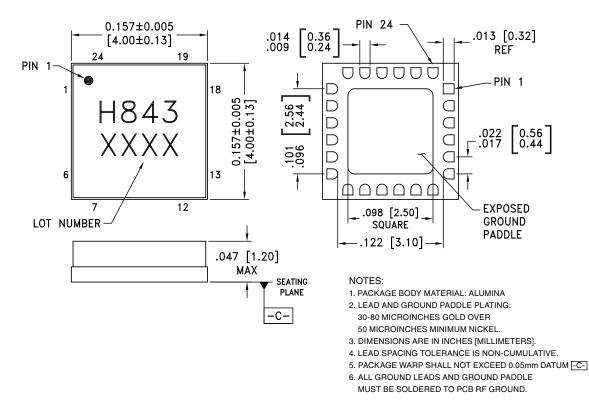
Truth Table

Input		Outputs
A	В	D
L	L	L
L	Н	L
н	L	L
н	н	Н
Notes: A = AP - AN B = BP - BN D = DP - DN	H - Logic High L - Logic Low	

HIGH SPEED LOGIC - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE


Absolute Maximum Ratings

	•
Power Supply Voltage (Vee)	-3.7V to +0.5V
Input Voltage	-1.3V to +0.5V
Channel Temperature	125°C
Continuous Pdiss (T = 85°C) (derate 24.42 mW/°C above 85°C)	0.98 W
Thermal Resistance (channel to ground paddle)	40.95 °C/W
Storage Temperature	-65°C to +125°C
Operating Temperature	-40°C to +70°C
Output Amplitude Control Voltage (VAC)	-2.3V to +0.5V

v01.0710

Outline Drawing

BOTTOM VIEW

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0710

45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	VAC	Output amplitude control voltage	
2, 5, 8, 11, 14, 17, 21 Package Base	GND	Signal and supply grounds	
3, 4	BN, BP	Differential (BP-BN) or single-ended (BP) data inputs	GND 5000 BP, Vee
6, 7, 12, 13, 18, 19, 24	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
9, 10	OUTP, OUTN	AND/OR/NAND/NOR outputs	
15, 16	AP, AN	Differential (AP-AN) or single-ended (AP) data inputs	AN, O Vee
20, 22, 23	Vee	Power Supply (-3.3V)	

7

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0710

45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Evaluation PCB

0	Hittit€ 129821−1	\bigcirc	
0		0	
V	vc2 vee/vccgnd	VC1	
J1	+ C7 c2 C8 C7 c2 C8 C40 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	P6	J3
	HB433 XXXXX		
J2	Tullin,	P5 ()	J4
РЗ		P4	
U1-C			
	J5 J	6	
	J5 J	6	

Item	Description
J1	BN
J2	BP
J3	AN
J4	AP
J5	OUTP
J6	OUTN
J9	VAC
J11	GND
J12	Vee

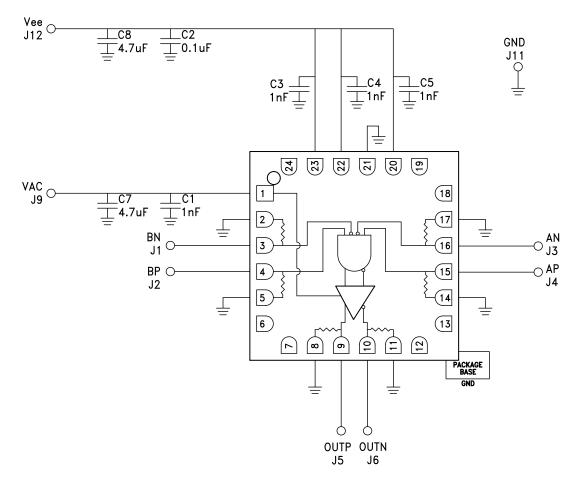
List of Materials for Evaluation PCB 128921 [1]

Item	Description
J1 - J6	K Connector
J9, J11, J12	DC Pin
C1, C3 - C5	1000pF Capacitor, 0402 Pkg.
C2	0.1 µF Capacitor, 0402 Pkg.
C7, C8	4.7 µF Capacitor, Tantalum
U1	HMC843LC4B AND / NAND / OR / NOR
PCB ^[2]	129821 Evaluation Board

Reference this number when ordering complete evaluation PCB
 Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed metal package base must be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v01.0710

45 Gbps, AND / NAND / OR / NOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Application Circuit

7

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

74HC85N NLV7SZ58DFT2G NLVHC1G08DFT1G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC14ADR2G NLV74HC20ADR2G NLVVHC1G09DFT1G NLX2G86MUTCG 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLV27WZ86DSD NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G NLVVHC1G02DFT1G NL17SZ38DBVT1G NLV18SZ00DFT2G