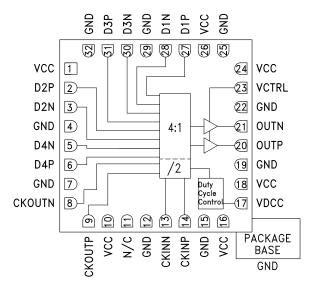


v06.1215


36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

Typical Applications

The HMC847LC5 is ideal for:

- SONET OC-768
- RF ATE Applications
- Broadband Test & Measurements
- Serial Data Transmission up to 36 Gbps
- High Speed DAC Interfacing

Functional Diagram

Features

Supports Data Rates up to 36 Gbps Half Rate Clock Input Quarter Rate Reference Clock Output Fast Rise and Fall Times: 11 / 12 ps Programmable Differential Output Voltage Swing: 250 - 900 mVp-p

Single Supply: +3.3V

32 Lead Ceramic 5x5 mm SMT Package: 25 mm²

General Description

The HMC847LC5 is a 4:1 multiplexer for operation at output data rate up to 36 Gbps. The mux latches the four differential inputs on falling edge of the input clock CKIN (See timing diagram on page.6). The device uses both rising and falling edges of the half-rate clock to serialize the data. A quarter-rate clock output, which is synchronous to the data output of HMC847LC5, is generated on chip.

All clock and data inputs / outputs of the HMC847LC5 are CML and terminated on-chip with 50 Ohms to the, VCC, and may be DC or AC coupled. The inputs and outputs of the HMC847LC5 may be operated either differentially or single-ended. The HMC847LC5 also features an output level control pin, VCTRL, which allows for loss compensation or signal level optimization. The VDCC pin controls the data output cross-point & duty cycle. The HMC847LC5 operates from a single +3.3V supply and is available in ROHS compliant 5x5 mm SMT package.

Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage	± 5% Tolerance	3.13	3.3	3.47	V
Power Supply Current	Vctrl = 2.5V	480	530	580	mA
Output Amplitude Control Voltage Range (Vctrl)		1.7	2.5	3	V
Data Output Voltage Swing Range	Differential, peak-to-peak @ 36 Gbps	550		900	mVp-p
Duty Cycle Control Voltage Range (Vdcc)	Vdcc = 1.6V for 50% duty cycle	1	1.6	2	V
Duty Cycle Control Range	@ 36 Gbps	40	50	60	%
Clock Output Voltage Swing	Differential, peak-to-peak @ 10 GHz	480	580	680	mVp-p
Maximum Data Rate				36	Gbps
Maximum Clock Rate	Half Rate Clock			18	GHz

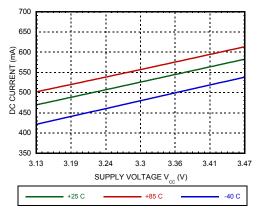
Electrical Specifications, T_A = +25°C, Vcc = +3.3V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

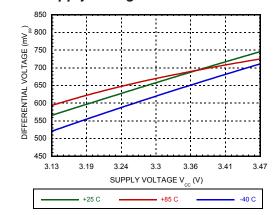
Electrical Specifications, (continued)

Conditions	Min.	Тур.	Max	Units
	DC		36	Gbps
V _{cc} ≥3.3V, T _A ≤25	DC		40	Gbps
Single-Ended, peak-to-peak ^[2]	150		800	mVp-p
Differential, peak-to-peak	150		1000	mVp-p
Single-Ended, peak-to-peak [2]	100		700	mVp-p
Differential, peak-to-peak	100		1000	mVp-p
Vctrl = 2.5V	2.8		3.8	V
Vctrl = 2.5V	2.3		3.3	V
Vctrl = 2.5V		2.94		V
Vctrl = 2.5V		2.62		V
Data input up to 10 GHz		-10		dB
Clock input up to 36 GHz		-12		dB
Data output up to 28 GHz		-10		dB
Clock output up to 36 GHz		-5		dB
		3.5		ps p-p
		0.75		ps rms
20% - 80%		13		ps
20% - 80%		13		ps
Input clock to output clock		107		ps
Input clock to output data		125+2.5 CLKIN period		ps
Falling edge of CKIN to t_sample at center of DIN1-4 time		-80		ps
Falling edge of CKIN to t_sample at center of DIN1-4 time		90		ps
	$V_{cc} \ge 3.3V$, $T_A \le 25$ Single-Ended, peak-to-peak [2]Differential, peak-to-peak [2]Differential, peak-to-peak [2]Differential, peak-to-peak [2]Vctrl = 2.5VVctrl = 2.5VVctrl = 2.5VVctrl = 2.5VClock input up to 10 GHzClock input up to 36 GHzData output up to 28 GHzClock output up to 36 GHzData output up to 36 GHzData Output up to 36 GHzLock output up to 36 GHzClock Output clock to output clockInput clock to output clockInput clock to output dataFalling edge of CKIN to t_sample at center of DIN1-4 timeFalling edge of CKIN to t_sample at center	DCDC $V_{cc} \ge 3.3V, T_A \le 25$ DCSingle-Ended, peak-to-peak [2]150Differential, peak-to-peak [2]100Differential, peak-to-peak [2]100Differential, peak-to-peak [2]100Differential, peak-to-peak [2]100Vctrl = 2.5V2.8Vctrl = 2.5V2.3Vctrl = 2.5V2.3Vctrl = 2.5V2.3Vctrl = 2.5V2.3Clock input up to 10 GHz10Clock input up to 36 GHz10Data output up to 28 GHz10Clock output up to 36 GHz1020% - 80%10Lock to output clock10Input clock to output clock10Input clock to output dataFalling edge of CKIN to t_sample at center of DIN1-4 timeFalling edge of CKIN to t_sample at center10	DC DC $V_{cc} \ge 3.3V, T_A \le 25$ DC Single-Ended, peak-to-peak [2] 150 Differential, peak-to-peak [2] 100 Differential, peak-to-peak [2] 100 Differential, peak-to-peak [2] 100 Differential, peak-to-peak 100 Vctrl = 2.5V 2.8 Vctrl = 2.5V 2.3 Vctrl = 2.5V 2.3 Vctrl = 2.5V 2.62 Data input up to 10 GHz -10 Clock input up to 36 GHz -12 Data output up to 28 GHz -10 Clock output up to 36 GHz -5 20% - 80% 13 20% - 80% 13 Input clock to output clock 107 Input clock to output data 125+2.5 CLKIN Falling edge of CKIN to t_sample at center of DIN1-4 time -80	DC 36 $V_{cc} \ge 3.3V, T_{A} \le 25$ DC 40 Single-Ended, peak-to-peak ^[2] 150 800 Differential, peak-to-peak ^[2] 100 700 Single-Ended, peak-to-peak ^[2] 100 700 Differential, peak-to-peak 100 1000 Single-Ended, peak-to-peak 100 1000 Other ended, peak-to-peak 100 1000 Differential, peak-to-peak 100 1000 Votrl = 2.5V 2.8 3.8 Votrl = 2.5V 2.3 3.3 Votrl = 2.5V 2.3 3.3 Votrl = 2.5V 2.62 10 Data input up to 10 GHz -10 10 Clock input up to 36 GHz -12 10 Clock output up to 28 GHz -10 10 Clock output up to 36 GHz -5 10 Clock output up to 36 GHz -55 10 20% - 80% 13 12 20% - 80% 13 13 Input clock to output clock 107


[1] Low frequency operation depends on AC coupling.

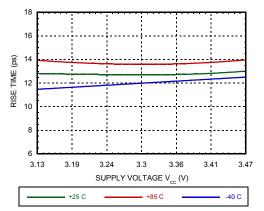
[2] The un-used port is biased @ 3.3V

[3] CKINP: 18 GHz clock signal, 300 mVp-p single-ended, D1P-D4P: 9 Gbps PRBS 2³¹-1 pattern, 300 mVp-p single-ended

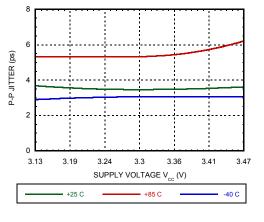

[4] Random jitter is measured with 36 Gbps PRBS31 pattern

^[1] Vctrl = 2.5V [2] Data Rate = 36 Gbps

Differential Output Swing vs. Supply Voltage [1][2]


DC Current vs. Vctrl^[1]

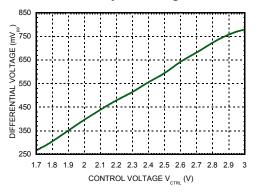
HMC847LC5


36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

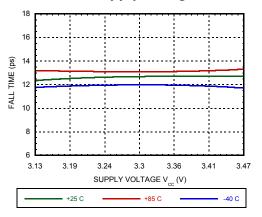
540 (Yu) 530 500 510 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 CONTROL VOLTAGE V_{ortec} (V)

Rise Time vs. Supply Voltage [1][2][3][4]

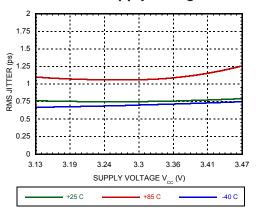
Peak-to-Peak Jitter vs. Supply Voltage [1][2][3][5]



[1] Data Rate = 36 Gbps[2] Vctrl = 2.5V[5] Source jitter was not deembeded

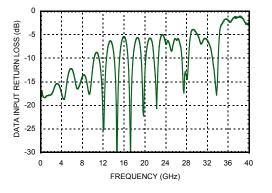

[3] Data was taken at single-ended output [4] 20% - 80%

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

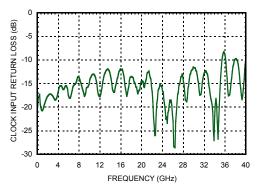

Differential Output Swing vs. Vctrl [1]

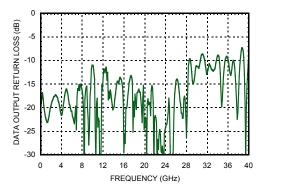
Fall Time vs. Supply Voltage [1][2][3][4]

RMS Jitter vs. Supply Voltage [1][2][3][5]

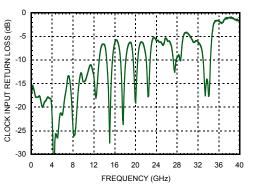


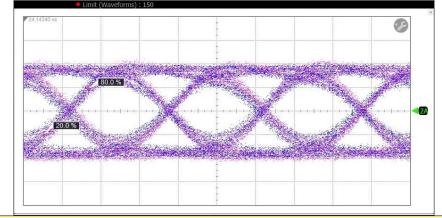
3




36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

Data Input Return Loss vs. Frequency [1][2]


Clock Input Return Loss vs. Frequency [1][2]

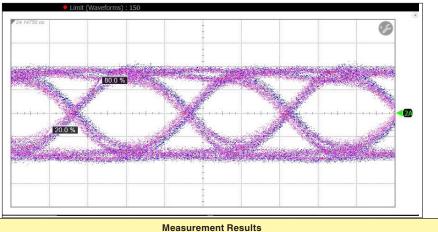


Data Output Return Loss vs. Frequency [1][2]

Clock Output Return Loss vs. Frequency [1][2]

40 Gbps Single-Ended Output Eye Diagram

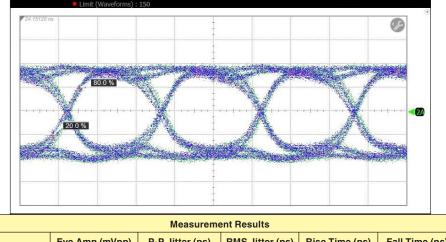
Measurement Results					
	Eye Amp (mVpp)	P-P Jitter (ps)	RMS Jitter (ps)	Rise Time (ps)	Fall Time (ps)
HSP	308	4.8	1.1	11.6	14.4
HSN	328	3.07	0.74	12.4	13.9


Time Scale: 10 ps/div ; Amplitude Scale: 100 mV/div

Test Conditions: VCC = +3.3V, VCTRL = 2.5V; D1P-D4P: 10 Gbps NRZ PRBS 2³¹-1 pattern, 300 mVp-p single-ended CKINP: 20 GHz Clock Signal, 300 mVp-p single-ended

[1] Vctrl = 2.6V [2] Device measured on evaluation board with single ended time domain gating

36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE



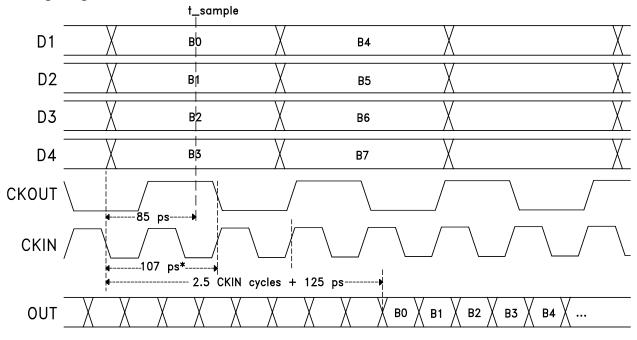
36Gbps Single-Ended Output Eye Diagram

Measurement Results					
	Eye Amp (mVpp)	P-P Jitter (ps)	RMS Jitter (ps)	Rise Time (ps)	Fall Time (ps)
HSP	320	4.27	1.03	12.7	13.5
HSN	338	3.33	0.65	12.7	12.7

Time Scale: 10 ps/div ; Amplitude Scale: 100 mV/div

Test Conditions: VCC = +3.3V, VCTRL = 2.5V; D1P-D4P: 9 Gbps NRZ PRBS 2³¹-1 pattern, 300 mVp-p single-ended CKINP: 18 GHz Clock Signal, 300 mVp-p single-ended

20 Gbps Single-Ended Output Eye Diagram


Measurement Results					
	Eye Amp (mVpp)	P-P Jitter (ps)	RMS Jitter (ps)	Rise Time (ps)	Fall Time (ps)
HSP	336	2.93	0.91	14.2	15.8
HSN	352	2.13	0.73	13	14.4

Time Scale: 20 ps/div ; Amplitude Scale: 100 mV/div

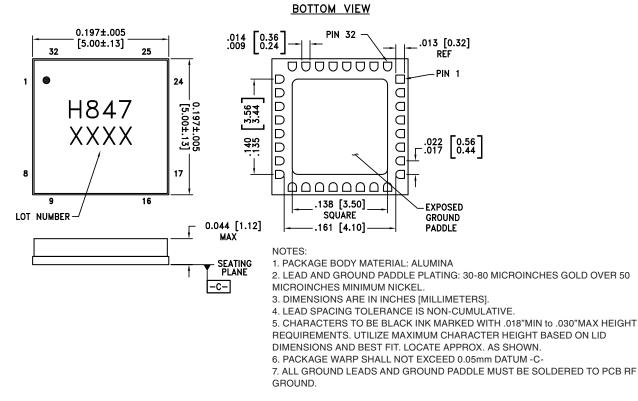
Test Conditions: VCC = +3.3V, VCTRL = 2.5V; D1P-D4P: 5 Gbps NRZ PRBS 2³¹-1 pattern, 300 mVp-p single-ended CKINP: 10 GHz Clock Signal, 300 mVp-p single-ended

36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

Timing Diagram

* To either rising or falling edge of CKOUT

MUX & DEMUX - SMT


36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

Absolute Maximum Ratings

Power Supply Voltage (Vcc)	+0.5V to +3.7V
Input Voltages	Vcc -2V to Vcc +0.5V
DC Control Pins (Vctrl, Vdcc)	Vcc +0.2V to Vcc -2.5V
Channel Temperature	125 °C
Continuous Pdiss (T = 85 °C) (derate 50.91 mW/°C above 85 °C)	2.04 W
Thermal Resistance (Channel to die bottom)	19.64 °C/W
Storage Temperature	-65°C to +150°C
Operating Temperature	-40°C to +85°C
ESD Level (HBM)	Class 1B

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating ^[2]	Package Marking ^[1]	
HMC847LC5	Alumina, White	Gold over Nickel	MSL3	H847 XXXX	
MALE DI TRA L					

[1] 4-Digit lot number XXXX

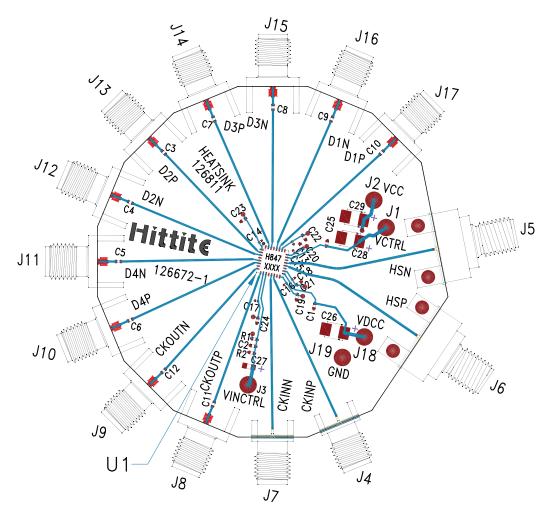
[2] Max peak reflow temperature of 260 °C

36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 10, 16, 18, 24, 26	VCC	Power Supply (3.3V)	
2, 3, 5, 6, 27, 28, 30, 31	D2P, D2N, D4N, D4P, D1P, D1N, D3N, D3P	Differential 4 Channel Serial Data Inputs.	DxP DxN =
4, 7, 12, 15, 19, 22, 25, 29, 32	GND	Signal and supply ground	
8, 9	CKOUTN, CKOUTP	Differential Quarter Rate System Clock Outputs.	500 E CKOUTP, CKOUTP, CKOUTN
11	N/C	Not connected.	
13, 14	CKINN, CKINP	Differential Half Rate Clock Inputs.	
17	Vdcc	Output Duty Cycle Correction Control	$V_{dcc} \bigcirc 1.2k0$ $\downarrow 1.2k0$ $\downarrow 1.2k0$ $\downarrow = = =$
20, 21	OUTP, OUTN	Differential High Speed Serial Data Outputs	Vcc 500 UTP, OUTP, OUTP,

36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE


Pin Descriptions (Continued)

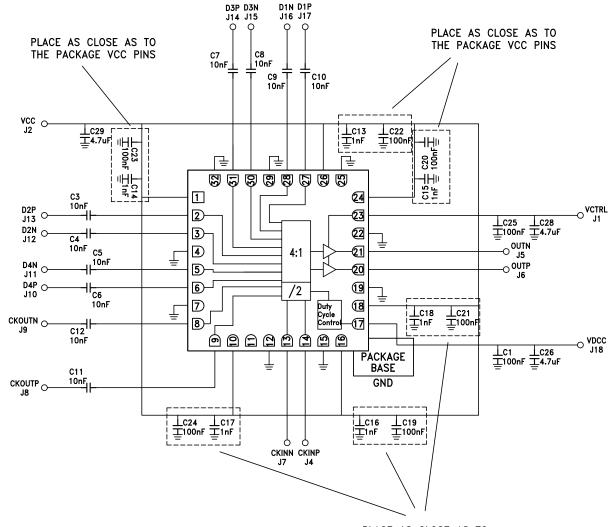
Pin Number	Function	Description	Interface Schematic
23	Vctrl	Output Amplitude Control	Vctrl 0 + 1.15k0 + - - - - - - - - - - - - -

36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

Evaluation PCB

List of Materials for Evaluation PCB 126674^[1]

Item	Description
J1, J2, J18, J19	DC Connector
J4, J7	K Connector
J5, J6	2.4mm Connector
J8 - J17	SMA Connector
C1, C19 - C25	100 nF Capacitor, 0402 Pkg.
C3 - C12	10 nF Capacitor, 0402 Pkg.
C13 - C18	1 nF Capacitor, 0201 Pkg.
C26, C28, C29	4.7 µF Capacitor, Tantalum
U1	HMC847LC5 36 Gbps 4:1 Mux
PCB ^[2]	126672 Evaluation Board


[1] Reference this number when ordering complete evaluation PCB[2] Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed metal package base must be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

36 Gbps, 4:1 MUX WITH DUTY CYCLE CONTROL & PROGRAMMABLE OUTPUT VOLTAGE

Application Circuit

PLACE AS CLOSE AS TO THE PACKAGE VCC PINS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210 NTE74LS247 SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 74HCT4051D,118 74HC151D,653 MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX157FT(AJ) NL7SZ18MUR2G SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC257D.652 74HCT153D.652 74HC253D.652 74HC139D.652 74HCT139D.652 HEF4543BT.652 TC74HC4052AFT(EL) 74HC139PW-Q100J SN74LVC257AMPWREP 74HC138DB.112