

Typical Applications

The HMC848LC5 is ideal for:

- SONET OC-768
- · RF ATE Applications
- · Broadband Test & Measurements
- Serial Data Transmission up to 45 Gbps
- · High Speed ADC Interfacing

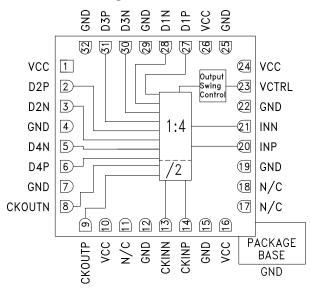
Features

Supports Data Rates up to 45 Gbps

Half Rate Clock Input

Quarter Rate Reference Clock Output

Fast Rise and Fall Times: 25 / 21 ps


Programmable Differential Output Voltage Swing: 300 - 1000 mVp-p

voltage Swing. 300 - 1000 II

Single Supply: +3.3V

32 Lead Ceramic 5x5 mm SMT Package: 25 mm²

Functional Diagram

General Description

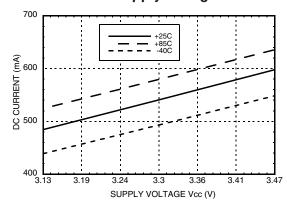
The HMC848LC5 is a 1:4 demultiplexer designed for data deserialization up to 45 Gbps. The device uses both rising and falling edges of the half-rate clock to sample the input data in sequence, D0-D3 and latches the data onto the differential outputs. A quarter-rate clock output generated on-chip can be used to clock the data into other devices.

All clock and data inputs / outputs of the HMC848LC5 are CML and terminated on-chip with 50 Ohms to the VCC, and may be DC or AC coupled. The inputs and outputs of the HMC848LC5 may be operated either differentially or single-ended. The HMC848LC5 also features an output level control pin, VCTRL, which allows for loss compensation or signal level optimization. The HMC848LC5 operates from a single +3.3V supply and is available in ROHS compliant 5x5 mm SMT package.

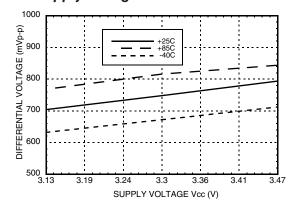
Electrical Specifications, $T_A = +25$ °C, Vcc = 3.3V

Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage	± 5% Tolerance	3.13	3.3	3.47	V
Power Supply Current	Vctrl = 2.5V	480	540	600	mA
Output Amplitude Control Voltage Range (Vctrl)		1.7	2.5	3	V
Maximum Data Rate		45			Gbps
Maximum Clock Rate	Half Rate Clock	22.5			GHz
L	Single-Ended, peak-to-peak [1]	150		800	mVp-p
Input Amplitude (Data)	Differential, peak-to-peak	150		1000	mVp-p
L A !!! . L . (QL . L)	Single-Ended, peak-to-peak [1]	100		700	mVp-p
Input Amplitude (Clock)	Differential, peak-to-peak	100		1000	mVp-p

[1] The un-used port is biased @ 3.3V



Electrical Specifications, (continued)

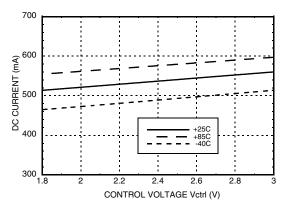

Parameter	Conditions	Min.	Тур.	Max	Units
Input High Voltage (Data & Clock)	Vctrl = 2.5V	2.8		3.8	V
Input Low Voltage (Data & Clock)	Vctrl = 2.5V	2.3		3.3	V
Data Output Voltage Swing Range	Differential, peak-to-peak @ 40 Gbps	300		1000	mVp-p
Clock Output Voltage Swing	Differential, peak-to-peak @ 10 GHz	600	700	800	mVp-p
Output High Voltage	Vctrl = 2.5V		2.95		V
Output Low Voltage	Vctrl = 2.5V		2.6		V
Input Return Loss	Data input up to 11.25 GHz		10		dB
	Clock input up to 22.5 GHz		9		dB
0.1.15.1.1	Data output up to 22.5 GHz		8		dB
Output Return Loss	Clock output up to 11.25 GHz		8		dB
Deterministic Jitter, Jd [2]			4		ps p-p
Additive Random Jitter, Jr [3]			0.35		ps rms
Rise Time, tr [2]	20% - 80%		25		ps
Fall Time, tf [2]	20% - 80%		21		ps
Propagation Delay Clock to Data, Tdpd	Input clock to output data		380		ps
Propagation Delay Clock to Output Clock, Tcpd	Input clock to output clock		80		ps
Set Up Time, ts	Both at rising and falling edges		20		ps
Hold Time, th	Both at rising and falling edges		2		ps

^[2] CKINP: 20 GHz clock signal, 250 mVp-p single-ended, INP: 40 Gbps PRBS 2²³-1 pattern, 250 mVp-p single-ended

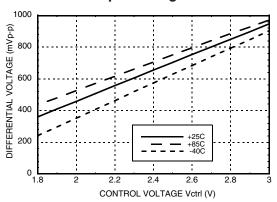
DC Current vs. Supply Voltage [1] [2]

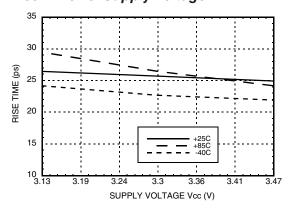
Differential Output Swing vs. Supply Voltage [1][2]

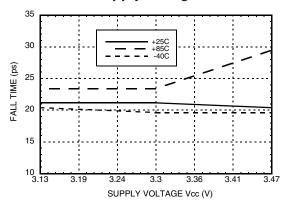
[1] Vctrl = 2.5V

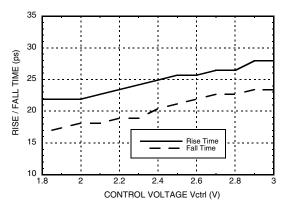

[2] Data Rate = 40 Gbps

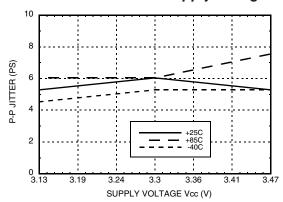
^[3] Random jitter is measured with 40 Gbps 10101... pattern




DC Current vs. Vctrl [1]

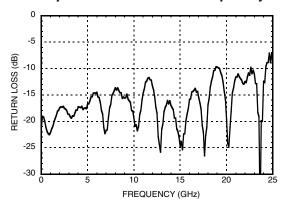

Differential Output Swing vs. Vctrl [1]


Rise Time vs. Supply Voltage [1][2][3][4]

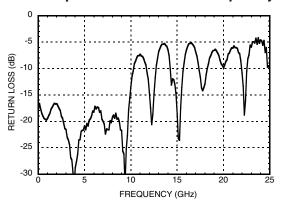

Fall Time vs. Supply Voltage [1][2][3][4]

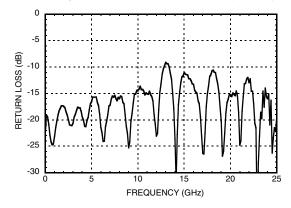
Rise Time vs. Vctrl [1][3][4]

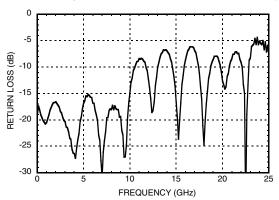
Peak-to-Peak Jitter vs. Supply Voltage [1][2][3][5]

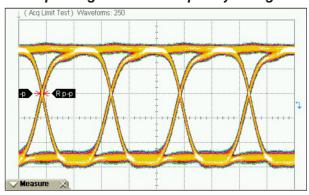


- [1] Data Rate = 40 Gbps
- [2] Vctrl = 2.5V
- [3] Data was taken at single-ended output
- [4] 20% 80%




Data Input Return Loss vs. Frequency [1][2]


Data Output Return Loss vs. Frequency [1][2]


Clock Input Return Loss vs. Frequency [1][2]

Clock Output Return Loss vs. Frequency [1][2]

10 Gbps Single-Ended Output Eye Diagram

Measurements				
	Current	Minimum	Maximum	Total Meas.
Eye Amp	356 mV	356 mV	356 mV	84
Rise Time	25.8 ps	25.8 ps	26.7 ps	84
Fall Time	21.3 ps	21.3 ps	21.3 ps	84
p-p jitter	5.33 ps	4.44ps	5.33 ps	84

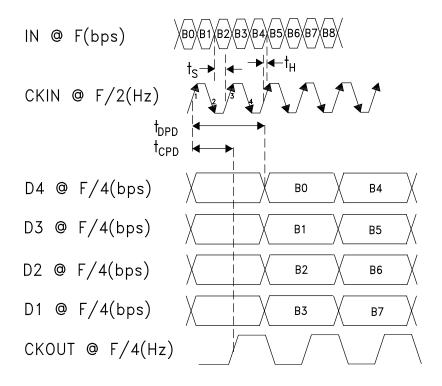
Time Scale: 40 ps/div Amplitude Scale: 79.7 mV/div

Test Conditions:

VCC = +3.3V, VCTRL = 2.5V

INP: 40 Gbps NRZ PRBS 2 23 -1 pattern, 250 mVp-p single-ended

CKINP: 20 GHz Clock Signal, 250 mVp-p single-ended


[1] Vctrl = 2.5V

[2] Device measured on evaluation board with single ended time domain gating

Timing Diagram

Absolute Maximum Ratings

Power Supply Voltage (Vcc)	3.7V to +0.5V
Input Voltages	Vcc -2V to Vcc +0.5V
DC Control Pins (Vctrl, Vdcc)	Vcc +0.2V to Vcc -2.5V
Channel Temperature	125 °C
Continuous Pdiss (T = 85 °C) (derate 49.97 mW/°C above 85 °C)	2 W
Thermal Resistance (Channel to die bottom)	20.01 °C/W
Storage Temperature	-65°C to +150°C
Operating Temperature	-40°C to +85°C

Outline Drawing

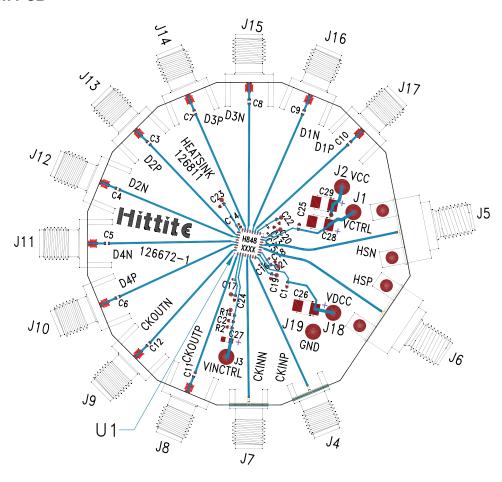
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO Vee.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC848LC5	Alumina, White	Gold over Nickel	MSL3 ^[1]	H848 XXXX

^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

^{[2] 4-}Digit lot number XXXX


Pin Descriptions

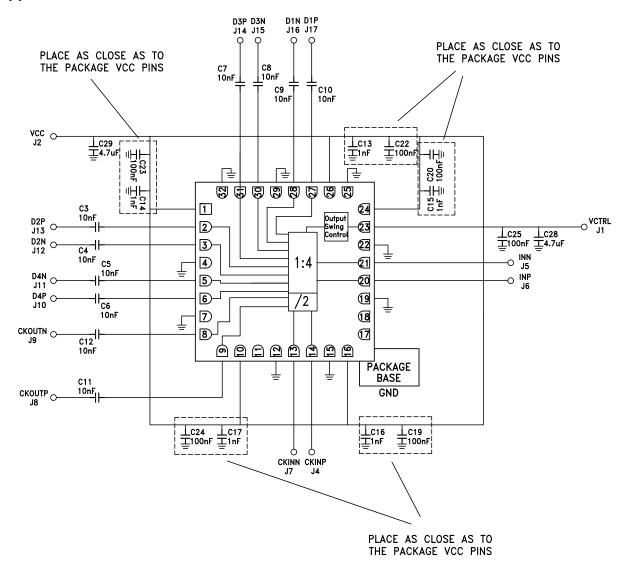
Pin Number	Function	Description Interface Schematic	
1, 10, 16, 24, 26	vcc	Positive supply (3.3V)	
2, 3, 5, 6, 27, 28, 30, 31	D2P, D2N, D4N, D4P, D1P, D1N, D3N, D3P	Differential 4 Channel Serial Data Outputs	Vcc 500 DxP DxN
4, 7, 12, 15, 19, 22, 25, 29, 32	GND	Signal and supply ground.	○ GND —
8, 9	CKOUTN, CKOUTP	Differential Quarter Rate System Clock Outputs.	Vcc 500 CKOUTP, CKOUTN
11, 17, 18	N/C	Not connected.	
13, 14	CKINN, CKINP	Differential Half Rate Clock Inputs.	CKINP CKINN
20, 21	INP, INN	High Speed Serial Data Inputs	Vcc 500}
23	Vctrl	Output Amplitude Control	Vcc 0 3500 VCTRL 0 1.15k0 1.15k0

Evaluation PCB

List of Materials for Evaluation PCB 126674 [1]

Item	Description	
J1, J2, J18, J19	DC Connector	
J4, J7	K Connector	
J5, J6	2.4mm Connector	
J8 - J17	SMA Connector	
C1, C19 - C25	100 nF Capacitor, 0402 Pkg.	
C3 - C12	10 nF Capacitor, 0402 Pkg.	
C13 - C18	1 nF Capacitor, 0201 Pkg.	
C26, C28, C29	4.7 μF Capacitor, Tantalum	
U1	HMC848LC5 45 Gbps 1:4 Demux	
PCB [2]	126672 Evaluation Board	

^[1] Reference this number when ordering complete evaluation $\ensuremath{\mathsf{PCB}}$


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed metal package base must be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR or Rogers 4350

Application Circuit

Notes:

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210 5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX157FT(AJ) NL7SZ18MUR2G SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D.652 74HCT153D.652 74HC253D.652 74HC139D.652 74HCT139D.652 TEF4543BT.652 TC74HC4052AFT(EL) 74HC139PW-Q100J