0.1 GHz to 40 GHz, 31 dB, 5-Bit Digital Attenuator Data Sheet HMC-C584 #### **FEATURES** 1.0 dB LSB steps to 31 dB Single positive control line per bit ±1.0 dB typical bit error Input IP3: 43 dBm CMOS-compatible control Hermetically sealed module Field replaceable K-type connectors Operating temperature: -55°C to +85°C #### **APPLICATIONS** Fiber optics and broadband telecommunications Microwave radios and VSATs Military radios, radars, and electronic counter measures (ECM) Space systems Test instrumentation #### **GENERAL DESCRIPTION** The HMC-C584 is a 0.1 GHz to 40 GHz, 5-bit, gallium arsenide (GaAs) IC digital attenuator housed in a miniature hermetic module. This wideband attenuator features 7 dB typical insertion loss, 43 dBm input IP3, and bit values of 1 dB (LSB), 2 dB, 4 dB, 8 dB, and 16 dB for a total attenuation range of 31 dB. The attenuation accuracy of the device has a ± 1.0 dB typical step error. Five control voltage inputs, toggled between 0 V and 5 V, are used to select each attenuation state. Removable K-type connectors can be detached to allow direct connection of the input/output pins of the module to a microstrip or coplanar circuit. ### **FUNCTIONAL BLOCK DIAGRAM** Trademarks and registered trademarks are the property of their respective owners. # **TABLE OF CONTENTS** | Features | 1 | |--------------------------|---| | Applications | 1 | | General Description | 1 | | Functional Block Diagram | 1 | | Revision History | 2 | | Specifications | | | Absolute Maximum Ratings | | | ESD Caution | | | Pin Configuration and Function Descriptions | • | |---|-----| | Typical Performance Characteristics | ٠. | | Theory of Operation | | | Applications Information | . 8 | | Outline Dimensions | | | Ordering Guide | | ## **REVISION HISTORY** 9/2016—Revision 0: Initial Version # **SPECIFICATIONS** V_{DD} = 5 V, V_{SS} = –5 V, V_{CTL} = 0 V/5 V, T_{A} = 25°C, unless otherwise noted. Table 1. | Parameter | Min | Тур | Max | Unit | Test Conditions/Comments | |---|------|---|------|------|-----------------------------------| | INSERTION LOSS | | | | | | | 0.1 GHz to 30 GHz | | 7 | 9.5 | dB | | | 30 GHz to 40 GHz | 4 | 8 | 10.5 | dB | | | ATTENUATION RANGE | | | | | Normalized to insertion loss | | 0.1 GHz to 40 GHz | 24 | 31 | 35 | dB | | | ATTENUATION ACCURACY | | | | | | | 0.1 GHz to 30 GHz | | | | | | | 1 dB to 8 dB States | | $\pm 0.5 + 5\%$ of maximum attenuation setting | | dB | | | 16 dB to 31 dB States | | $\pm 0.6 + 6\%$ of maximum attenuation setting | | dB | | | 30 GHz to 40 GHz | | | | | | | 1 dB to 8 dB States | | $\pm 0.8 + 8\%$ of maximum attenuation setting | | dB | | | 16 dB to 31 dB States | | $\pm 1.0 + 10\%$ of maximum attenuation setting | | dB | | | INPUT POWER FOR 0.1 dB COMPRESSION | | | | | | | 0.1 GHz to 0.5 GHz | | 20 | | dB | | | 0.5 GHz to 40 GHz | | 25 | | dB | | | INPUT IP3 | | | | | | | 0.1 GHz to 0.5 GHz | | 40 | | dB | | | 0.5 GHz to 40 GHz | | 43 | | dB | | | RETURN LOSS | | | | | RF1 and RF2 | | 0.1 GHz to 40 GHz | | 10 | | dB | | | SUPPLY INPUTS | | | | | | | V_{DD} | 4.5 | 5 | 5.5 | V | | | V_{SS} | -5.5 | – 5 | -4.5 | V | | | CONTROL INPUTS | | | | | | | Input Voltage | | | | | | | High (V _{INH}) | | 3.5 to 5 | | V | | | Low (V _{INL}) | | 0 to 1.5 | | V | | | Input Current (I _{IN}) | | ±5 | | μΑ | $V_{IN} = 0 V \text{ or } V_{CC}$ | | SWITCHING CHARACTERISTICS | | | | | | | Rise Time (t _{RISE})/Fall Time (t _{FALL}) | | 60 | | ns | 10%/90 % RF | | On Time (t _{ON})/Off Time (t _{OFF}) | | 90 | | ns | 50% CTL to 10%/90 % RF | ## **ABSOLUTE MAXIMUM RATINGS** Table 2. | Parameter | Rating | |-----------------------------|-------------------| | V_{DD} | 7 V | | V_{SS} | –7 V | | Control Voltage (V1 to V5) | $V_{DD} + 0.5 V$ | | RF Input Power | 25 dBm | | Operating Temperature Range | −55°C to +85°C | | Storage Temperature Range | −65°C to +150°C | | ESD Rating (HBM) | Class 1A (>250 V) | Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ## **ESD CAUTION** **ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. # PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration **Table 3. Pin Function Descriptions** | Pin No. | Mnemonic | Description | |---------|----------|--| | 1 | RF1 | RF Input/Output 1. This pin is dc-coupled and matched to 50 Ω . Blocking capacitors are required if the RF line potential is not equal to 0 V dc. | | 2 | Vss | Negative Supply Voltage, 5 V DC. | | 3 | GND | Power Supply Ground. | | 4 | V5 | Control Pin for the 16 dB Attenuation State. | | 5 | V_{DD} | Positive Supply Voltage, 5 V DC. | | 6 | RF2 | RF Input/Output 2. This pin is dc-coupled and matched to 50 Ω . Blocking capacitors are required if the RF line potential is not equal to 0 V dc. | | 7 | V4 | Control Pin for the 8 dB Attenuation State. | | 8 | V3 | Control Pin for the 4 dB Attenuation State. | | 9 | V2 | Control Pin for the 2 dB Attenuation State. | | 10 | V1 | Control Pin for the 1 dB Attenuation State. | ## TYPICAL PERFORMANCE CHARACTERISTICS Figure 3. Insertion Loss Figure 4. Normalized Attenuation Figure 5. State Error vs. Frequency Figure 6. Return Loss for RF1, RF2 Figure 7. Step Error vs. Frequency Figure 8. Relative (S21) Phase vs. Frequency # THEORY OF OPERATION Any combination of the states listed in Table 4 provides an attenuation level approximately equal to the sum of the bits selected from 0 dB to 31 dB. A low state level is a voltage between 0 V and 1.5 V. A high state level is a voltage between 3.5 V and 5.0 V. **Table 4. Attenuation Level Truth Table** | - | Cont | trol Voltage Input | | | | |----------|----------|--------------------|----------|-----------|-------------------------------| | V1, 1 dB | V2, 2 dB | V3, 4 dB | V4, 8 dB | V5, 16 dB | Attenuation State, RF1 to RF2 | | Low | Low | Low | Low | Low | Reference insertion loss | | High | Low | Low | Low | Low | 1 dB | | Low | High | Low | Low | Low | 2 dB | | Low | Low | High | Low | Low | 4 dB | | Low | Low | Low | High | Low | 8 dB | | Low | Low | Low | Low | High | 16 dB | | High | High | High | High | High | 31 dB | ## APPLICATIONS INFORMATION In Figure 9, the HMC-C584 is used to make a variable gain amplifier. In this application circuit, the HMC-C584 is used to vary the amplitude of the signal feeding the amplifier over a 31 dB dynamic range. This type of circuit can be used to adjust the overall gain for temperature or frequency. This is only one of the many applications of the HMC-C584. Figure 9. Typical Application Circuit ## **OUTLINE DIMENSIONS** Figure 10. 10-Lead Module with Connector Interface [MODULE] (HML-10-1) Dimensions shown in inches and (millimeters) ### **ORDERING GUIDE** | Model ¹ | Temperature Range | Package Description | Package Option | |--------------------|-------------------|--|----------------| | HMC-C584 | −55°C to +85°C | 10-Lead Module with Connector Interface [MODULE] | HML-10-1 | ¹ Z = RoHS Compliant Part. # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Attenuators - Interconnects category: Click to view products by Analog Devices manufacturer: Other Similar products are found below: | R411803119 | R413806115 | R413808000 | R413810115 | R413850115 | R414510000 | R414701000 | R415303000 | BNC-13 R41 | 1800121 | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | R411801121 | R412412124 | R412450000 | R413800000 | R413805000 | R413830000 | R413840115 | R414730000 | R415420000 | R415703000 | | R416010000 | R420003110 | R411801000 | R411815121 | R413305000 | R413801000 | R414520000 | R411808121 | R412500124 | R412414124 | | R412501124 | R413802000 | R412400124 | R411700124 | R417310130 | R411801119 | R412419124 | R411703124 | R412401124 | R443131000 | | R417130110 | R414700000 | R414505000 | R411802119 | R417720128 | R420706110 | R413811000 | R413803115 | R414501000 | R417903128 |