

High Precision Operational Amplifiers

Description

The HXx277 series precision operational amplifiers replace the industry standard HX177. They offer improved noise, wider output voltage swing, and are twice as fast with half the quiescent current. Features include ultralow offset voltage and drift, low bias current, high common-mode rejection, and high power supply rejection. Single, dual, and quad versions have identical specifications, for maximum design flexibility.

HXx277 series operational amplifiers operate from $\pm 2\text{-V}$ to $\pm 18\text{-V}$ supplies with excellent performance. Unlike most operational amplifiers which are specified at only one supply voltage, the HXx277 series is specified for real-world applications; a single limit applies over the $\pm 5\text{-V}$ to $\pm 15\text{-V}$ supply range. High performance is maintained as the amplifiers swing to their specified limits. Because the initial offset voltage ($\pm 100\mu\text{V}$ maximum) is so low, user adjustment is usually not required. However, the single version (HX277) provides external trim pins for special applications.

HX277 operational amplifiers are easy to use and free from phase inversion and the overload problems found in some other operational amplifiers. They are stable in unity gain and provide excellent dynamic behavior over a wide range of load conditions. Dual and quad versions feature completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.

Features

Ultralow Offset Voltage: 10 μV

Ultralow Drift: ±0.1 μV/°C

High Open-Loop Gain: 134 dB

High Common-Mode Rejection: 140 dB

High Power Supply Rejection: 130 dB

Low Bias Current: 1-nA maximumWide Supply Range: ±2 V to ±18 V

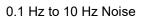
Low Quiescent Current: 800 μA/amplifier

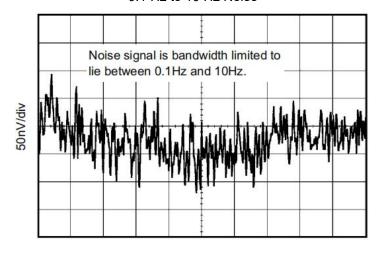
Single, Dual, and Quad Versions

Applications

Transducer Amplifiers

Bridge Amplifiers

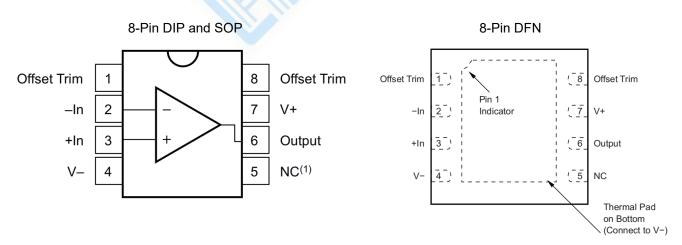

Temperature Measurements


Strain Gage Amplifiers

Precision Integrators

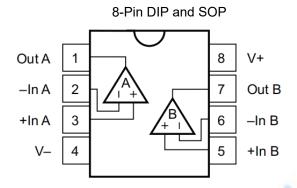
Battery-Powered Instruments

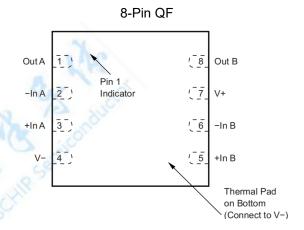
Test Equipment



ORDERING INFORMATION

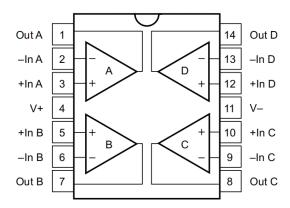
DEVICE	Package Type MARKING		Packing	Packing Qty
HX277UPG	DIP8L	A277U	TUBE	2000pcs/box
HX277UAPG	DIP8L	A277UA	TUBE	2000pcs/box
HX277PG	DIP8L	A277	TUBE	2000pcs/box
HX277UDRG	SOP-8L	A277U	REEL	2500pcs/reel
HX277UADRG	SOP-8L	A277UA	REEL	2500pcs/reel
HX277DRG	SOP-8L	A277	REEL	2500pcs/reel
HX277UDQRG	DFN-8 4*4	A277U	REEL	3000pcs/reel
HX277UADQRG	DFN-8 4*4	A277UA	REEL	3000pcs/reel
HX277DQRG	DFN-8 4*4	A277	REEL	3000pcs/reel
HX2277UPG	DIP8L	A2277U	TUBE	2000pcs/box
HX2277UAPG	DIP8L	A2277UA	TUBE	2000pcs/box
HX2277PG	DIP8L	A2277	TUBE	2000pcs/box
HX2277UDRG	SOP-8L	A2277U	REEL	2500pcs/reel
HX2277UADRG	SOP-8L	A2277UA	REEL	2500pcs/reel
HX2277DRG	SOP-8L	A2277	REEL	2500pcs/reel
HX2277UDQRG	DFN-8 4*4	A2277U	REEL	3000pcs/reel
HX2277UADQRG	DFN-8 4*4	A2277UA	REEL	3000pcs/reel
HX2277DQRG	DFN-8 4*4	A2277	REEL	3000pcs/reel
HX4277PG	DIP14L	HX4277	TUBE	1000pcs/box
HX4277DRG	SOP14L	HX4277	REEL	2500pcs/reel
HX4277PWRG	TSSOP14L	A4277	REEL	2500pcs/reel


Pin Configuration and Functions



Pin Functions: HX277

PIN		1/0	DESCRIPTION	
NAME	DIP, SOP NO.	DFN NO.	I/O	DESCRIPTION
Out A	1	1	0	Output channel A
–In A	2	2	I	Inverting input channel A
+In A	3	3	I	Noninverting input channel A
V–	4	4	_	Negative (lowest) power supply
+In B	5	5	I	Noninverting input channel B
–In B	6	6	I	Inverting input channel B
Out B	7	8	0	Output channel B
V+	8	7	_	Positive (highest) power supply



Pin Functions: HX2277

	PIN					
NAME	DIP, SOP NO.	DFN NO.	I/O	DESCRIPTION		
Out A	1	1	0	Output channel A		
–In A	2	2	I	Inverting input channel A		
+In A	3	3	I	Noninverting input channel A		
V–	4	4	_	Negative (lowest) power supply		
+In B	5	5	I	Noninverting input channel B		
–In B	6	6	I	Inverting input channel B		
Out B	7	8	0	Output channel B		
V+	8	7	_	Positive (highest) power supply		

14 Pins DIP, and TSSOP

Pin Functions: HX4277

	PIN		DESCRIPTION
NO.	NAME	I/O	DESCRIPTION
1	Out A	0	Output channel A
2	–In A	I	Inverting input channel A
3	+In A	ı	Noninverting input channel A
4	V+	_	Positive (highest) power supply
5	+In B	I	Noninverting input channel B
6	–In B	I	Inverting input channel B
7	Out B	0	Output channel B
8	Out C	0	Output channel C
9	–In C	I	Inverting input channel C
10	+In C	I	Noninverting input channel C
11	V-	_	Negative (lowest) power supply
12	+In D	I	Noninverting input channel D
13	–In D	I	Inverting input channel D
14	Out D	0	Output channel D

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Supply voltage, $Vs = (V+) - (V-)$		36	V
Input voltage	(V-) -0.7	(V+) +0.7	V
Output short-circuit ⁽²⁾	Conti		
Operating temperature	-20	85	°C
Junction temperature		150	°C
Lead temperature		300	°C
Storage temperature, T _{stg}	-20	125	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Short-circuit to ground, one amplifier per package.

ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
Supply voltage, $Vs = (V+) - (V-)$	4(±2)	30(±15)	36(±18)	V
Specified temperature	-20		+85	Ô

Thermal Information for HX277

	HX277					
THERMAL METRIC(1)	N (DIP)	M (SOP)	DQ(DFN)	UNIT		
		8 PINS				
Junction-to-ambient thermal resistance	49.2	110.1	40.7	°C/W		
Junction-to-case (top) thermal resistance	39.4	52.2	41.3	°C/W		
Junction-to-board thermal resistance	26.4	52.3	16.7	°C/W		
Junction-to-top characterization parameter	15.4	10.4	0.6	°C/W		
Junction-to-board characterization parameter	26.3	51.5	16.9	°C/W		
Junction-to-case (bottom) thermal resistance	<u> </u>	_	3.3	°C/W		
	Junction-to-ambient thermal resistance Junction-to-case (top) thermal resistance Junction-to-board thermal resistance Junction-to-top characterization parameter Junction-to-board characterization parameter	Junction-to-ambient thermal resistance 49.2 Junction-to-case (top) thermal resistance 39.4 Junction-to-board thermal resistance 26.4 Junction-to-top characterization parameter 15.4 Junction-to-board characterization parameter 26.3	THERMAL METRIC ⁽¹⁾ N (DIP) N (SOP) 8 PINS Junction-to-ambient thermal resistance 49.2 110.1 Junction-to-case (top) thermal resistance 39.4 52.2 Junction-to-board thermal resistance 26.4 52.3 Junction-to-top characterization parameter 15.4 Junction-to-board characterization parameter 26.3 51.5	THERMAL METRIC(1) N (DIP) M (SOP) DQ(DFN) 8 PINS Junction-to-ambient thermal resistance 49.2 110.1 40.7 Junction-to-case (top) thermal resistance 39.4 52.2 41.3 Junction-to-board thermal resistance 26.4 52.3 16.7 Junction-to-top characterization parameter 15.4 10.4 0.6 Junction-to-board characterization parameter 26.3 51.5 16.9		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information for HX2277

		HX2277				
THERMAL METRIC(1)		N (DIP)	MT (TSSOP)	UNIT		
			8 PINS			
R _{0JA}	Junction-to-ambient thermal resistance	47.2	107.4	39.3	°C/W	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	36.0	45.8	36.9	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Thermal Information for HX2277(continued)

		HX2277				
	THERMAL METRIC(1)	N (DIP)	M (SOP)	DQ (DFN)	UNIT	
	THERWIAL WETRIC	8 PINS				
R _{0JB}	Junction-to-board thermal resistance	24.4	47.9	15.4	°C/W	
Ψлт	Junction-to-top characterization parameter	13.4	5.7	0.4	°C/W	
Ψлв	Junction-to-board characterization parameter	24.3	47.3	15.6	°C/W	
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	_	_	2.2	°C/W	

Thermal Information for HX4277

		HX4		
	THERMAL METRIC(1)	N (DIP)	M (SOP)	UNIT
		14 F		
R ₀ JA	Junction-to-ambient thermal resistance	67.0	66.3	°C/W
RθJC(top)	Junction-to-case (top) thermal resistance	24.1	20.5	°C/W
Rejb	Junction-to-board thermal resistance	22.5	26.8	°C/W
ΨJT	Junction-to-top characterization parameter	2.2	2.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	22.1	26.2	°C/W
RθJC(bot)	Junction-to-case (bottom) thermal resistance	_	_	°C/W

^{1.} For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Electrical Characteristics

At TA = 25° C, and RL = $2 \text{ k}\Omega$, unless otherwise noted

PARAMETER		TEST CONDITIONS	HX277U,UA HX2277U,UA			HX277 HX2277 HX4277			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
		OFFSET VOLTAGE							
V0S Input Offset	/oltage			±10	±50		±100	±250	μV
Immust Office t Voltage	HX277U HX2277U				±20				
Input Offset Voltage	HX277UA HX2277UA	$T_A = -20$ °C to85°C	±20		±50				μV
OverTemperature	All Versions							±250	
	HX277U		±0.1 ±0.1	10.15					
Input Offset	(high-grade,single)			±0.1	±0.15				
dV _{0S} /dT Input Offset	HX2277U	$T_A = -20$ °C to 85°C		10.1	.0.1 ±0.25				μV/°C
Voltage Drift	(high-grade, dual)			±0.1	±0.25				
	All AIDRM Versions			10			±0.15	±1	
Innuit Offeet\/eltege	vs Time		-	0.2			See ⁽¹⁾		μV/mo
Input OffsetVoltage:	va Dawar Supply/DSDD)	V _S = ±2 V to ±18V	K	±0.3	±0.5		See ⁽¹⁾	±1	μV/V
(allmodels)	vs Power Supply(PSRR)	$T_A = -20^{\circ}\text{C to }85^{\circ}\text{C}$	43	dir	±0.5			±1	
Channel Separation (d	ual, quad)	DC	0	0.1			See ⁽¹⁾		μV/V

⁽¹⁾ $VS = \pm 15 V$

⁽²⁾ Specifications are the same as HX277U

Electrical Characteristics (continued)

At $T_A = 25$ °C, and $R_L = 2 \text{ k}\Omega$, unless otherwise noted

		METER	TEST CONDITIONS		X277U,L K2277U,l		HX277	HX2277 H	IX4277	UNIT	
				MIN	TYP	MAX	MIN	TYP	MAX		
INPUT E	IAS CURR	ENT									
lв	Input Bias	c Current	T _A = -20°C to85°C		±0.5	±1		See (2)	±2.8	nA	
IB IB	присыа:	Guirent	TA = -20 C 1000 C			±2			±4	IIA	
I _{OS}	los Input Offset Current		T _A = -20°C to85°C		±0.5	±1		See (2)	±2.8	nA	
NOISE											
Input Vol	tage Noise	, f = 0.1 to 10 Hz			0.22			See (2)		μV _{PP}	
		f = 10 Hz			12			See (2)			
Input Vol	tage Noise	f = 100 Hz			8			See (2)		nV/√Hz	
Density		f = 1 kHz			8			See (2)		IIV/\\\\\\\	
		f = 10 kHz		8				See (2)			
In Curre	ent Noise D	ensity, f = 1 kHz		B	0.2	1		See (2)		pA/√Hz	
INPUT V	OLTAGE R	ANGE									
V _{CM} Common-Mo		-Mode Voltage Range	- 3	(V-)+2	70	(V+)-2	See (2)		See (2)	V	
			V _{CM} = (V-) +2 Vto (V+) -2 V	130	140		115	See (2)			
CMRR	Common	-Mode Rejection	T _A = -20°C to85°C	128			115			dB	
INPUT II	MPEDANCI	E									
Different	ial		A PENE		100 3			See (2)		MΩ pF	
Commor	n-Mode		V _{CM} = (V-) +2 Vto (V+) -2 V	250 3			See (2)		GΩ pF		
OPEN-L	OOP GAIN										
			$V_0 = (V-)+0.5 \text{ V to}$				(2)				
			(V+)–1.2 V,R _L = 10 kΩ		140			See (2)			
Aol	Open-Loc	pp Voltage Gain	V _o = (V–)+1.5 Vto							dB	
			(V+)–1.5 V,R _L = 2 kΩ	126	134		See (2)	See (2)			
			V _O = (V–)+1.5 V to								
			(V+)–1.5 V,R _L = 2 kΩ	126				See (2)		dB	
			T _A = -20°C to85°C								
FREQUE	ENCY RESI	PONSE									
GBW	Gain-Ban	dwidth Product			1			See (2)		MHz	
SR	Slew Rate	9			0.8			See (2)		V/µs	
Sottling -	Time	0.1%	Vs = ±15 V,G = 1,		14		See (2)				
Settling ⁻	IIIIE	0.01%	10-V Step	16			See (2)			μs	
Overload	Recovery	Time	$V_{IN} \times G = V_{S}$		3			See (2)		μs	
THD+N	Total Harn	nonic Distortion+Noise	1 kHz, G = 1, V _O = 3.5 Vrms		0.002%			See (2)			

Electrical Characteristics (continued)

At TA = 25° C, and RL = $2 \text{ k}\Omega$, unless otherwise noted

PARAMETER		TEST CONDITIONS	HX277U,	UA HX22	77U,UA				UNIT			
		CONDITIONS	MIN	TYP(1)	MAX	MIN	TYP	MAX				
	OUTPUT											
		$R_L = 10 \text{ k}\Omega$	(V-)+0.5	((V+)–1.2	See(2)		See(2)	V			
Vo	Voltago Quitnut	$T_A = -20$ °C to +85°C	(V-)+0.5	((V+)–1.2	See(2)		See(2)				
\ v ₀	Voltage Output	$R_L = 2 k\Omega$	(V-)+1.5	((V+)–1.5	See(2)		See(2)) V			
		$T_A = -20$ °C to +85°C	(V–)+1.5	((V+)–1.5	See(2)		See(2)				
Isc	Short-Circuit Current		±35			See (2)			mA			
C _{LOAI}	Capacitive Load Drive		See (3)									
Zo	Open-loop output impedance	f = 1 MHz	40			See (2)			Ω			
		F	OWER SU	IPPLY								
Vs	Specified Voltage Range		±5		±15	See(2)		See(2)	V			
Oper	ating Voltage Range		±2		±18	See(2)		See(2)	V			
1.	Quiescent Current	$I_0 = 0$		±790	±825		See(2	See(2)				
l Q	(per amplifier)	$T_A = -20$ °C to 85°C	±900	Bu	Mark	5"		See(2)	μΑ			
TEMPERATURE RANGE												
Spec	cified Range		-20		85	See(2)		See(2)	°C			
Oper	ating Range		-20	1 40	125	See(2)		See(2)	°C			

⁽³⁾ See Typical Characteristics

2018 AUG

Typical Characteristics

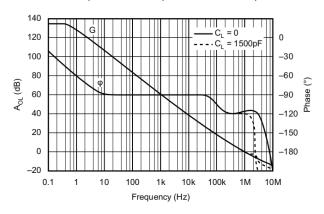


Figure 1. Open-Loop Gain and Phase vs Frequency

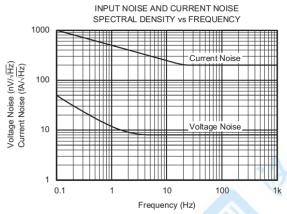


Figure 3. Input Noise and Current Noise Spectral
Densityvs Frequency

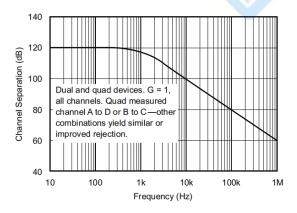


Figure 5. Channel Separation vs Frequency

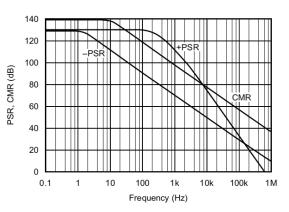


Figure 2. Power Supply and Common-Mod Rejection vs Frequency

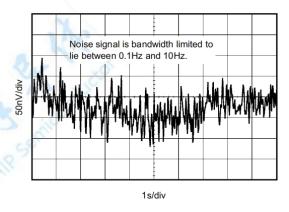


Figure 4. Input Noise Voltage vs Time

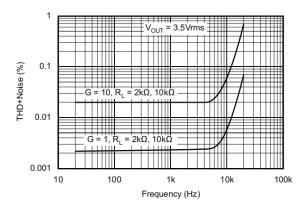
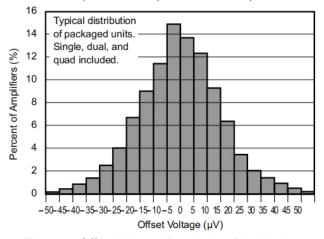



Figure 6. Total Harmonic Distortion + Noise vs Frequency

Typical Characteristics (continued)

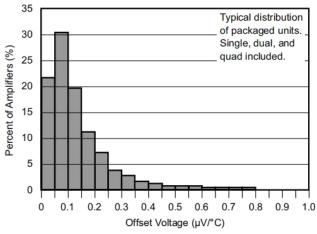
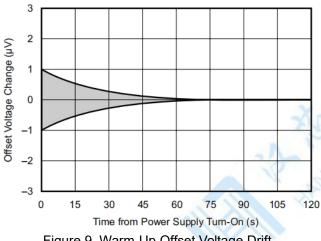



Figure 7. Offset Voltage Production Distribution

Figure 8. Offset Voltage Drift Production Distribution

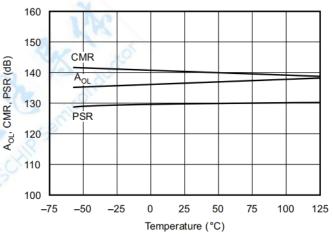
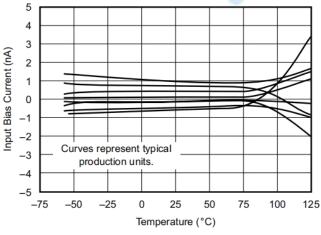



Figure 9. Warm-Up Offset Voltage Drift

Figure 10. AOL, CMR, PSR vs Temperature

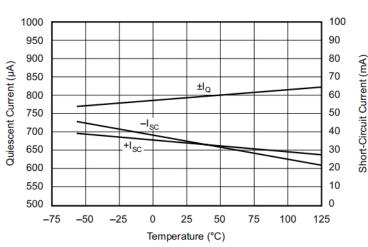


Figure 11. Input Bias Current vs Temperature

Figure 12. Quiescent Current and Short-Circuit Current vs Temperature

Typical Characteristics (continued)

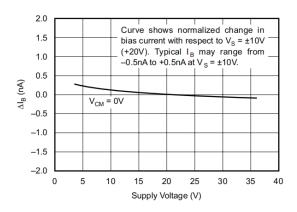


Figure 13. Change in Input Bias Current vs
Power Supply Voltage

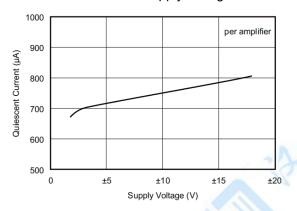


Figure 15. Quiescent Current vs Supply Voltage

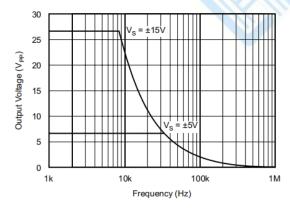


Figure 17. Maximum Output Voltage vs Frequency

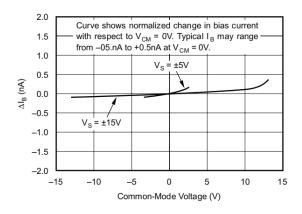


Figure 14. Change in Input Bias Current vs Common-Mode Voltage

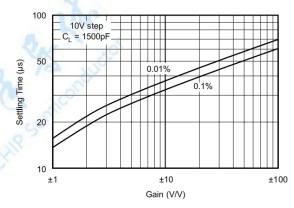


Figure 16. Settling Time vs Closed-Loop Gain

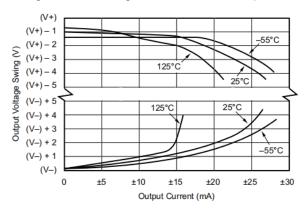


Figure 18. Output Voltage Swing vs Output Current

Typical Characteristics (continued)

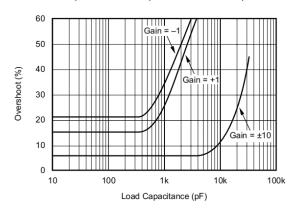


Figure 19. Small-Signal Overshoot vs Load Capacitance

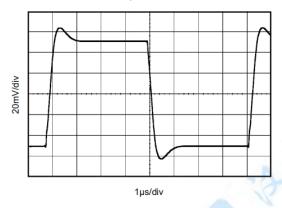


Figure 21. Small-Signal Step Response G= +1, CL = 0, VS = ±15 V

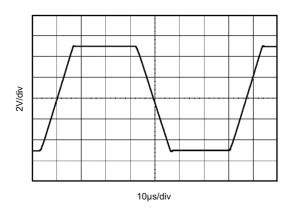


Figure 20. Large-Signal Step Response G = 1, CL = 1500 pF, VS = ±15 V

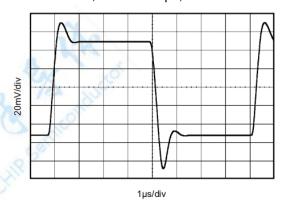


Figure 22. Small-Signal Step Response G= 1, CL = 1500 pF, VS = ±15 V

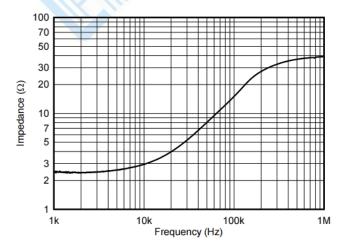
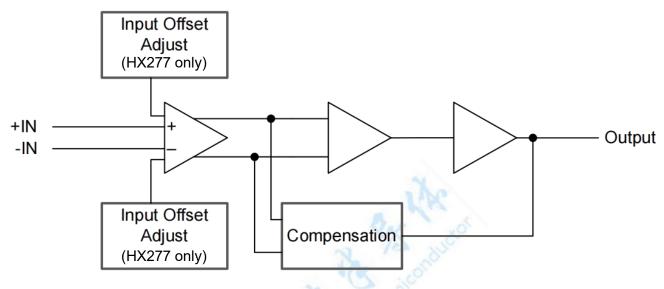


Figure 23. Open-Loop Output Impedance VS = ±15 V



Detailed Description

Overview

The HXx277series precision operational amplifiers replace the industry standard HX177. They offer improved noise, wider output voltage swing, and are twice as fast with half the quiescent current. Features include ultralow offset voltage and drift, low bias current, high common-mode rejection, and high power supply rejection. Single, dual, and quad versions have identical specifications, for maximum design flexibility.

Functional Block Diagram

Feature Description

The HXx277series is unity-gain stable and free from unexpected output phase reversal, making it easy to use in a wide range of applications. Applications with noisy or high-impedance power supplies may require decoupling capacitors close to the device pins. In most cases 0.1-µF capacitors are adequate.

The HXx277series has low offset voltage and drift. To achieve highest performance, the circuit layout and mechanical conditions should be optimized. Offset voltage and drift can be degraded by small thermoelectric potentials at the operational amplifier inputs. Connections of dissimilar metals generate thermal potential, which can degrade the ultimate performance of theHXx277series. These thermal potentials can be made to cancel by assuring that they are equal in both input terminals.

- Keep the thermal mass of the connections to the two input terminals similar
- Locate heat sources as far as possible from the critical input circuitry
- Shield operational amplifier and input circuitry from air currents, such as cooling fans

Operating Voltage

HXx277series operational amplifiers operate from $\pm 2\text{-V}$ to $\pm 18\text{-V}$ supplies with excellent performance. Unlike most operational amplifiers, which are specified at only one supply voltage, the HX277series is specified for real-world applications; a single limit applies over the $\pm 5\text{-V}$ to $\pm 15\text{-V}$ supply range. This allows a customer operating at VS = ± 10 V to have the same assured performance as a customer using $\pm 15\text{-V}$ supplies. In addition, key parameters are assured over the specified temperature range, -20°C to 85°C . Most behavior remains unchanged through the full operating voltage range (± 2 V to ± 18 V). Parameters which vary significantly with operating voltage or temperature are shown in Typical Characteristics.

Offset Voltage Adjustment

The HXx277series is laser-trimmed for low offset voltage and drift, so most circuits do not require external adjustment. However, offset voltage trim connections are provided on pins 1 and 8. Offset voltage can be adjusted by connecting a potentiometer, as shown in Figure 24. Only use this adjustment to null the offset of the operational amplifier. This adjustment should not be used to compensate for offsets created elsewhere in a system, because this can introduce additional temperature drift.

Feature Description (continued)

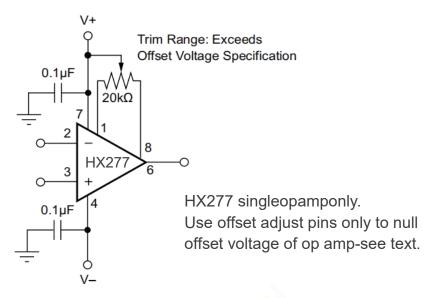


Figure 24. HX277 Offset Voltage Trim Circuit

Input Protection

The inputs of the HXx277series are protected with 1-k Ω series input resistors and diode clamps. The inputs can withstand ± 30 -V differential inputs without damage. The protection diodes conduct current when the inputs are over-driven. This may disturb the slewing behavior of unity-gain follower applications, but will not damage the operational amplifier.

Figure 25. HXx277Input Protection

Input Bias Current Cancellation

The input stage base current of the HXx277series is internally compensated with an equal and opposite cancellation circuit. The resulting input bias current is the difference between the input stage base current and the cancellation current. This residual input bias current can be positive or negative.

When the bias current is canceled in this manner, the input bias current and input offset current are approximately the same magnitude. As a result, it is not necessary to use a bias current cancellation resistor, as is often done with other operational amplifiers (see Figure 26). A resistor added to cancel input bias current errors may actually increase offset voltage and noise.

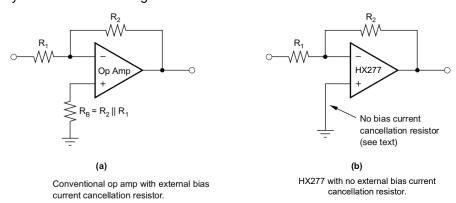


Figure 26. Input Bias Current Cancellation

EMI Rejection Ratio (EMIRR)

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this report provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the noninverting input is tested for EMIRR for the following three reasons:

- 1. Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins.
- 2. The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit nearly matching EMIRR performance.
- EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input terminal can be isolated on a printed circuit board (PCB). This isolation allows the RF signal to be applied directly to the noninverting input terminal with no complex interactions from other components or connecting PCB traces.

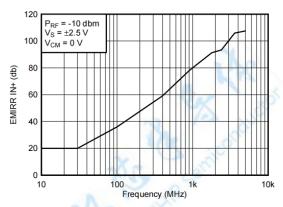


Figure 27. HX277 EMIRR IN+ vs Frequency

If available, any dual and quad operational amplifier device versions have nearly similar EMIRR IN+ performance. The HX277unity-gain bandwidth is 1 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the operational amplifier bandwidth.

Feature Description (continued)

Table 1 shows the EMIRR IN+ values for theHX277at particular frequencies commonly encountered in real world applications. Applications listed in Table 1 may be centered on or operated near the particular frequency shown. This information may be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical (ISM) radio band.

Table 1. HX277EMIRR IN+ for Frequencies of Interest

FREQUENCY	APPLICATION/ALLOCATION	EMIRR IN+
400 MHz	Mobile radio, mobile satellite/space operation, weather, radar, UHF	59.1 dB
900 MHz	GSM, radio com/nav./GPS (to 1.6 GHz), ISM, aeronautical mobile,UHF	77.9 dB
1.8 GHz	GSM, mobile personal comm. broadband, satellite, L-band	91.3 dB
2.4 GHz	802.11b/g/n, Bluetooth™, mobile personal comm., ISM, amateurradio/satellite, S-band	93.3 dB
3.6 GHz	Radiolocation, aero comm./nav., satellite, mobile, S-band	105.9 dB
5.0 GHz	802.11a/n, aero comm./nav., mobile comm., space/satelliteoperation, C-band	107.5 dB

EMIRR IN+ Test Configuration

Figure 28 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the operational amplifier noninverting input terminal using a transmission line. The operational amplifier is configured in a unity gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). Note that a large impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The resulting dc offset voltage is sampled and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that may interfere with multimeter accuracy. Refer to SBOA128 for more details.

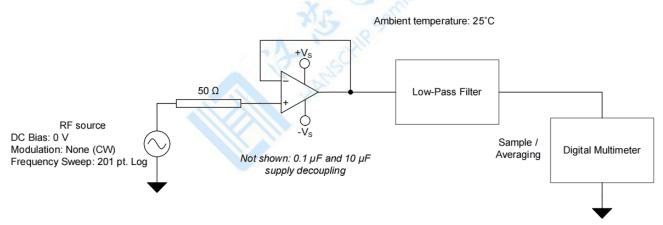
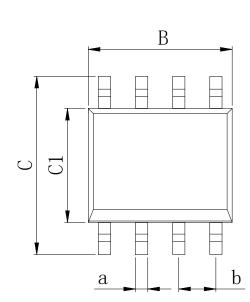
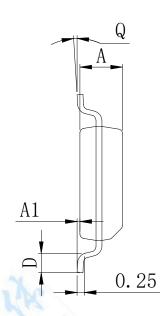
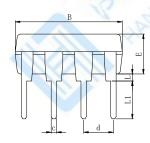


Figure 28. EMIRR IN+ Test Configuration Schematic

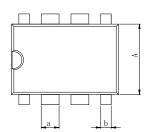

Device Functional Modes


TheHXx277has a single functional mode and is operational when the power-supply voltage is greater than 4V (±2 V). The maximum power supply voltage for the HXx277is 36 V (±18 V).

Physical Dimensions

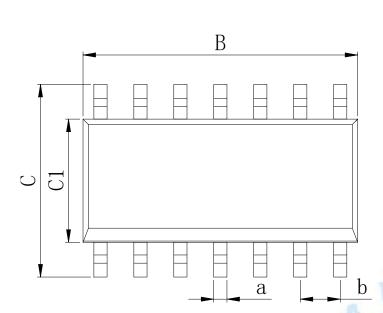

SOP-8L 150mil

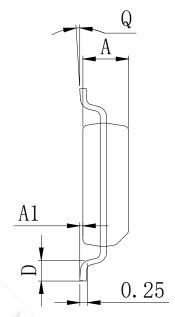




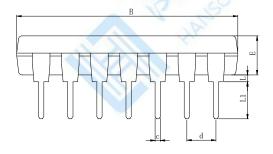
Dimensions In Millimeters(SOP8L)												
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC			
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 630			

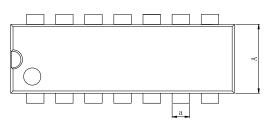
DIP-8L




Dimensions In Millimeters(DIP8L)												
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d	
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	0.54.000	
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC	

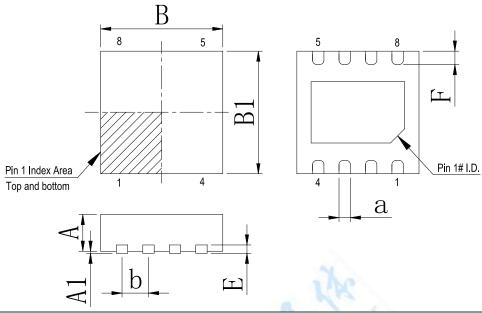
Physical Dimensions


SOP14L

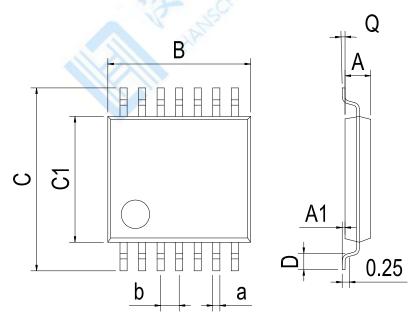


Dimensions In Millimeters(SOP14L)												
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	1.27 BSC			
Max:	1.55	0.20	8.75	6.20	4.00	0.80	8°	0.45	1.21 000			

DIP-14L



Dimensions In Millimeters(DIP14L)														
Symbol:	Α	В	D	D1	Е	L	L1	а	С	d				
Min:	6.10	18.94	8.40	7.42	3.10	0.50	3.00	1.50	0.40	0.54.000				
Max:	6.68	19.56	9.00	7.82	3.55	0.70	3.60	1.55	0.50	2.54 BSC				


Physical Dimensions

DFN-8 4*4

Dimensions In Millimeters(DFN-8L 4*4)											
Symbol:	А	A1	В	D	Е	F	а	а			
Min:	3.9	3.9	0.80	0.0	0.23	0.30	0.20	0.80TYP			
Max:	4.1	4.1	1.0	0.05	0.30	0.50	0.34	0.0011P			

TSSOP-14L

Dimensions In Millimeters(TSSOP14L)												
Symbol:	Α	A1	В	С	C1	D	Q	а	р			
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC			
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.00 650			

IMPORTANT STATEMENT:

Shenzhen Hanschip semiconductor co.,ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

LM201AN MCP6V52-E/MS ADA4692-4ARUZ-RL EL8176FSZ ISL28158FHZ-T7 ISL28236FBZ ISL28236FBZ-T7 ISL28258FUZ

ISL28258FUZ-T7 ISL28276FBZ ISL28276IAZ ISL28276IAZ-T7 ISL28288FUZ NCS21914DR2G NCS21914DTBR2G RS8654XP

AD8615AUJZ-REEL HG2376M/TR MS8362M LT1013IS8#TRPBF ADA4610-4ARZ-R7 TP5591-TR AD8652ARZ-REEL AD8639ARZ-REEL ADA4622-2ARZ-RL LTC6241HVCS8#TRPBF LT6011IS8#TRPBF LT6230IS6-10#TRPBF LT6011IMS8#TRPBF

LTC6246CS6#TRMPBF LT6230CS6#TRPBF ADA4610-2BRZ-RL LTC2054HS5#TRPBF LT6235IGN#TRPBF LTC6362IDD#TRPBF

AD8625ARUZ-REEL LTC2050HVIS8#TRPBF AD8627AKSZ-REEL LT6220IS5#TRPBF LT6236IS6#TRPBF OP213ESZ-REEL

ADA4092-4ARUZ-RL CBM8532AMS8 CBM8628AST5 CBM8534AS14 CBM8608AS14 CBM8534ATS14 CBM8605AST5

CBM8629AS8 CBM8608ATS14