

3.3-V RS-485 TRANSCEIVERS

DESCRIPTION

The HX65HVD10, HX65HVD11, and HX65HVD12, combine a 3-state differential line driver and differential input line receiver that operate with a single 3.3-V power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993. These differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. The drivers and receivers have active-high and active-low enables respectively, that can be externally connected together to function as direction control. Very low device standby supply current can be achieved by disabling the driver and the receiver.

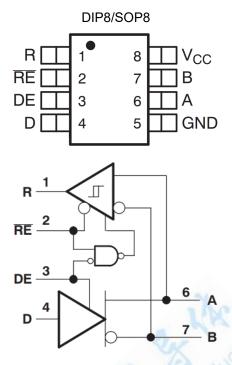
The driver differential outputs and receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. These parts feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.

FEATURES

- Operates With a 3.3-V Supply
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- 1/8 Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Optional Driver Output Transition Times for Signaling Rates (1) of 1 Mbps, 10 Mbps, and 32 Mbps
- Meets or Exceeds the Requirements of ANSI TIA/EIA-485-A
- Bus-Pin Short Circuit Protection From –7 V to 12 V
- Low-Current Standby Mode . . . 1 μA Typical
- Open-Circuit, Idle-Bus, and Shorted-Bus Failsafe Receiver
- Thermal Shutdown Protection
- Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications

APPLICATIONS

- Digital Motor Control
- Utility Meters
- Chassis-to-Chassis Interconnects
- Electronic Security Stations


- Industrial Process Control
- Building Automation
- Point-of-Sale (POS) Terminals and Networks

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
HX65HVD10EIPG	DIP8L	65HVD10	TUBE	2000pcs/box
HX65HVD11EIPG	DIP8L	65HVD11	TUBE	2000pcs/box
HX65HVD12EIPG	DIP8L	65HVD12	TUBE	2000pcs/box
HX65HVD10EIDRG	SOP8L	65HVD10	REEL	2500pcs/reel
HX65HVD11EIDRG	SOP8L	65HVD11	REEL	2500pcs/reel
HX65HVD12EIDRG	SOP8L	65HVD12	REEL	2500pcs/reel

Pin Connection

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1) (2)

	3		UNIT
V _{CC} Supply voltage range	ge	-19	–0.3 V to 6 V
Voltage range at A or B		ARI	–9 V to 14 V
Input voltage range at D,	DE, R or RE	A.	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Voltage input range, trans	sient pulse, A and B, through	n 100 Ω, see Figure 11	–50 V to 50 V
Io Receiver output cur	rent		–11 mA to 11 mA
	Human body model ⁽³⁾	A, B, and GND	±16 kV
Electrostaticdischarge	numan body model*	All pins	±4 kV
	Charged-device model ⁽⁴⁾	All pins charge	±1 kV
Continuous total power d	issipation		See Dissipation Rating Table
Electrical Fast Transient/	Burst ⁽⁵⁾	A, B, and GND	±4 kV
T _J Junction temperatur	re		170°C

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
- (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A and IEC 60749-26.
- (4) Tested in accordance with JEDEC Standard 22, Test Method C101.
- (5) Tested in accordance with IEC 61000-4-4.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range unless otherwise noted

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3		3.6	
V_{I} or V_{IC}	Voltage at any bus terminal (separately or common mode)	_7(1)		12	
VIH	High-level input voltage	D, DE, $\overline{\text{RE}}$	2		VCC	V
VIL	Low-level input voltage	D, DE, RE	0		0.8	
VID	Differential input voltage	Figure 7	-12		12	
ІОН	High lavel systems arranged	Driver		-60		
IOH	High-level output current	Receiver		-8		mA
loi		Driver		60		
lol	Low-level output current	Receiver		8		mA
RL	Differential load resistance		54	60		Ω
CL	Differential load capacitance			50		pF
		HVD10		32		
Signaling rate		HVD11		10		Mbps
		HVD12		1		
TJ	Junction temperature	X		145		°C

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST	CONDITIONS	MIN T	UNIT	
VIK	Input clamp voltage	A 1	$I_1 = -18 \text{ mA}$			-1.5	V
	9	3	$I_0 = 0$		2	VCC	
V _{OD}	Differential output voltage(2)	11	$R_L = 54 \Omega, S$	See Figure 1		V	
	VoD Differential output voltage ⁽²⁾ Change in magnitude of differential voltage VOC(PP) Peak-to-peak common-mode output VOC(SS) Steady-state common-mode output Change in steady-state common-mode output output voltage OZ High-impedance output current Input current D DE		$V_{\text{test}} = -7 \text{ V t}$	to 12 V, See Figure 2		1.5	
Δ V _{OD}		ntial output	See Figure 1 and Figure 2			0.2	V
VOC(PP)	Peak-to-peak common-mode o	utput voltage				400	mV
VOC(SS)	Steady-state common-mode ou	tput voltage	Coo Figuro 3	3	1.4	2.5	V
ΔVOC(SS)	·	See Figure 3)	-0.0 5	0.05	V	
loz	High-impedance output current		See receiver				
	l Input current				-100	0	
11					0	100	μA
los	Short-circuit output current		-7 V ≤ V ₀ ≤	-250	250	mA	
C(OD)	Differential output capacitance		V_{OD} = 0.4 sin (4E6 π t) + 0.5 V, DE at 0 V			16	pF
			RE at V _{CC} , D & DE at V _{CC} ,No load	Receiver disabled anddriver enabled		9 15.5	mA
ICC	Supply current		RE at V _{CC} , D at V _{CC} , DE at 0 V, No load	Receiver disabled and driver disabled (standby)		1 5	μА
			RE at 0 V, D & DE at V _{CC} ,No load	Receiver enabled anddriver enabled		9 15.5	mA

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

⁽²⁾ See thermal characteristics table for information regarding this specification.

⁽²⁾ For TA > 85°C, VCC is ±5%.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
		HVD10		5	8.5	16		
tPLH	Propagation delay time, low-to-high-level output	HVD11		18	25	40	ns	
		HVD12		135	200	300		
	ropagation delay time, low-to-high-level output ropagation delay time, high-to-low-level output ifferential output signal rise time ifferential output signal fall time ulse skew (tphl - tphl)	HVD10		5	8.5	16		
tPHL	Propagation delay time, high-to-low-level output	HVD11		18	25	40	ns	
		HVD12		135	200	300		
		HVD10	D 5400 50 50	3	4.5	10		
t_r	Differential output signal rise time	HVD11	$R_L = 54 \Omega$, $C_L = 50 pF$,	10	20	30	ns	
		HVD12	See Figure 4	100	170	300		
		HVD10		3	4.5	10		
\mathbf{t}_{f}	Differential output signal fall time	HVD11		10	20	30	ns	
		HVD12		100	170	300		
		HVD10			1.5			
tsk(p)	Pulse skew (t _{PHL} - t _{PLH})	HVD11		2.5			ns	
		HVD12	Y	7				
		HVD10	J. M.	6				
tsk(pp)	tsk(pp) Part-to-part skew	HVD11	A Think	11			ns	
(2)		HVD12	KK XO.	100				
		HVD10	Jes gir	31				
tPZH	• •	HVD11	Ollin	55			ns	
	nign-impedance-to-nign-level output	HVD12	R_L = 110 Ω, RE at 0 V,	300			1	
		HVD10	See Figure 5	25				
tPHZ		HVD11	25		55		ns	
	impedance output	HVD12			300			
		HVD10			26			
tPZL		HVD11			55		ns	
	nign-impedance-to-low-level output	HVD12	R_L = 110 Ω, RE at 0 V,		300			
			See Figure 6		26			
tPLZ		HVD11	 		75		ns	
	impedance output	HVD12			400			
^t PZH	Propagation delay time, standby-to-high-level	output	R_L = 110 Ω, RE at 3 V, See Figure 5		6		μs	
tPZL	Propagation delay time, standby-to-low-level of	output	R_L = 110 Ω, RE at 3 V, See Figure 6		6		μs	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

⁽²⁾ tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	7	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
VIT+	Positive-going input threshold voltage	I _O = -8 mA				-0.06 5	-0.01	V
VIT-	Negative-going input threshold voltage	I _O = 8 mA			-0.2	-0.1		V
Vhys	Hysteresis voltage (V _{IT+} - V _{IT-})					35		mV
VIK	Enable-input clamp voltage	$I_1 = -18 \text{ mA}$				-1.5		V
Vон	High-level output voltage	V _{ID} = 200 mV,	I _{OH} = -8 mA,	See Figure 7		2.4		٧
Vol	Low-level output voltage	$V_{ID} = -200$ mV,	I _{OL} = 8 mA,	See Figure 7		0.4		>
loz	High-impedance-state output current	V _O = 0 or V _{CC}	RE at V _{CC}		-1		1	μA
		V_A or $V_B = 12$	2 V			0.05	0.11	
		V_A or $V_B = 12 \text{ V}, V_{CC} = 0 \text{ V}$ HVD11, HVD12,				0.06	0.13	mA
		V_A or $V_B = -7$	′ V	Other input at 0 V	-0.1	-0.05		MA
	I. Puo input ourront	V_A or $V_B = -7 V$, $V_{CC} = 0 V$				-0.04		
lı	Bus input current	put current V_A or $V_B = 12 \text{ V}$				0.2	0.5	
		V_A or $V_B = 12$	2 V, V _{CC} = 0 V	HVD10,		0.25	0.5	
		V_A or $V_B = -7$	' V	Other input at 0 V	-0.4	-0.2		mA
		V_A or $V_B = -7$	V = V = 0	Circ	-0.4	-0.15		
lіН	High-level input current, RE	V _{IH} = 2 V	N	ACIL	-30		0	μA
ΙΙL	Low-level input current, RE	V _{IL} = 0.8 V	3 (100	0	-30		0	μA
CID	Differential input capacitance	V _{ID} = 0.4 sin	(4E6πt) + 0.5 V	/, DE at 0 V		15		pF
		RE at 0 V, D & DE at 0 V,No load	Receiver ena disabled	bled and driver		4		mA
		RE at V _{CC} ,	-			<u> </u>		
ICC	Supply current	D at V _{CC} , DE at 0 V, No load	Receiver disa disabled (star	ibled and driver ndby)		1 5		μΑ
		RE at 0 V, D & DE at V _{CC} ,No load Receiver enabled and driver enabled				9 15.5		mA

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
t _{PLH} Prop	pagation delay time, low-to-high-level output	HVD10		12.5	20	25	no
t _{PHL} Prop	pagation delay time, high-to-low-level output	HVD10		12.5	20	25	ns
t _{PLH} Prop	pagation delay time, low-to-high-level output	HVD11 HVD12	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$	30	55	70	ns
t _{PHL} Prop	pagation delay time, high-to-low-level output	HVD11 HVD12		30	55	70	ns
		HVD10			1.5		
t _{sk(p)} Pul	$t_{sk(p)}$ Pulse skew ($ t_{PHL} - t_{PLH} $)				4		ns
		HVD12			4		
					8		
t _{sk(pp)} (2)	Part-to-part skew	W HVD11			15		ns
		HVD12		15			
t _r	Output signal rise time		C _L = 15 pF,	1	2	5	no
t _f	Output signal fall time		See Figure 8	1	2	5	ns
t _{PZH} (1)	Output enable time to high level		N		15		
t _{PZL} (1)	Output enable time to low level		$C_L = 15 pF$, DE at 3 V,	15			1
t _{PHZ}	Output disable time from high level	See Figure 9	20			ns	
t _{PLZ}	Output disable time from low level		CAK XO		15		
t _{PZH} (2)	Propagation delay time, standby-to-high-leve	$C_L = 15 \text{ pF, DE at 0,}$ 6					
t _{PZL} (2)	Propagation delay time, standby-to-low-leve	I output	See Figure 10	6			μs

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply

PARAMETER MEASUREMENT INFORMATION

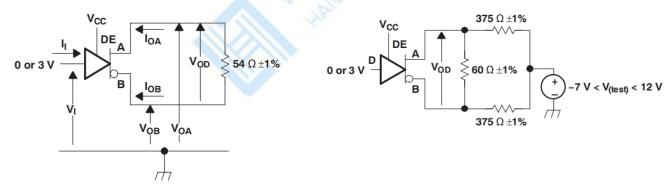
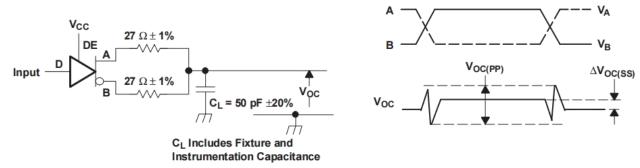
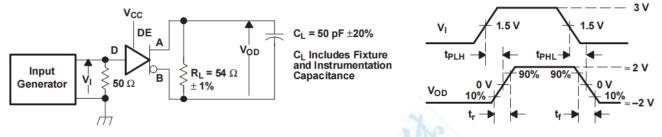



Figure 1. Driver VOD Test Circuit and Voltage and Current Definitions

Figure 2. Driver VOD With Common-Mode Loading
Test Circuit


⁽²⁾ tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

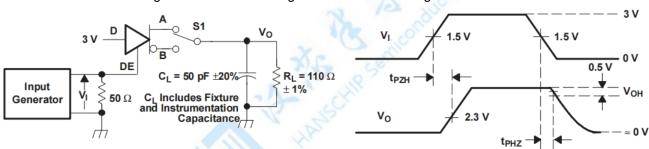

Input: PRR = 500 kHz, 50% Duty Cycle, t_r <6ns, t_f <6ns, Z_0 = 50 Ω

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

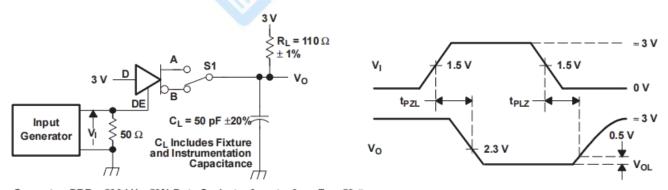

Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Figure 4. Driver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_{\rm r}$ <6 ns, $t_{\rm f}$ <6 ns, $Z_{\rm o}$ = 50 Ω

Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

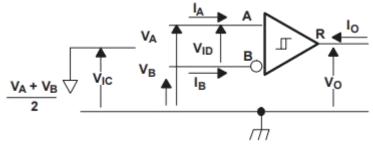
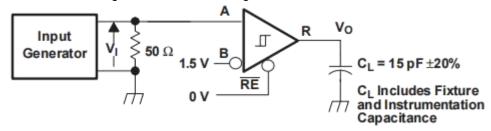



Figure 7. Receiver Voltage and Current Definitions

Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω

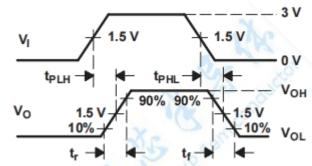
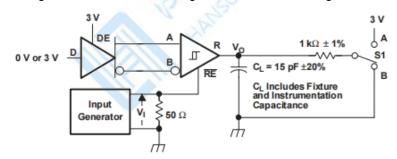



Figure 8. Receiver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_{\rm f}$ <6 ns, $t_{\rm f}$ <6 ns, $Z_{\rm o}$ = 50 Ω

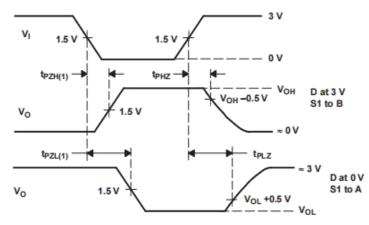
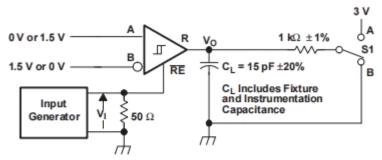



Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled

Generator: PRR = 100 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_0 = 50 Ω

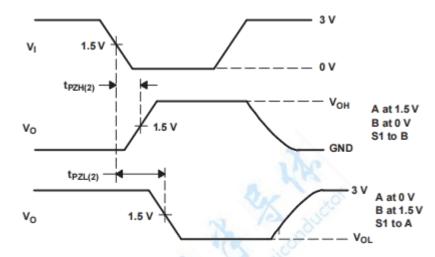
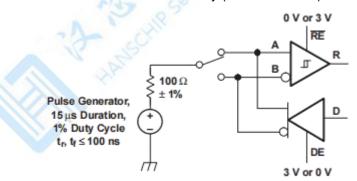



Figure 10. Receiver Enable Time From Standby (Driver Disabled)

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 11. Test Circuit, Transient Over Voltage Test

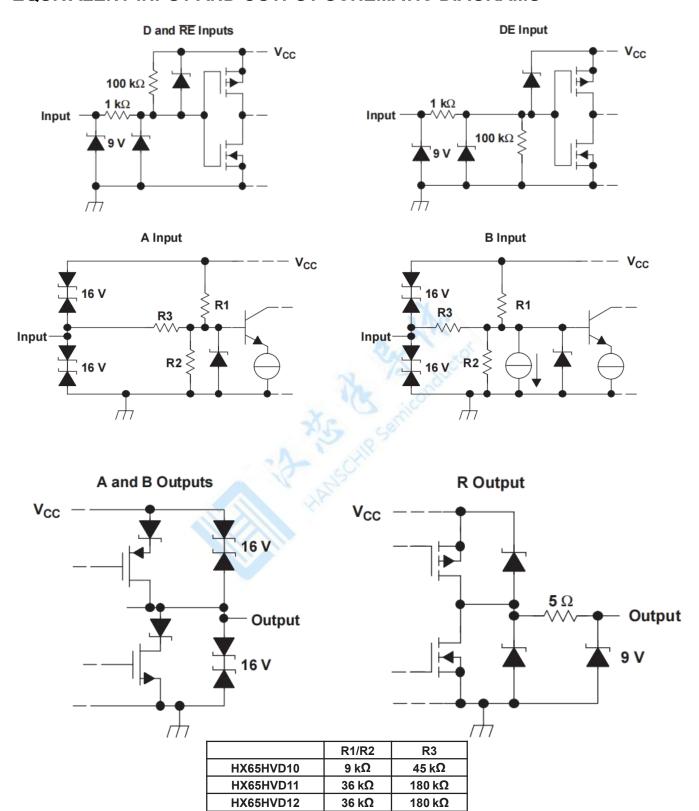
PARAMETER MEASUREMENT INFORMATION (continued)

FUNCTION TABLES

Table 1. DRIVER(1)

		OUTPUTS					
INPU TD	ENABLE DE	A	В				
Н	Н	Н	L				
L	Н	L	Н				
Х	L	Z	Z				
Open	Н	Н	L				

⁽¹⁾ H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate


Table 2. RECEIVER(1)

DIFFERENTIAL INPUTSV _{ID} = V _A - V _B	EN <u>AB</u> LERE	OUTPUTR
V _{ID} ≤ -0.2 V	L	L
$-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.01 \text{ V}$	L	?
-0.01 V ≤ V _{ID}	T INC	Н
X	Н	Z
Open Circuit	KAX XO	Н
Short circuit	N L/ed XIII	Н

⁽¹⁾ H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

TYPICAL CHARACTERISTICS

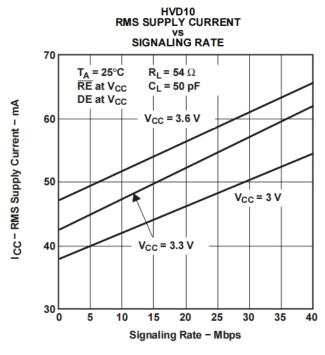
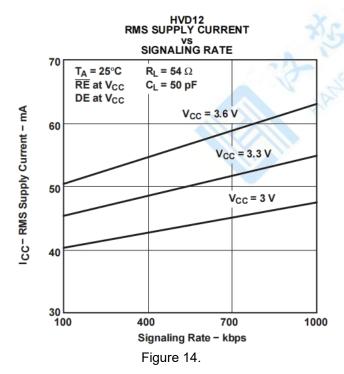



Figure 12.

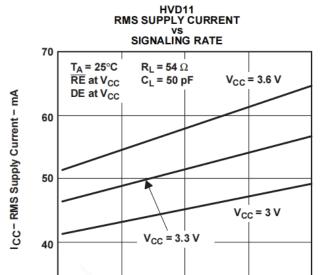
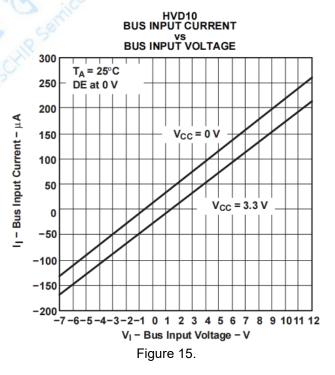
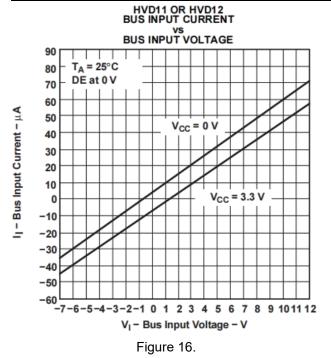


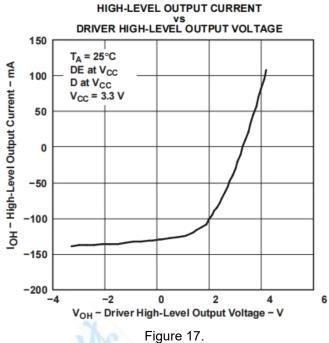
Figure 13.

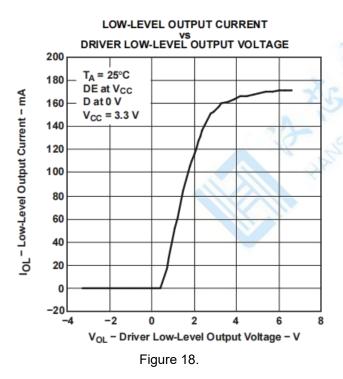
Signaling Rate - Mbps

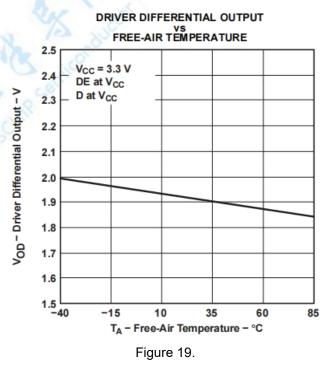

7.5

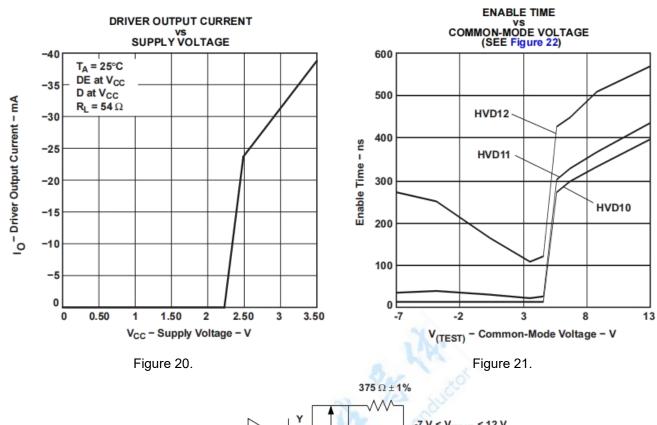
10


2.5


30


0





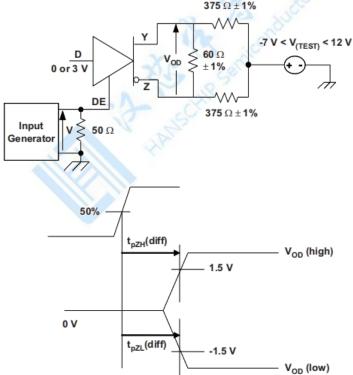
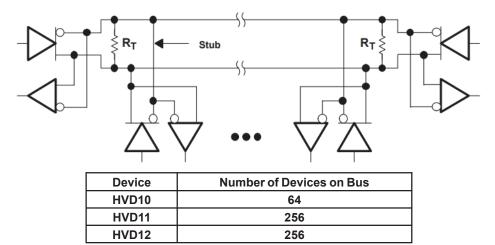



Figure 22. Driver Enable Time From DE to VOD

The time tPZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.

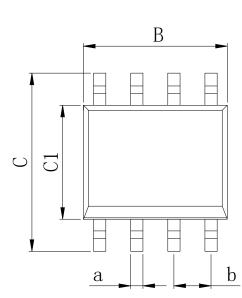
APPLICATION INFORMATION

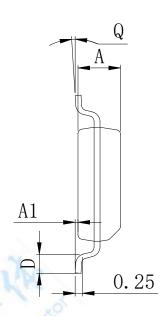
NOTE: The line should be terminated at both ends with its characteristic impedance (RT = ZO). Stub lengths off the main line should be kept as short as possible.

Figure 23. Typical Application Circuit

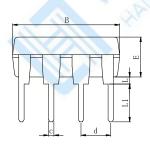
Figure 24. HVD12 Input and Output Through 2000 Feet of Cable

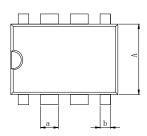
An example application for the HVD12 is illustrated in Figure 23. Two HVD12 transceivers are used to communicate data through a 2000 foot (600 m) length of Commscope 5524 category 5e+ twisted pair cable. The bus is terminated at each end by a $100-\Omega$ resistor, matching the cable characteristic impedance. Figure 24 illustrates operation at a signaling rate of 250 kbps.


LOW-POWER STANDBY MODE


When both the driver and receiver are disabled (DE low and RE high) the device is in standby mode. If the enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against inadvertently entering standby mode during driver/receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.

Physical Dimensions


 $SOP8_{\ (150mil)}$



Dimensions In Millimeters(SOP8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	р	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 650	

DIP8

Dimensions In Millimeters(DIP8)												
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	d	
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	0.54.000	
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC	

IMPORTANT STATEMENT:

Shenzhen Hanschip semiconductor co.,ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-422/RS-485 Interface IC category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

 SP3494CN-L/TR
 ISL4486IBZ-T
 ISL4491EIB
 ISL4491EIBZ-T
 ISL81483IB
 ISL83086EIB
 ISL83088EIB
 ISL8488IB
 ISL8483EIB

 ISL8487EIB
 ISL8489EIB
 ISL8491IP
 ADM489AN
 CA-IS3080WX
 CA-IS3086WX
 SIT65HVD75ETK
 GM13487E
 LTC2855IGN#TRPBF

 CS48520M
 CA-IF4820FD
 HSN65HVD12DR
 UM3088EESA
 SIT490EEPA
 ISOW1412BDFMR
 MAX485MJA/883B
 MAX13089ECSD+T

 CA-IF4888HS
 CS485M
 CLM3085ESA+
 CLM485ESA+
 CLM485EESA+
 CLM3085EESA+
 CS4585EO
 DW3085
 WS3471EEUA
 WS3079

 MS2583
 H485EIMM/TR
 SP3485EN-HXY
 SP3483EN-HXY
 ST3485EBDR-HXY
 MAX1487ESA-HXY
 MAX3483ESA-HXY

 MAX3485EESA-HXY
 SN75176N-HXY
 MAX3485EESA-HXY
 SN75176N-HXY
 MAX3485EESA-HXY