

IA186XL/IA188XL 16-Bit Microcontroller

Data Sheet

Copyright © 2015 by Innovasic Semiconductor, Inc.

Published by Innovasic Semiconductor, Inc. 3737 Princeton Drive NE, Suite 130, Albuquerque, NM 87107

MILES™ is a trademark Innovasic Semiconductor, Inc. Intel® is a registered trademark of Intel Corporation

TABLE OF CONTENTS

List	of Fig	ures		5
List	of Tab	oles		6
1. Introduction			7	
	1.1	Genera	al Description	7
	1.2		es	
2.	Pack	aging, I	Pin Descriptions, and Physical Dimensions	9
	2.1	Packag	ges and Pinouts	9
		2.1.1	IA186XL 68 PLCC Package	10
		2.1.2	IA188XL 68 PLCC Package	12
		2.1.3	PLCC Physical Dimensions	14
		2.1.4	IA186XL 80 PQFP Package	15
		2.1.5	IA188XL 80 PQFP Package	17
		2.1.6	PQFP Physical Dimensions	19
		2.1.7	IA186XL 80 LQFP Package	20
		2.1.8	IA188XL 80 LQFP Package	22
		2.1.9	LQFP Physical Dimensions	24
	2.2	IA186	XL Pin/Signal Descriptions	25
			XL Pin/Signal Descriptions	
3.	Maxi	imum R	latings, Thermal Characteristics, and DC Parameters	37
4.	Func	tional D	Description	39
	4.1	Device	e Architecture	39
		4.1.1	Bus Interface Unit	39
		4.1.2	Clock Generator	42
		4.1.3	Interrupt Control Unit	42
		4.1.4	Timer/Counter Unit	42
		4.1.5	Chip-Select/Ready Generation Logic	43
		4.1.6	DMA	
		4.1.7	DRAM Refresh Control Unit	44
		4.1.8	Power-Save Control	44
	4.2	Operat	ting Modes	45
		4.2.1	Enhanced Mode	45
		4.2.2	Queue Status Mode	45
		4.2.3	ONCE Mode	45
		4.2.4	Math Coprocessor (IA186XL Only)	45
	Tabl	e 12. Ir	nternal Register Map	46
5.	AC S	Specific	ations	47
	5.1	5.1 Major Cycle Timings – Read Cycle4		
	5.2			
	5.3	5.3 Major Cycle Timings – Interrupt Acknowledge Cycle		
	5.4		are Halt Cycle Timings	
	5.5		Timings	
	5.6		, Peripheral and Queue Status Timings	
	_	•		

	5.7 Reset and HOLD/HLDA Timings	57
6.	Instruction Execution Times	6
	Innovasic Part Number Cross-Reference	
	Errata	
	8.1 Summary	69
	8.2 Detail	
9.	Data Sheet Revision History	75
10	For Additional Information	76

LIST OF FIGURES

Figure 1. IA186XL 68-Lead PLCC Package Diagram	10
Figure 2. IA188XL 68-Lead PLCC Package Diagram	12
Figure 3. PLCC Physical Package Dimensions	
Figure 4. IA186XL 80-Lead PQFP Package Diagram	
Figure 5. IA188XL 80-Lead PQFP Package Diagram	
Figure 6. PQFP Physical Package Dimensions	
Figure 7. IA186XL 80-Lead LQFP Package Diagram	20
Figure 8. IA188XL 80-Lead LQFP Package Diagram	
Figure 9. LQFP Physical Package Dimensions	24
Figure 10. IA186XL/IA188XL Functional Block Diagram	41
Figure 11. Clock Circuit Connection Options	43
Figure 12. Read Cycle Waveforms	48
Figure 13. Write Cycle Waveforms	50
Figure 14. Interrupt Acknowledge Cycle Waveforms	52
Figure 15. Software Halt Cycle Waveforms	54
Figure 16. Clock Waveforms	58
Figure 17. Reset Waveforms	58
Figure 18. Synchronous Ready (SRDY) Waveforms	58
Figure 19. Asynchronous Ready (ARDY) Waveforms	59
Figure 20. Peripheral and Queue Status Waveforms	59
Figure 21. HOLDA/HLDA Waveforms (Entering Hold)	60
Figure 22. HOLD/HLDA Waveforms (Leaving Hold)	60

LIST OF TABLES

Table 1. IA186XL 68-Lead PLCC Pin Listing	11
Table 2. IA188XL 68-Lead PLCC Pin Listing	
Table 3. IA186XL 80-Lead PQFP Pin Listing	
Table 4. IA188XL 80-Lead PQFP Pin Listing	18
Table 5. IA186XL 80-Lead LQFP Pin Listing	21
Table 6. IA188XL 80-Lead LQFP Pin Listing	23
Table 7. IA186XL Pin/Signal Descriptions	25
Table 8. IA188XL Pin/Signal Descriptions	31
Table 9. IA186XL and IA188XL Absolute Maximum Ratings	37
Table 10. IA186XL and IA188XL Thermal Characteristics	37
Table 11. IA186XL and IA188XL DC Parameters	38
Table 13. Major Cycle Timings – Read Cycle	47
Table 14. Major Cycle Timings – Write Cycle	49
Table 15. Major Cycle Timings – Interrupt Acknowledge Cycle	
Table 16. Software Halt Cycle Timings	53
Table 17. Clock Timings	55
Table 18. Ready, Peripheral and Queue Status Timings	56
Table 19. Reset and HOLD/HLDA Timings	57
Table 20. Instruction Set Timing	61
Table 21. Innovasic Part Number Cross-Reference for the PLCC	66
Table 22. Innovasic Part Number Cross-Reference for the PQFP (Special Order only)	67
Table 23. Innovasic Part Number Cross-Reference for the LQFP (Special Order only)	68
Table 24. Summary of Errata	69
Table 25. Data Sheet Revision History	75

1. Introduction

The Innovasic Semiconductor IA186XL and IA188XL microcontrollers are form, fit, and function replacements for the original Intel 80C186XL and 80C188XL 16-bit high-integration embedded processors.

These devices are produced using Innovasic's Managed IC Lifetime Extension System (MILESTM). This cloning technology, which produces replacement ICs beyond simple emulations, is designed to achieve compatibility with the original device, including any "undocumented features." Please note that there may be some functional differences between the Innovasic device and the original device and customers should thoroughly test the device in system to ensure compatibility. Innovasic reports all known functional differences in the Errata section of this data sheet. Additionally, MILESTM captures the clone design in such a way that production of the clone can continue even as silicon technology advances.

The IA186XL and IA188XL microcontrollers replace the obsolete Intel 80C186XL and 80C188XL devices, allowing users to retain existing board designs, software compilers/assemblers, and emulation tools, thereby avoiding expensive redesign efforts.

1.1 General Description

The Innovasic Semiconductor IA186XL and IA188XL microcontrollers have a set of base peripherals beneficial to many embedded applications and include a standard numeric interface, an interrupt control unit, a chip-select unit/Ready Generation Logic, a DRAM refresh control unit, a Power-Save Control unit, DMA and three 16-bit timer/counters.

The IA186XL and IA188XL microcontrollers operate at 5.0 volts \pm 10%.

The following functional description describes the base architecture of the 80C186XL. The 80C186XL is a very high integration 16-bit microprocessor. It combines some of the most common microprocessor system components onto one chip. The 80C186XL is object-code compatible with the 8086/8088 microprocessors and adds ten new instruction types to the 8086/8088 instruction set.

The 80C186XL has two major modes of operation, Compatible and Enhanced. In Compatible Mode, the 80C186XL is completely compatible with the 80186, with the exception of 8087 support. The Enhanced mode adds three new features to the system design. These are Power-Save control, Dynamic RAM refresh, and an asynchronous Numerics Coprocessor interface (80C186XL only).

1.2 **Features**

The primar	ry features of the IA186XL and IA188XL microcontrollers are as follows:
	rm, fit, and function compatible version of the low power Intel 80C186XL/80C188XL
_	eration modes:
_	Enhanced mode
	DRAM refresh control unit
	O Power-save mode
	o Direct interface to 80C187 (IA186XL only)
_	Compatible mode
	O Pin-for-pin replacement for NMOS 80186/80188 non-numeric applications
	egrated feature set
	Static, modular CPU
	Clock generator Two independent DMA channels
	Programmable interrupt controller
	Three programmable 16-bit timers
	Dynamic RAM refresh control unit
	Programmable memory and peripheral chip select logic
	Programmable wait state generator
	Local bus controller
	Power-save mode
	System-level testing support (high impedance test mode)
	mpletely object-code compatible with existing 8086/8088 software and has ten
	litional instructions over 8086/8088
	ystal supports internal 20–25 MHz operation
-	rect addressing capability to 1 MByte memory and 64 Kbyte I/O
	ailable in 68-Lead:
_	Plastic Leaded Chip Carrier (PLCC)
	ailable in 80-Lead:
_	Plastic Quad Flat Pack (PQFP)
_	Low Profile Quad Flat Pack (LQFP)

Chapter 4, Functional Description, provides details of the IA186XL and IA188XL microcontrollers, including the features listed above.

 \Box Extended Temperature Range (-40°C to +85°C)

Packaging, Pin Descriptions, and Physical Dimensions 2.

Information on the packages and pin descriptions for the IA186XL and the IA188XL is provided separately. Refer to sections, figures, and tables for information on the device of interest.

Packages and Pinouts 2.1

The Innovasic Semiconductor IA186XL and IA188XL microcontroller is available in the following packages:

68-Lead Plastic Leaded Chip Carrier (PLCC), equivalent to original PLCC package
80-Lead Plastic Quad Flat Pack (PQFP), equivalent to original PQFP package
80-Lead Low Profile Quad Flat Pack (LQFP), equivalent to original SQFP package

2.1.1 IA186XL 68 PLCC Package

The pinout for the IA186XL 68 PLCC package is as shown in Figure 1. The corresponding pinout is provided in Table 1.

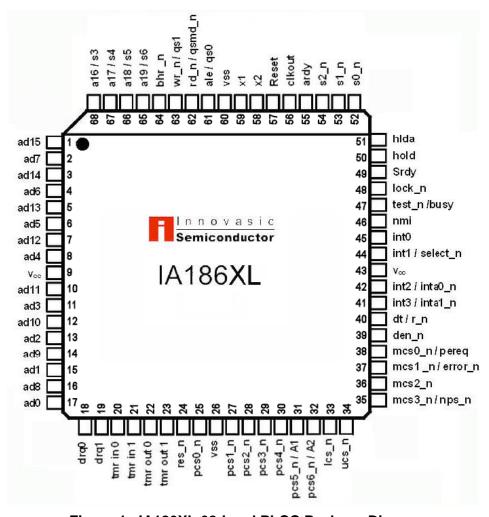


Figure 1. IA186XL 68-Lead PLCC Package Diagram

Table 1. IA186XL 68-Lead PLCC Pin Listing

Pin	Name
1	ad15
2	ad7
	ad14
4	ad6
5	ad13
6	ad5
l 7	ad12
8	ad4
9	V _{cc}
10	ad11
11	ad3
12	ad10
13	ad2
14	ad9
15	ad1
16	ad8
17	ad0

Pin	Name
18	drq0
19	drq1
20	tmr in 0
21	tmr in 1
22	tmr out 0
23	tmr out 1
24	res_n
25	pcs0_n
26	V_{SS}
27	pcs1_n
28	pcs2_n
29	pcs3_n
30	pcs4_n
31	pcs5_n/a1
32	pcs6_n/a2
33	lcs_n
34	ucs_n

Pin	Name
35	mcs3_n/nps_n
36	mcs2_n
37	mcs1 _n/error_n
38	mcs0_n/pereq
39	den_n
40	dt/r_n
41	int3/inta1_n
42	int2/inta0_n
43	V _{cc}
44	int1/select_n
45	int0
46	nmi
47	test_n /busy
48	lock_n
49	srdy
50	hold
51	hlda

Name
s0_n
s1_n
s2_n
ardy
clkout
reset
x2
x1
V _{SS}
ale/qs0
rd_n/qsmd_n
wr_n/qs1
bhe_n
a19/s6
a18/s5
a17/s4
a16/s3

2.1.2 IA188XL 68 PLCC Package

The pinout for the IA188XL 68 PLCC package is as shown in Figure 2. The corresponding pinout is provided in Table 2.

NOTE: The Innovasic 68-Lead PLCC package has both an ink mark and an indentation to indicate proper orientation. Pin 1 is designated by the ink mark, as shown in Figure 2.

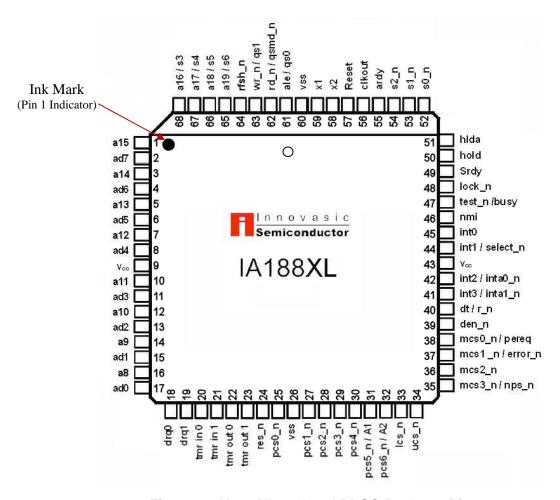


Figure 2. IA188XL 68-Lead PLCC Package Diagram

Table 2. IA188XL 68-Lead PLCC Pin Listing

Pin	Name
1	a15
2 3	ad7
3	a14
4	ad6
5	a13
6	ad5
7	a12
8	ad4
9	V _{cc}
10	a11
11	ad3
12	a10
13	ad2
14	a9
15	ad1
16	a8
17	ad0

Pin	Name
18	drq0
19	drq1
20	tmr in 0
21	tmr in 1
22	tmr out 0
23	tmr out 1
24	res_n
25	pcs0_n
26	V_{SS}
27	pcs1_n
28	pcs2_n
29	pcs3_n
30	pcs4_n
31	pcs5_n/a1
32	pcs6 _n/a2
33	lcs_n
34	ucs_n

Pin	Name
35	mcs3_n/nps_n
36	mcs2_n
37	mcs1 _n/error_n
38	mcs0 _n/pereq
39	den_n
40	dt/r_n
41	int3/inta1_n
42	int2/inta0_n
43	V _{cc}
44	int1/select_n
45	int0
46	nmi
47	test_n /busy
48	lock_n
49	srdy
50	hold
51	hlda

Name
s0_n
s1_n
s2_n
ardy
clkout
reset
x2
x1
V _{SS}
ale/qs0
rd _n/qsmd_n
wr _n/qs1
rfsh_n
a19/s6
a18/s5
a17/s4
a16/s3

2.1.3 PLCC Physical Dimensions

The physical dimensions for the 68 PLCC are as shown in Figure 3.

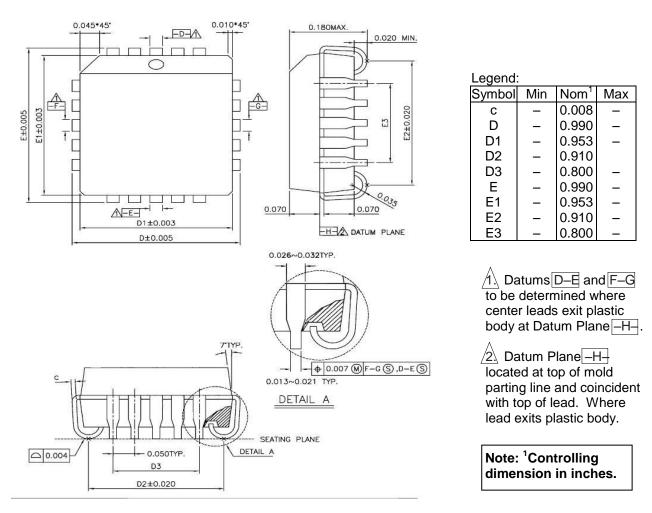


Figure 3. PLCC Physical Package Dimensions

2.1.4 IA186XL 80 PQFP Package

The pinout for the IA186XL 80 PQFP package is as shown in Figure 4. The corresponding pinout is provided in Table 3.

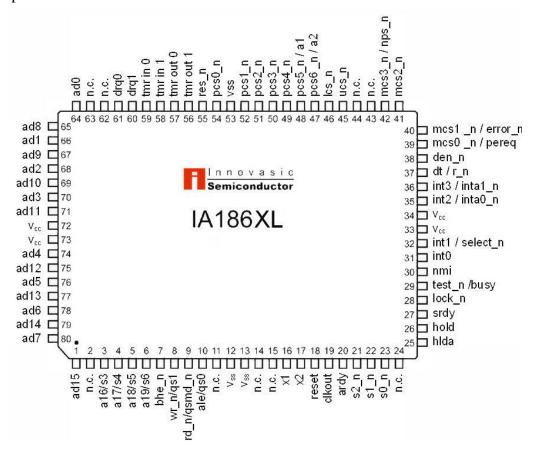


Figure 4. IA186XL 80-Lead PQFP Package Diagram

Table 3. IA186XL 80-Lead PQFP Pin Listing

Name		
ad15		
n.c.		
a16/s3		
a17/s4		
a18/s5		
a19/s6		
bhe_n		
wr_n/qs1		
rd_n/qsmd_n		
ale/qs0		
n.c.		
V _{SS}		
V_{SS}		
n.c.		
n.c.		
x1		
x2		
reset		
clkout		
ardy		

21 s2_n 22 s1_n 23 s0_n 24 n.c. 25 hlda 26 hold 27 srdy 28 lock_n 29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 V _{cc} 34 V _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq 40 mcs1_n/error_n	Pin	Name
23 s0_n 24 n.c. 25 hlda 26 hold 27 srdy 28 lock_n 29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	21	s2_n
24 n.c. 25 hlda 26 hold 27 srdy 28 lock_n 29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	22	s1_n
25 hlda 26 hold 27 srdy 28 lock_n 29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	23	s0_n
26 hold 27 srdy 28 lock_n 29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	24	n.c.
27 srdy 28 lock_n 29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	25	hlda
28 lock_n 29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 V _{cc} 34 V _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	26	hold
29 test_n /busy 30 nmi 31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	27	srdy
30 nmi 31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	28	lock_n
31 int0 32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	29	test_n /busy
32 int1/select_n 33 v _{cc} 34 v _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	30	nmi
33 V _{cc} 34 V _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	31	int0
34 V _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	32	int1/select_n
34 V _{cc} 35 int2/inta0_n 36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	33	V _{cc}
36 int3/inta1_n 37 dt/r_n 38 den_n 39 mcs0_n/pereq	34	V _{cc}
37 dt/r_n 38 den_n 39 mcs0 _n/pereq	35	int2/inta0_n
38 den_n 39 mcs0 _n/pereq	36	int3/inta1_n
39 mcs0 _n/pereq	37	dt/r_n
	38	den_n
40 mcs1 _n/error_n	39	mcs0 _n/pereq
	40	mcs1 _n/error_n

Pin	Name
41	mcs2_n
42	mcs3_n/nps_n
43	n.c.
44	n.c.
45	ucs_n
46	lcs_n
47	pcs6 _n/a2
48	pcs5_n/a1
49	pcs4_n
50	pcs3_n
51	pcs2_n
52	pcs1_n
53	V _{SS}
54	pcs0_n
55	res_n
56	tmr out 1
57	tmr out 0
58	tmr in 1
59	tmr in 0
60	drq1
	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Pin	Name
61	drq0
62	n.c.
63	n.c.
64	ad0
65	ad8
66	ad1
67	ad9
68	ad2
69	ad10
70	ad3
71	ad11
72	V _{cc}
73	V _{cc}
74	ad4
75	ad12
76	ad5
77	ad13
78	ad6
79	ad14
80	ad7

2.1.5 IA188XL 80 PQFP Package

The pinout for the IA186XL 80 PQFP package is as shown in Figure 5. The corresponding pinout is provided in Table 4.

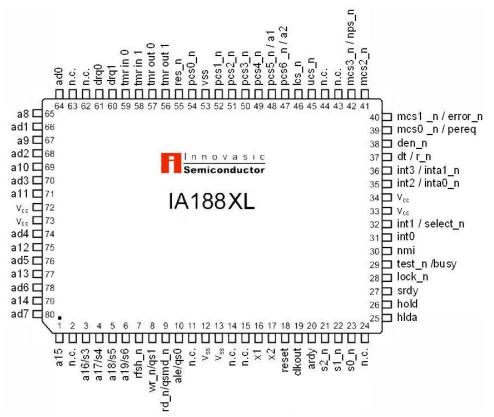
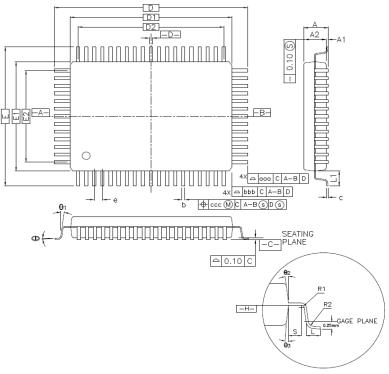


Figure 5. IA188XL 80-Lead PQFP Package Diagram

Table 4. IA188XL 80-Lead PQFP Pin Listing

Pin	Name		
1	a15		
2	n.c.		
1 2 3 4 5 6 7 8	a16/s3		
4	a17/s4		
5	a18/s5		
6	a19/s6		
7	rfsh_n		
8	wr_n/qs1		
9	rd_n/qsmd_n		
10	ale/qs0		
11	n.c.		
12	V _{SS}		
13	V _{SS}		
14	n.c.		
15	n.c.		
16	x1		
17	x2		
18	reset		
19	clkout		
20	ardy		


Pin	Name
21	s2_n
22	s1_n
23	s0_n
24	n.c.
25	hlda
26	hold
27	srdy
28	lock_n
29	test_n /busy
30	nmi
31	int0
32	int1/select_n
33	V _{cc}
34	V _{cc}
35	int2/inta0_n
36	int3/inta1_n
37	dt/r_n
38	den_n
39	mcs0 _n/pereq
40	mcs1 _n/error_n

Pin	Name		
41	mcs2_n		
42	mcs3_n/nps_n		
43	n.c.		
44	n.c.		
45	ucs_n		
46	lcs_n		
47	pcs6 _n/a2		
48	pcs5_n/a1		
49	pcs4_n		
50	pcs3_n		
51	pcs2_n		
52	pcs1_n		
53	V_{SS}		
54	pcs0_n		
55	res_n		
56	tmr out 1		
57	tmr out 0		
58	tmr in 1		
59	tmr in 0		
60	drq1		

Pin	Name
61	drq0
62	n.c.
63	n.c.
64	ad0
65	a8
66	ad1
67	a9
68	ad2
69	a10
70	ad3
71	a11
72	V _{cc}
73	V _{cc}
74	ad4
75	a12
76	ad5
77	a13
78	ad6
79	a14
80	ad7

2.1.6 PQFP Physical Dimensions

The physical dimensions for the 80 PQFP are as shown in Figure 6.

Notes:

- Dimension D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimension D1 and E1 do not include mold mismatch and are determined a datum plane H.
- Dimension b does not include dambar protrusion.
 Allowable dambar protrusion will not cause the lead width to exceed the maximum b dimension by more than 0.08mm. Dambar cannot be located on the lower radius of the lead foot.

Legend:

_090						
	Millimeter			Inch		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	_	-	3.40	_	_	0.134
A1	0.25	-	_	0.010	_	_
A2	2.55	2.72	3.05	0.100	0.107	0.120
D	23.9	90 Ba	sic	0.9	41 Ba	asic
D1				0.7		
Е				0.7		
E1	14.0	00 Ba	sic	0.5	51 Ba	asic
R2	0.013	_	0.30	0.005	_	0.012
R1	0.013	_	_	0.005	_	_
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	_	0°	_	_
θ2, θ3 ^a	7	REF	=	7	7° REI	F
θ2, θ3 ^b	15	° RE	F	1	5° RE	F
С	0.11	0.15	0.23	0.004	0.006	0.009
L	0.73	0.88	1.03	0.029	0.035	0.041
L1	1.9	95 RE	F	0.0)77 R	EF
S	0.40	_	_	0.016	_	_
b	0.30	0.35	0.45	0.012	0.014	0.018
е	3.0	80 BS	C	0.0)31 B	SC
D2	18.	40 RI	EF		0.724	
E2	12.	00 RI	EF		0.472	
Tole	erance	es of	Form	and F	Positio	n
aaa		0.25			0.010	1
bbb		0.20			0.008	
ccc		0.20			0.008	

^aAlloy 42 L/F.

^bCopper L/F.

Figure 6. PQFP Physical Package Dimensions

2.1.7 IA186XL 80 LQFP Package

The pinout for the IA186XL 80 LQFP package is as shown in Figure 7. The corresponding pinout is provided in Table 5.

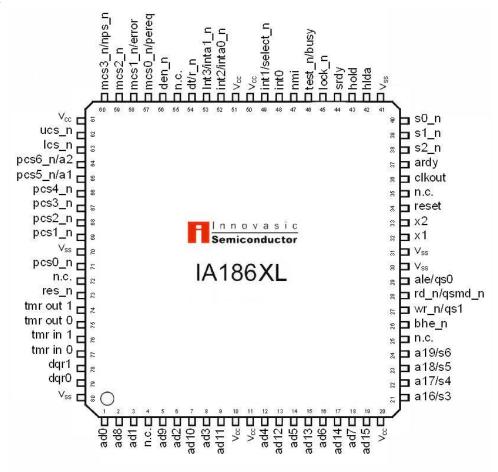


Figure 7. IA186XL 80-Lead LQFP Package Diagram

Table 5. IA186XL 80-Lead LQFP Pin Listing

Pin	Name
1	ad0
2	ad8
1 2 3 4	ad1
4	n.c.
5 6 7	ad9
6	ad2
7	ad10
8	ad3
9	ad11
10	V _{cc}
11	V _{cc}
12	ad4
13	ad12
14	ad5
15	ad13
16	ad6
17	ad14
18	ad7
19	ad15
20	Voc

Pin	Name
21	a16/s3
22 23 24	a17/s4
23	a18/s5
24	a19/s6
25	n.c.
26	bhe_n
27	wr_n/qs1
28	rd_n/qsmd_n
29	ale/qs0
30	V_{SS}
31	V _{SS}
32	x1
33 34	x2
34	reset
35	n.c.
36	clkout
37	ardy
38	s2_n
39	s1_n
40	s0_n

Pin	Name
41	V_{SS}
42	hlda
43	hold
44	srdy
45	lock_n
46	test_n/busy
47	nmi
48	int0
49	int1/select_n
50	V _{cc}
51	V _{cc}
52	int2/inta0_n
53	int3/inta1_n
54	dt/r_n
55	n.c.
56	den_n
57	mcs0_n/pereq
58	mcs1_n/error
59	mcs2_n
60	mcs3_n/nps_n

Pin	Name
61	V _{cc}
62	ucs_n
63	lcs_n
64	pcs6_n/a2
65	pcs5_n/a1
66	pcs4_n
67	pcs3_n
68	pcs2_n
69	pcs1_n
70	V _{SS}
71	pcs0_n
72	n.c.
73	res_n
74	tmr out 1
75	tmr out 0
76	tmr in 1
77	tmr in 0
78	dqr1
79	dqr0
80	V_{SS}

2.1.8 IA188XL 80 LQFP Package

The pinout for the IA188XL 80 LQFP package is as shown in Figure 8. The corresponding pinout is provided in Table 6.

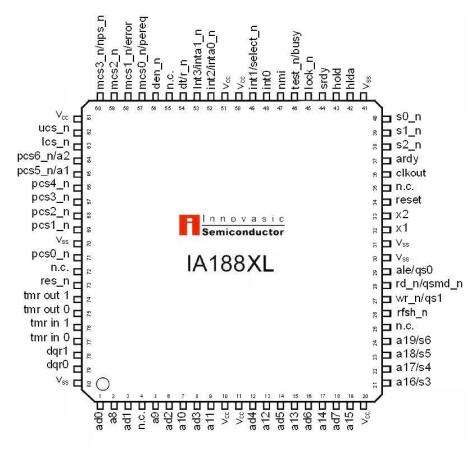


Figure 8. IA188XL 80-Lead LQFP Package Diagram

Table 6. IA188XL 80-Lead LQFP Pin Listing

Pin	Name				
1	ad0				
2	a8				
1 2 3 4	ad1				
4	n.c.				
5 6 7	a9				
6	ad2				
7	a10				
8	ad3				
9	a11				
10	V _{cc}				
11	V _{cc}				
12	ad4				
13	a12				
14	ad5				
15	a13				
16	ad6				
17	a14				
18	ad7				
19	a15				
20	V _{cc}				

Pin	Name
21	a16/s3
22	a17/s4
23	a18/s5
22 23 24 25	a19/s6
25	n.c.
26	rfsh_n
27	wr_n/qs1
28	rd_n/qsmd_n
29	ale/qs0
30	V_{SS}
31	V _{SS}
32	x1
33 34	x2
34	reset
35	n.c.
36	clkout
37	ardy
38	s2_n
39	s1_n
40	s0_n

Pin	Name
41	V _{SS}
42	hlda
43	hold
44	srdy
45	lock_n
46	test_n/busy
47	nmi
48	int0
49	int1/select_n
50	V _{cc}
51	V _{cc}
52	int2/inta0_n
53	Int3/inta1_n
54	dt/r_n
55	n.c.
56	den_n
57	mcs0_n/pereq
58	mcs1_n/error
59	mcs2_n
60	mcs3_n/nps_n

Pin	Name
61	V _{cc}
62	ucs_n
63	lcs_n
64	pcs6_n/a2
65	pcs5_n/a1
66	pcs4_n
67	pcs3_n
68	pcs2_n
69	pcs1_n
70	V _{SS}
71	pcs0_n
72	n.c.
73	res_n
74	tmr out 1
75	tmr out 0
76	tmr in 1
77	tmr in 0
78	dqr1
79	dqr0
80	V_{SS}

2.1.9 LQFP Physical Dimensions

The physical dimensions for the 80 LQFP are as shown in Figure 9.

Legend:

	Dime	ension i	n mm	Dime	ension in	Inch
Symbol	Min	Nom	Max	Min	Nom	Max
Α	_	_	1.60	_	_	0.063
A_1	0.05	_	0.15	0.002	_	0.006
A_2	1.35	1.40	1.45	0.053	0.055	0.057
b	0.17	0.22	0.27	0.007	0.009	0.011
b ₁	0.17	0.20	0.23	0.007	0.008	0.009
С	0.09	_	0.20	0.004	_	0.008
C ₁	0.09	_	0.16	0.004	_	0.006
D		4.00 BS		0	.551 BS	С
D_1	12	2.00 BS	C	0	.472 BS	С
E	14	4.00 BS	C	0	.551 BS	С
E ₁	12	2.00 BS	C	0	.472 BS	С
е	0	0.50 BS	С	0	.020 BS	С
L	0.45	0.60	0.75	0.018	0.024	0.030
L_1	1	.00 RE	F	0	.039 RE	F
R₁	0.08	_	_	0.003	_	_
R_2	0.08	_	0.20	0.003	_	0.008
S	0.20	_	_	0.008	_	_
θ	0°	3.5°	7°	0°	3.5°	7°
θ 1	0°	_	_	0°	_	_
θ_2	11°	12°	13°	11°	12°	13°
θ3	11°	12°	13°	11°	12°	13°

- To be determined at seating plane C.

 Dimensions D1 and E1 do not include mold protrusion. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- Dimension b does not include dambar protrusion. Dambar cannot be located on the lower radius of the foot.
- Exact shape of each corner is optional.
- 5. These dimensions apply to the flat section of the lead between 0.10 and 0.25mm from the lead tip.
- A1 is defined as the distance from the seating plane to the lowest point of the package body.

Notes:

- 1. Exact shape of each corner is optional.
- 2. Controlling dimension: mm.

Figure 9. LQFP Physical Package Dimensions

2.2 IA186XL Pin/Signal Descriptions

Descriptions of the pin and signal functions for the IA186XL microcontroller are provided in Table 7.

Several of the IA186XL pins have different functions depending on the operating mode of the device. Each of the different signals supported by a pin is listed and defined in Table 7, indexed alphabetically in the first column of the table. Additionally, the name of the pin associated with the signal as well as the pin numbers for the PLCC, PQFP, and LQFP packages are provided in the "Pin" column. Signals not used in a specific package type are designated "NA."

Table 7. IA186XL Pin/Signal Descriptions

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
a1	pcs5_n/a1	31	48	65	Latched address bit a1. Output.
a2	pcs6_n/a2	32	47	64	Latched address bit a2. Output.
a16	a16/s3	68	3	21	address bits 16–19. Output. These pins
a17	a17/s4	67	4	22	provide the four most-significant bits of the
a18	a18/s5	66	5	23	Address Bus during T_1 only. During T_2 , T_3 , T_W
a19	a19/s6	65	6	24	and T₄ they provide bus status.
ad0	ad0	17	64	1	address/data bits 0-15. Input/Output. These
ad1	ad1	15	66	3	pins provide the multiplexed Address Bus and
ad2	ad2	13	68	6	Data Bus. During the address portion of the
ad3	ad3	11	70	8	IA186XL bus cycle, Address Bits [0–15] are presented on the bus and can be latched
ad4	ad4	8	74	12	using the ale signal (see next table entry).
ad5	ad5	6	76	14	During the data portion of the bus cycle, data
ad6	ad6	4	78	16	are present on these lines.
ad7	ad7	2	80	18	
ad8	ad8	16	65	2	
ad9	ad9	14	67	5	
ad10	ad10	12	69	7	
ad11	ad11	10	71	9	
ad12	ad12	7	75	13	
ad13	ad13	5	77	15	
ad14	ad14	3	79	17	
ad15	ad15	1	1	19	

Table 7. IA186XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
ale	ale/qs0	61	10	29	address latch enable. Output. Active High. This signal is used to latch valid address information on the falling edge of ale during the address portion of a bus cycle.
ardy	ardy	55	20	37	a synchronous r ea dy . Input. Indicates to the processor the addressed memory space or i/o device will complete the transfer.
bhe_n	bhe_n	64	7	26	byte high enable. Output. Active Low. When bhe_n is asserted (low), it indicates that the bus cycle in progress is transferring data over the upper half of the data bus.
					Additionally, bhe_n and ad0 encode the following bus information:
					ad0 bhe_n Bus Status
					0 0 Word Transfer 0 1 Even Byte Transfer 1 0 Odd Byte Transfer
					1 1 Refresh Operation (Enhanced Mode)
					Note: bhe_n is used as refresh_n in the IA188XL.
busy	test_n/busy	47	29	46	busy. Input. Active High. Used in Enhanced Mode. When the busy input is asserted, it causes the IA186XL to suspend operation during the execution of the Intel 80C187 Numerics Coprocessor instructions. Operation resumes when the pin is sampled low.
clkout	clkout	56	19	36	clock output. Output. The clkout pin provides a timing reference for inputs and outputs of the IA186XL. This clock output is one-half the input clock (clkin) frequency. The clkout signal has a 50% duty cycle, transitioning every falling edge of clkin.
den_n	den_n	39	38	56	data enable. Output. Active Low. This signal is used to enable bidirectional transceivers in a buffered system. The den_n signal is asserted (low) only when data are to be transferred on the bus.
drq0	drq0	18	61	79	dma request 0 or 1. Input. Asserted high by
drq1	drq1	19	60	78	an external device to request DMA Channel 0 or 1 to perform a transfer. These signals are level-triggered and internally synchronized.

Table 7. IA186XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
dt/r_n	dt/r_n	40	37	54	data transmit/receive. Output. This signal is used to control the direction of data flow for bidirectional buffers in a buffered system. When dt/r_n is high, the direction indicated is transmit; when dt/r_n is low, the direction indicated is receive.
error_n	mcs1_n/error_n	37	40	58	error. Input. Active Low. When this signal is asserted (low), it indicates that the last numerics coprocessor operation resulted in an exception condition.
hlda	hlda	51	25	42	hold acknowledge. Output. Active High. When hlda is asserted (high), it indicates that the IA186XL has relinquished control of the local bus to another bus master in response to a HOLD request (see next table entry). When hlda is asserted, the IA186XL data bus and control signals are floated allowing another bus master to drive the signals directly.
hold	hold	50	26	43	hold. Input. Active High. This signal is a request indicating that an external bus master wishes to gain control of the local bus. The IA186XL will relinquish control of the local bus between instruction boundaries not conditioned by a LOCK prefix.
int0	int0	45	31	48	interrupt N (N = 0-3). Input. Active High.
int1	int1	44	32	49	These maskable inputs interrupt program flow
int2	int2/inta0_n	42	35	52	and cause execution to continue at an
int3	int3/inta1_n	41	36	53	interrupt vector of a specific interrupt type as follows:
					 int0: Type 12 int1: Type 13 int2: Type 14 int3: Type 15
					To allow interrupt expansion, int0 and int1 can be used with the interrupt acknowledge signals inta0_n and inta1_n (see next table entries).
inta 0_n	int2/inta0_n	42	35	52	interrupt acknowledge. Output. Active low.
inta 1_n	int3/inta1_n	41	36	53	When used with external interrupt controllers.

Table 7. IA186XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
lcs_n	lcs_n	33	46	63	lower chip select. Output. Active Low. This pin provides a chip select signal that will be asserted (low) whenever the address of a memory bus cycle is within the address space programmed for that output.
lock_n	lock_n	48	28	45	lock. Output. Active Low. When asserted (low), this signal indicates that the bus cycle in progress cannot be interrupted. While lock_n is active, the IA186XL will not service bus requests such as HOLD. When resin_n is active, this pin is weakly held high and must not be driven low.
mcs0_n	mcs0_n/pereq	38	39	57	mid-range memory chip select. Output.
mcs1 n	mcs1_n/error_n	37	40	58	
mcs2_n	mcs2_n	36	41	59	
mcs3_n	mcs3_n/nps_n	35	42	60	
n.c.	n.c.	NA	2, 11, 14, 15, 24, 43, 44, 62, 63	4, 25, 35, 55, 72	not connected.
nmi	nmi	46	30	47	non-maskable interrupt. Input. Active High. When the nmi signal is asserted (high) it causes a Type 2 interrupt.
nps_n	mcs3_n/nps_n	35	42	60	numeric processor select
pcs0_n	pcs0_n	25	54	71	p eripheral c hip s elect signals 0–6 . Output.
pcs1_n	pcs1_n	27	52	69	
pcs2_n	pcs2_n	28	51	68	
pcs3_n	pcs3_n	29	50	67	
pcs4_n	pcs4_n	30	49	66	
pcs5_n	pcs5_n/a1	31	48	65	
pcs6_n	pcs6_n/a2	32	47	64	
pereq	mcs0_n/pereq	38	39	57	numerics coprocessor external request. Input. Active High. When asserted (high), this signal indicates that a data transfer between an Intel 80C187 Numerics Coprocessor and the CPU is pending.

Table 7. IA186XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
qs0	ale/qs0	61	10	29	queue status 0, queue status 1. Output.
qs1	wr_n/qs1	63	8	27	QS1 QS0 0 0 No Queue operations 0 1 First byte of opcode pulled from Queue 1 1 Additional bytes pulled from Queue 1 0 Queue is flushed
qsmd_n	rd_n/qsmd_n	62	9	28	queue status mode. Input. Sampled at reset.
rd_n	rd_n/qsmd_n	62	9	28	read. output. Active Low. When asserted (low), rd_n indicates that the accessed memory or I/O device must drive data from the location being accessed onto the data bus.
res_n	res_n	24	55	73	res_n. Input. Forces the processor to terminate present activity, reset the internal logic, and enter a dormant state until res_n goes high.
reset	reset	57	18	34	reset is an output signal indicating the CPU is being reset. It can be used as a system reset.
s0_n	s0_n	52	23	40	status [2:0]_n are outputs. During a bus
s1_n	s1_n	53	22	39	cycle, the status (i.e., type) of cycle is encoded
s2_n	s2_n	54	21	38	on these lines as follows: S2 n S1 n S0 n Bus Cycle Status
s3	a16/s3	68		21	status [6:3] are Outputs.
s4	a17/s4	67	4	22	Bus Cycle A19/s6 A18/s5 A17/s4 A16/s3
s5	a18/s5	66	5	23	T_1 A19 A18 A17 A16
s6	a19/s6	65	6	24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
srdy	srdy	49	27	44	synchronous ready. Input.

Table 7. IA186XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
test_n	test_n/busy	47	29	46	test. Input. Active Low. When the test_n input is high (i.e., not asserted), it causes the IA186XL to suspend operation during the execution of the WAIT instruction. Operation resumes when the pin is sampled low (asserted).
tmr in 0	tmr in 0	20	59	77	timer 0 input. Input. Depending on the Timer Mode programmed for Timer 0, this input is used either as clock input or a control signal.
tmr in 1	tmr in 1	21	58	76	timer 1 input. Input. Depending on the Timer Mode programmed for Timer 1, this input is used either as clock input or a control signal.
tmr out 0	tmr out 0	22	57	75	timer 0 output. Output. Depending on the Timer Mode programmed for Timer 0, this output can provide a single pulse or a repetitive waveform.
tmr out 1	tmr out 1	23	56	74	timer 1 output. Output. Depending on the Timer Mode programmed for Timer 1, this output can provide a single clock or a repetitive waveform.
ucs_n	ucs_n	34	45	62	upper chip select. Output. Active Low. This pin provides a chip select signal that will be asserted (low) whenever the address of a memory bus cycle is within the address space programmed for that output.
V _{cc}	V _{cc}	9, 43	33, 34, 72, 73	10, 11, 20, 50, 51, 61	Power (V _{cc}). This pin provides power for the IA186XL device. It must be connected to a +5V DC power source.
V _{ss}	V_{SS}	26, 60	12, 13, 53	30, 31, 41, 70, 80	Ground (V_{ss}). This pin provides the digital ground (0V) for the IA186XL. It must be connected to a V_{ss} board plane.
wr_n	wr_n/qs1	63	8	27	write. Output. Active Low. When asserted (low), wr_n indicates that data available on the data bus are to be latched into the accessed memory or I/O device.
x1	x1	59	16	32	x1 and x2 are inputs for the crystal
x2	x2	58	17	33	

2.3 IA188XL Pin/Signal Descriptions

Descriptions of the pin and signal functions for the IA188XL microcontroller are provided in Table 8.

Several of the IA188XL pins have different functions depending on the operating mode of the device. Each of the different signals supported by a pin is listed and defined in Table 8, indexed alphabetically in the first column of the table. Additionally, the name of the pin associated with the signal as well as the pin numbers for the PLCC, QFP, and LQFP packages are provided in the "Pin" column.

Table 8. IA188XL Pin/Signal Descriptions

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
a1	pcs5_n/a1	31	48	65	Latched address bit a1. Output.
a2	pcs6_n/a2	32	47	64	Latched address bit a2. Output.
a16	a16/s3	68	3	21	address bits 16–19. Output.
a17	a17/s4	67	4	22	These pins provide the four most-significant
a18	a18/s5	66	5	23	bits of the Address Bus during T ₁ only. During
a19	a19/s6	65	6	24	T_2 , T_3 , T_W and T_4 they provide bus status.
ad0	ad0	17	64	1	address/data bits 0 - 15. Input/Output.
ad1	ad1	15	66	3	These pins provide the multiplexed Address
ad2	ad2	13	68	6	Bus and Data Bus. During the address
ad3	ad3	11	70	8	portion of the IA188XL bus cycle, address bits 0 through 15 are presented on the bus and
ad4	ad4	8	74	12	can be latched using the ale signal (see next
ad5	ad5	6	76	14	table entry). During the data portion of the
ad6	ad6	4	78	16	IA188XL bus cycle, data are present on these
ad7	ad7	2	80	18	lines.
a8	a8	16	65	2	valid address information is provided for the
a9	a9	14	67	5	entire bus cycle
a10	a10	12	69	7	
a11	a11	10	71	9	
a12	a12	7	75	13	
a13	a13	5	77	15	
a14	a14	3	79	17	
a15	a15	1	1	19	

Table 8. IA188XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
ale	ale/qs0	61	10	29	address latch enable. Output. Active High. This signal is used to latch address information during the address portion of a bus cycle.
ardy	ardy	55	20	37	a synchronous r ea dy. Input. Indicates to the processor the addressed memory space or i/o device will complete the transfer.
clkout	clkout	56	19	36	clock output. Output. The clkout pin provides a timing reference for inputs and outputs of the IA188XL. This clock output is one-half the input clock (clkin) frequency. The clkout signal has a 50% duty cycle, transitioning every falling edge of clkin.
den_n	den_n	39	38	56	data enable. Output. Active Low. This signal is used to enable bidirectional transceivers in a buffered system. The den_n signal is asserted (low) only when data are to be transferred on the bus.
drq0	drq0	18	61	79	dma request 0 or 1. Input. Asserted high by
drq1	drq1	19	60	78	an external device to request DMA Channel 0 or 1 to perform a transfer. These signals are level-triggered and internally synchronized
dt/r_n	dt/r_n	40	37	54	data transmit/receive. Output. This signal is used to control the direction of data flow for bidirectional buffers in a buffered system. When dt/r_n is high, the direction indicated is transmit; when dt/r_n is low, the direction indicated is receive.

Table 8. IA188XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
hlda	hlda	51	25	42	hold acknowledge. Output. Active High. When hlda is asserted (high), it indicates that the IA188XL has relinquished control of the local bus to another bus master in response to a HOLD request (see next table entry). When hlda is asserted, the IA188XL data bus and control signals are floated allowing another bus master to drive the signals directly.
hold	hold	50	26	43	hold. Input. Active High. This signal is a request indicating that an external bus master wishes to gain control of the local bus. The IA188XL will relinquish control of the local bus between instruction boundaries not conditioned by a LOCK prefix.
int0	int0	45	31	48	interrupt N (N = 03). Input. Active High.
int1	int1	44	32	49	These maskable inputs interrupt program flow
int2	int2/inta0_n	42	35	52	and cause execution to continue at an
int3	int3/inta1_n	41	36	53	interrupt vector of a specific interrupt type as follows:
					 int0: Type 12 int1: Type 13 int2: Type 14 int3: Type 15 To allow interrupt expansion, int0 and int1 can be used with the interrupt acknowledge signals inta0_n and inta1_n (see next table entries).
inta 0_n	int2/inta0_n	42	35	52	interrupt acknowledge. Output. Active low.
inta 1_n	int3/inta1_n	41	36	53	When used with external interrupt controllers.
lcs_n	lcs_n	33	46	63	lower chip select. Output. Active Low. This pin provides a chip select signal that will be asserted (low) whenever the address of a memory bus cycle is within the address space programmed for that output.

Table 8. IA188XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
lock_n	lock_n	48	28	45	lock. Output. Active Low. When asserted (low), this signal indicates that the bus cycle in progress cannot be interrupted. While lock_n is active, the IA188XL will not service bus requests such as HOLD. When resin_n is active, this pin is weakly held high and must not be driven low.
mcs0_n	mcs0_n/pereq	38	39	57	mid-range memory chip select. Output.
mcs1_n	mcs1_n/error_n	37	40	58	
mcs2_n	mcs2_n	36	41	59	
mcs3_n	mcs3_n/nps_n	35	42	60	
n.c.	n.c.	NA	2, 11, 14, 15, 24, 43, 44, 62, 63	4, 25, 35, 55, 72	not connected
nmi	nmi	46	30	47	non-maskable interrupt. Input. Active High. When the nmi signal is asserted (high) it causes a Type 2 interrupt.
pcs0_n	pcs0_n	25	54	71	peripheral chip select signals 0-6. Output.
pcs1_n	pcs1_n	27	52	69	
pcs2_n	pcs2_n	28	51	68	
pcs3_n	pcs3_n	29	50	67	
pcs4_n	pcs4_n	30	49	66	
pcs5_n	pcs5_n/a1	31	48	65	
pcs6_n	pcs6_n/a2	32	47	64	
qs0	ale/qs0	61	10	29	queue status 0, queue status 1. Output.
qs1	wr_n/qs1	63	8	27	QS1 QS0 0 0 No Queue operations 0 1 First byte of opcode pulled from Queue 1 1 Additional bytes pulled from Queue 1 0 Queue is flushed
qsmd_n	rd_n/qsmd_n	62	9	28	queue status mode. Input. Sampled at reset.
rd_n	rd_n/qsmd_n	62	9	28	read. output. Active Low. When asserted (low), rd_n indicates that the accessed memory or I/O device must drive data from the location being accessed onto the data bus.

Table 8. IA188XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
res_n	res_n	24	55	73	res_n. Input. Forces the processor to terminate its present activity, reset the internal logic, and enter a dormant state until res_n goes high.
reset	reset	57	18	34	reset is an output signal indicating the CPU is being reset. It can be used as a system reset.
rfsh_n	rfsh_n	64	7	26	refresh. Output. rfsh_n is asserted low to indicate a refresh bus cycle.
s0_n	s0_n	52	23	40	status [2:0]_n are outputs. During a bus cycle
s1_n	s1_n	53	22	39	the status (i.e., type) of cycle is encoded on
s2_n	s2_n	54	21	38	these lines as follows: s2_n s1_n s0_n Bus Cycle Status 0 0 0 Interrupt Acknowledge
					0 0 1 Read I/O 0 1 0 Write I/O 0 1 1 Processor HALT 1 0 0 Queue Instruction Fetch 1 0 1 Read Memory 1 1 0 Write Memory 1 1 1 No Bus Activity
s3	a16/s3	68	3	21	status [6:3] are outputs.
s4	a17/s4	67	4	22	
s5	a18/s5	66	5	23	Bus Cycle A19/s6 A18/s5 A17/s4 A16/s3 T ₁ A19 A18 A17 A16
s6	a19/s6	65	6	24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
srdy	srdy	49	27	44	synchronous ready. Input.
test_n	test_n/busy	47	29	46	test. Input. Active Low. When the test_n input is high (i.e., not asserted), it causes the IA188XL to suspend operation during the execution of the WAIT instruction. Operation resumes when the pin is sampled low (asserted).
tmr in 0	tmr in 0	20	59	77	timer 0 input. Input. Depending on the Timer Mode programmed for Timer 0, this input is used either as clock input or a control signal.
tmr in 1	tmr in 1	21	58	76	timer 1 input. Input. Depending on the Timer Mode programmed for Timer 1, this input is used either as clock input or a control signal.

Table 8. IA188XL Pin/Signal Descriptions (Continued)

		Pin			
Signal	Name	PLCC	PQFP	LQFP	Description
tmr out 0	tmr out 0	22	57	75	timer 0 output. Output. Depending on the Timer Mode programmed for Timer 0, this output can provide a single pulse or a repetitive waveform.
tmr out 1	tmr out 1	23	56	74	timer 1 output. Output. Depending on the Timer Mode programmed for Timer 1, this output can provide a single pulse or a repetitive waveform.
ucs_n	ucs_n	34	45	62	upper chip select. Output. Active Low. This pin provides a chip select signal that will be asserted (low) whenever the address of a memory bus cycle is within the address space programmed for that output.
V _{cc}	V _{cc}	9, 43	33, 34, 72, 73	10, 11, 20, 50, 51, 61	Power (V _{cc}). This pin provides power for the IA188XL device. It must be connected to a +5V DC power source.
V _{ss}	V_{SS}	26, 60	12, 13, 53	30, 31, 41, 70, 80	Ground (V _{SS}). This pin provides the digital ground (0V) for the IA186XL. It must be connected to a V _{SS} board plane.
wr_n	wr_n/qs1	63	8	27	write. Output. Active Low. When asserted (low), wr_n indicates that data available on the data bus are to be latched into the accessed memory or I/O device.
x1	x1	59	16	32	x1 and x2 are inputs for the crystal
x2	x2	58	17	33	

Maximum Ratings, Thermal Characteristics, and DC Parameters 3.

For the Innovasic Semiconductor IA186XL and IA188XL microcontrollers, the absolute maximum ratings, thermal characteristics, and DC parameters are provided in Tables 9 through 11, respectively.

Table 9. IA186XL and IA188XL Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40°C to +125°C
Supply Voltage with Respect to v _{ss}	-0.3V to +6.0V
Voltage on Pins other than Supply with Respect to v _{ss}	-0.3V to $+(Vcc + 0.3)V$

Table 10. IA186XL and IA188XL Thermal Characteristics

Symbol	Characteristic	Value	Units
T_A	Ambient Temperature	-40°C to 85°C	°C
P₀	Power Dissipation	MHz × ICC × V/1000	W
Θ_{Ja}	68-Lead PLCC Package	32	°C/W
	80-Lead PQFP Package	46	
	80-Lead LQFP Package	52	
TJ	Average Junction Temperature	$T_A + (P_D \times \Theta_{Ja})$	°C

Table 11. IA186XL and IA188XL DC Parameters

Symbol	Parameter	Min	Max	Units	Notes						
5.0 Volt Operation V _{CC}	Supply Voltage	4.5	5.5	V	-						
V _{IL}	Input Low Voltage	-0.3	0.3 V _{CC}	V	Input Hysteresis on resin_n = 0.50V						
V _{IH}	Input High Voltage	0.7 V _{CC}	V _{CC} + 0.3	V	_						
V_{OL}	Output Low Voltage V _{CC = 5.0V}	_	0.4	V	$I_{OL} = 12 \text{ mA}$						
V_{OH}	Output High Voltage V _{CC = 4.5V}	3.5	-	V	I _{OH} = −12 mA						
I _{LEAK}	Input Leakage Current for Pins: ad0-ad15, ad0-ad7 (IA188XL), resin_n, clkin, t0in_in, t1in_in, drq0, drq1, int0, int1, rmi, hold, srdy, ardy, int2_inta0_n, int3_inta1_n	-	±1	μΑ	$0V \le V_{IN} \le V_{CC}$						
	Input Leakage Current for pin (@5V): ucs_n, lcs_n, mcs0_n_pereq, mcs1_n_error_n, rd_n, test_n_busy	227	833	mA	V _{IN} = 0V						
I_{LO}	Output Leakage Current	_	± 10	μΑ	$0.45V \le V_{OUT} \le V_{CC}$						
I _{ID}	Supply Current (IDLE) - @ 50 MHz	-	90	mA	-						
C _{IN}	Input Pin Capacitance	0	5	pF	$T_F = 1 MHz$						
C _{OUT}	Output Pin Capacitance	0	5	pF	$T_F = 1 MHz$						
Operating t	emperature is -40°C to 85°C.				Operating temperature is −40°C to 85°C.						

4. Functional Description

The follow descriptions apply to both the IA186XL and IA188XL unless otherwise noted. Module descriptions are followed by descriptions of special operating modes.

Additional information on the operation and programming of the 80C186XL/80C188XL can be found in the following Intel[®] publications:

- 80C186XL/80C188XL and 80L186XL/80L188XL 16-Bit High-Integration Embedded Processors (272433-006)
- 80C186XL/80C188XL Microprocessor User's Manual (270830-00n)

4.1 Device Architecture

Architecturally, the IA186XL microcontrollers include the following functional modules:

- Bus Interface Unit
- Clock Generator
- Interrupt Control Unit
- Timer/Counter Unit
- Chip-Select Unit
- Refresh Control Unit
- Power-Save Control
- DMA Unit

A functional block diagram of the IA186XL/IA188XL is shown in Figure 10. Descriptions of the functional modules are provided in the follow subsections.

Control registers for the peripheral modules are located in a 256 byte control block. This block can be mapped to either memory or I/O space. The offset map for addressing these registers is given in Table 12.

4.1.1 Bus Interface Unit

A local bus controller generates the local bus control signals. It also employs a hold/hlda protocol for relinquishing the local bus to other bus masters. Its outputs can be used to enable external buffers and to direct the flow of data on and off the local bus. The bus controller is responsible for generating 20 bits of address, read and write strobes, bus-cycle status information and data. This controller is also responsible for reading data from the local bus during a read operation. Synchronous and asynchronous ready input pins are provided to extend a bus cycle beyond the minimum four clocks. The bus controller also generates two control signals (den_n

and dt/r_n) when interfacing to external transceiver chips. This capability allows the addition of transceivers for simple buffering of the multiplexed address/data bus. During reset, the local bus controller performs the following actions:

- 1. Floats ad0–15 (ad0–8), a16–19 (a9–a19), bhe_n (rfsh_n), dt/r_n
- 2. Drives ale LOW
- 3. Drives hlda LOW
- 4. Drives lock_n HIGH and then floats
- 5. Drives den_n, rd_n, and wr_n HIGH for one clock cycle, then floats them
- 6. Drives s0_n, s1_n and s2_n to the inactive state (all HIGH) and then floats them

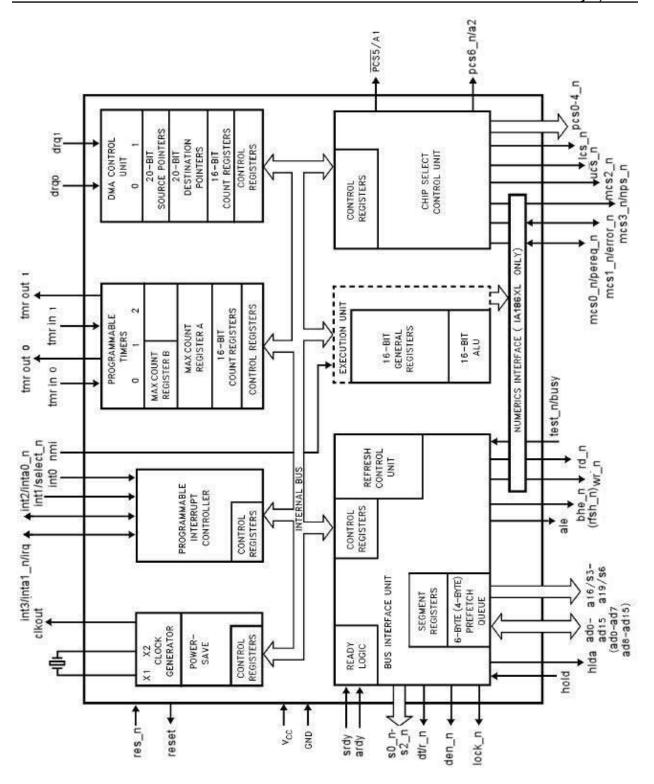


Figure 10. IA186XL/IA188XL Functional Block Diagram

The rd_n/qsmd_n, ucs_n, lcs_n, mcs0_n/pereq, mcs1_n/error_n, and test_n/busy pins include internal pull-ups that are active while res_n is applied. The state of these pins during reset controls invoking various alternative operating modes as described below:

- 1 ONCE Mode ucs n and lcs n driven low.
- 2 Enhanced Mode test n/busy driven low then high.
- 3 Queue Status Mode rd n/qsmd n driven low.

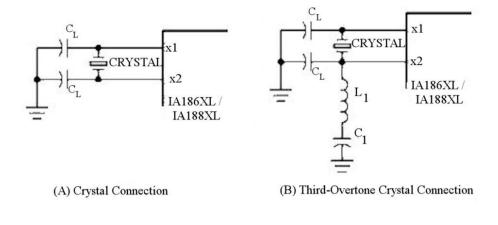
4.1.2 Clock Generator

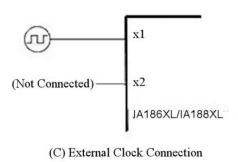
The IA186XL/IA188XL uses an on-chip clock generator to supply internal and external clocks. The clock generator makes use of a crystal oscillator and includes a divide-by-two counter.

Figure 11 shows the various operating modes of the clock circuit. The clock circuit can use either a parallel resonant fundamental mode crystal network (A) or a third-overtone mode crystal network (B), or it can be driven by an external clock source (C).

The following parameters are recommended when choosing a crystal:

- Temperature Range: Application Specific
- ESR (Equivalent Series Resistance): 60Ω max
- C0 (Shunt Capacitance of Crystal): 7.0 pF max
- CL (Load Capacitance): 20 pF ± 2 pF
- ☐ Drive Level: 2 mW max


4.1.3 Interrupt Control Unit


The IA186XL operates with several interrupt sources. A separate Interrupt Control Unit manages all sources based on priority to be individually handled by the CPU. The DMA and Timers produce internally generated requests. There are five externally generated interrupts - a single NMI and 4 others.

4.1.4 Timer/Counter Unit

There are three programmable internal timers in the IA186XL. Two are very flexible and can be configured for many tasks. Each of these has a single input used for either control or clocking, and a single output to generate waveforms. The third timer is simpler and can only be clocked from an internal source. It can be used for simple timing applications. It can also be used as a prescaler to the other two timers or as a trigger for DMA requests.

Figure 11. Clock Circuit Connection Options

4.1.5 Chip-Select/Ready Generation Logic

The IA186XL provides programmable chip-select generation for memories and peripherals. The chip can be programmed to provide READY or WAIT state generation. It can also provide latched address bits A1 and A2. Chip select behavior is the same whether the access is generated by the CPU or the DMA.

A total of 6 chip selects are dedicated for different memory ranges. A single select for upper memory (ucs_n), with a fixed end address of FFFFH, is good for use as system memory since the reset vector points to FFFF0H. A single select for lower memory (lcs_n), with a fixed start address of 0H, is good for interrupt vectors which reside beginning at address 00000H. There are also four selects for anywhere else (exclusive of ucs_n and lcs_n areas) in the 1 Mbyte memory in the user-locatable memory block. For the middle chip selects, the base address and block size are programmable, while only the block size for the upper and lower chip selects are programmable.

Seven additional chip selects can be programmed to access either peripherals or memory in seven contiguous fixed blocks of 128 bytes each. A single base address is programmable for these chip selects.

A programmable number of wait states (0 - 3) can be used to generate an internal ready for each chip select range. The IA186XL can be programmed to use or not use the external ready signal with or without the internal wait states from the internal ready being factored in.

At reset, the Chip-Select/Ready Logic will be configured as follows:

- 1. All chip-select outputs will be driven HIGH
- 2. Exiting RESET, the UCS control register (UMCS) is set to FFFBH, providing chip select to a 1-Kbyte block of memory with 3 wait states in combined with external ready.
- 3. All other chip select control registers are undefined after reset. The CPU must configure these control registers before the corresponding chips selects will become active

4.1.6 DMA

The IA186XL includes a DMA controller with two channels. Transfers can occur between any combination of Memory and I/O space, to either odd or even address. Data size can be either 8 or 16 bits, except on the IA188XL it can only be 8 bits.

There are separate 20-bit source and destination pointers for each channel. These pointers can be configured to increment, decrement or stay static after each transfer. For word transfers, pointers are incremented or decrement by two and for byte transfers, by one. One bus cycle is required to fetch data and one cycle to deposit it.

4.1.7 DRAM Refresh Control Unit

When in Enhanced Mode, the IA186XL supports DRAM refresh cycles. Reads are automatically generated at a programmable time interval. If enabled, chip selects are active for these reads.

4.1.8 Power-Save Control

When in Enhanced Mode, the IA186XL supports a power save mode of operation. The internal clock frequency is divided by a programmable amount. This affects all internal logic including, timers, the refresh control unit and clkout generation. Timers and the refresh control unit need to be reprogrammed accordingly when going in and out of power save if you wish to maintain the same real time references.

4.2 Operating Modes

During reset the IA186XL can be configured to enable special operating modes described as follows.

4.2.1 Enhanced Mode

If Enhanced Mode is enabled, the IA186XL has DRAM refresh, Power-Save and coprocessor support available in addition to the normal features available in Compatible Mode. Enhanced Mode will be invoked automatically if a coprocessor is attached. It can also be entered by tying the reset output to the test_n/busy input. An internal pull-up keeps the part from entering Enhanced mode during normal operation.

When not in Enhanced Mode, none of the Enhanced Mode registers can be accessed. Queue-Status functions, except for the coprocessor support, will be available when not in Enhanced Mode.

4.2.2 Queue Status Mode

When Queue Status Mode is enabled, information about the instruction queue is output on the ale/qs0 and wr_n/qs1 pins. To enter Queue Status Mode, the rd_n input should be tied low. It is sampled at reset, and if low, Queue Status Mode is entered. An internal pull-up keeps the part from entering Queue Status mode during normal operation.

4.2.3 ONCE Mode

ONCE mode is a special test mode where all pins are set to a high impedance state. ONCE mode is entered by forcing lcs_n and ucs_n low during reset. These pins are sampled on the rising edge of res but should be held low for at least a full clock cycle after res goes high. ONCE mode is exited by reseting the part with lcs_n and ucs_n high. Internal pull-ups keep the part from entering ONCE mode during normal operation.

4.2.4 Math Coprocessor (IA186XL Only)

When Enhanced mode is enabled, the IA186XL is configured to interface with a math coprocessor via three of the middle chip select pins. Pin mcs0/pereq is used for Processor Extension Request. Pin mcs1/error is used for coprocessor error indication. Pin mcs3/nps is used for Numeric Processor Select.

Table 12. Internal Register Map

PCB		PCB		PCB		ſ	PCB	
Offset	Function	Offset	Function	Offset	Function		Offset	Function
00H	Reserved	40H	Reserved	80H	Reserved	-	C0H	D0SRCL
02H	Reserved	42H	Reserved	82H	Reserved	F	C2H	D0SRCH
04H	Reserved	44H	Reserved	84H	Reserved	F	C4H	D0DSTL
06H	Reserved	46H	Reserved	86H	Reserved		C6H	D0DSTH
08H	Reserved	48H	Reserved	88H	Reserved	-	C8H	D0TC
0AH	Reserved	4AH	Reserved	8AH	Reserved	-	CAH	D0CON
0CH	Reserved	4CH	Reserved	8CH	Reserved	-	CCH	Reserved
0EH	Reserved	4EH	Reserved	8EH	Reserved	-	CEH	Reserved
10H	Reserved	50H	T0CNT	90H	Reserved	-	D0H	D1SRCL
12H	Reserved	52H	T0CMPA	92H	Reserved		D2H	D1SRCH
14H	Reserved	54H	T0CMPB	94H	Reserved	Ī	D4H	D1DSTL
16H	Reserved	56H	T0CON	96H	Reserved	Ī	D6H	D1DSTH
18H	Reserved	58H	T1CNT	98H	Reserved	Ī	D8H	D1TC
1AH	Reserved	5AH	T1CMPA	9AH	Reserved	-	DAH	D1CON
1CH	Reserved	5CH	T1CMPB	9CH	Reserved	Ī	DCH	Reserved
1EH	Reserved	5EH	T1CON	9EH	Reserved	-	DEH	Reserved
20H	Reserved	60H	T2CNT	A0H	UMCS	Ī	E0H	RFBASE
22H	EOI	62H	T2CMPA	A2H	LMCS	Ī	E2H	RFTIME
24H	POLL	64H	Reserved	A4H	PACS	Ī	E4H	RFCON
26H	POLLSTS	66H	T2CON	A6H	MMCS		E6H	Reserved
28H	IMASK	68H	Reserved	A8H	MPCS		E8H	Reserved
2AH	PRIMSK	6AH	Reserved	AAH	Reserved		EAH	Reserved
2CH	INSERV	6CH	Reserved	ACH	Reserved		ECH	Reserved
2EH	REQST	6EH	Reserved	AEH	Reserved		EEH	Reserved
30H	INSTS	70H	Reserved	B0H	Reserved		F0H	PWRSAV
32H	TCUCON	72H	Reserved	B2H	Reserved		F2H	PWRCON
34H	DMA0CON	74H	Reserved	B4H	Reserved		F4H	Reserved
36H	DMA1CON	76H	Reserved	B6H	Reserved		F6H	Step ID ¹
38H	I0CON	78H	Reserved	B8H	Reserved		F8H	Reserved
3AH	I1CON	7AH	Reserved	BAH	Reserved	Ī	FAH	Reserved
3CH	I2CON	7CH	Reserved	BCH	Reserved	Ī	FCH	Reserved
3EH	I3CON	7EH	Reserved	BEH	Reserved		FEH	RELREG

Note:

¹ The **Step ID** register (offset 0xF6) for Revision 1 of the Innovasic device is read-only, and is uniquely identified in software by having a value of 0x0081. The original Intel device established a value between 0x0000 and 0x0003, depending on the revision of the part.

AC Specifications 5.

5.1 Major Cycle Timings - Read Cycle

- $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 5V \pm 10\%$
- All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.
- All output test conditions are with $C_L = 50 \text{ pF}$.
- For AC tests, input $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$ except at X1 where $V_{IH} = V_{CC} 0.5V$.

Table 13. Major Cycle Timings – Read Cycle

0	Parameter	Values		11	To al Oom Pillana
Symbol		Min	Max	Unit	Test Conditions
T _{DVCL}	Data in Setup (A/D)	8		ns	
T _{CLDX}	Data in Hold (A/D)	3		ns	
T _{CHSV}	Status Active Delay	3	20	ns	
T _{CHSH}	Status Inactive Delay	3	20	ns	
T _{CLAV}	Address Valid Delay	3	20	ns	
T _{CLAX}	Address Hold	0		ns	
T _{CLDV}	Data Valid Delay	3	20	ns	
T _{CHDX}	Status Hold Time	10		ns	
T _{CHLH}	ALE Active Delay		20	ns	
T _{LHLL}	ALE Width	T _{CLCL} - 15		ns	
T _{CHLL}	ALE Inactive Delay		20	ns	
T _{AVLL}	Address Valid to ALE Low	T _{CLCH} - 10		ns	Equal Loading
T _{LLAX}	Address Hold from ALE Inactive	T _{CHCL} - 8		ns	Equal Loading
T _{AVCH}	Address Valid to Clock High	0		ns	
T _{CLAZ}	Address Float Delay	T _{CLAX}	20	ns	
T _{CLCSV}	Chip-Select Active Delay	3	20	ns	
T _{CXCSX}	Chip-Select Hold from Command Inactive	T _{CLCH} - 10		ns	Equal Loading
T _{CHCSX}	Chip-Select Inactive Delay	3	17	ns	
T _{DXDL}	DEN Inactive to DT/R Low	0		ns	Equal Loading
T _{CVCTV}	Control Active Delay 1	3	17	ns	
T _{CVDEX}	DEN Inactive Delay	3	17	ns	
T _{CHCTV}	Control Active Delay 2	3	20	ns	
T _{CLLV}	LOCK Valid/Invalid Delay	3	17	ns	
T_{AZRL}	Address Float to RD Active	0		ns	
T _{CLRL}	RD Active Delay	3	20	ns	
T_{RLRH}	RD Pulse Width	2 _{TCLCL} - 15		ns	
T _{CLRH}	RD Inactive Delay	3	20	ns	
T _{RHLH}	RD Inactive to ALE High	T _{CLCH} - 14		ns	Equal Loading
T _{RHAV}	RD Inactive to Address Active	T _{CLCL} - 15		ns	Equal Loading

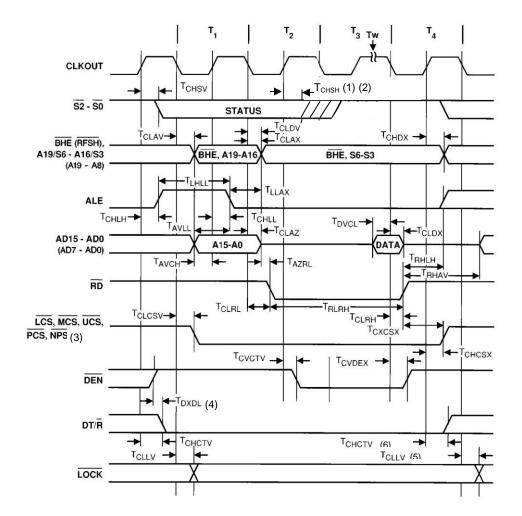


Figure 12. Read Cycle Waveforms

Please note that pins indicated in the parentheses are for the IA188XL version.

Notes:

- (1) The OEM part (80C186XL) operates differently in that it deasserts on the falling edge of CLKOUT.
- (2) Status is inactive in the state preceding T4.
- (3) Only TCLCSV is applicable if latched A1 and A2 are selected instead of PCS5 and PCS6.
- (4) This applies when a write cycle is followed by read cycle.
- (5) This is T1 of next bus cycle.
- (6) This changes in the T-state preceding the next bus cycle if followed by a write.

5.2 Major Cycle Timings – Write Cycle

- $T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}, V_{CC} = 5 \text{V} + 10\%$
- All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.
- All output test conditions are with $C_L = 50 \text{ pF}$.
- $\bullet \quad \text{For AC tests, input $V_{IL}=0.45$V$ and $V_{IH}=2.4$V$ except at $X1$ where $V_{IH}=V_{CC}-0.5$V}.$

Table 14. Major Cycle Timings – Write Cycle

Comple a l	Baramatar	Values			Test
Symbol	Parameter	Min	Max	Unit	Conditions
T _{CHSV}	Status Active Delay	3	20	ns	
T _{CHSH}	Status Inactive Delay	3	20	ns	
T _{CLAV}	Address Valid Delay	3	20	ns	
T _{CLAX}	Address Hold	0		ns	
T _{CLDV}	Data Valid Delay	3	20	ns	
T _{CHDX}	Status Hold Time	10		ns	
T _{CHLH}	ALE Active Delay		20	ns	
T _{LHLL}	ALE Width	T _{CLCL} - 15		ns	
T _{CHLL}	ALE Inactive Delay		20	ns	
T _{AVLL}	Address Valid to ALE Low	T _{CLCH} - 10		ns	Equal Loading
T _{LLAX}	Address Hold from ALE Inactive	T _{CHCL} - 10		ns	Equal Loading
T _{AVCH}	Address Valid to Clock High	0		ns	
T_{CLDOX}	Data Hold Time	3		ns	
T _{CVCTV}	Control Active Delay 1	3	20	ns	
T _{CVCTX}	Control Inactive Delay	3	17	ns	
T _{CLCSV}	Chip-Select Active Delay	3	20	ns	
T _{CXCSX}	Chip-Select Hold from Command Inactive	T _{CLCH} - 10		ns	Equal Loading
T _{CHCSX}	Chip-Select Inactive Delay	3	17	ns	
T _{DXDL}	DEN Inactive to DT/R Low	0		ns	Equal Loading
T _{CLLV}	LOCK Valid/Invalid Delay	3	17	ns	
T _{WLWH}	WR Pulse Width	2 _{TCLCL} - 15		ns	
T _{WHLH}	WR Inactive to ALE High	T _{CLCH} - 14		ns	Equal Loading
T _{WHDX}	Data Hold after WR	T _{CLCL} - 10		ns	Equal Loading
T _{WHDEX}	WR Inactive to DEN Inactive	T _{CLCH} - 10		ns	Equal Loading

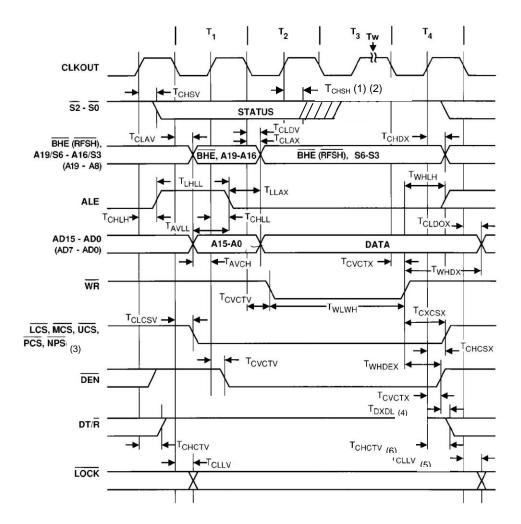


Figure 13. Write Cycle Waveforms

Please note that pins indicated in the parentheses are for the IA188XL version.

Notes:

- (1) The OEM part (80C186XL) operates differently in that it deasserts on the falling edge of CLKOUT.
- (2) Status is inactive in the state preceding T4.
- (3) Only TCLCSV is applicable if latched A1 and A2 are selected instead of PCS5 and PCS6.
- (4) This applies when a write cycle is followed by a read cycle.
- (5) This is T1 of next bus cycle.
- (6) This changes in the T-state preceding the next bus cycle if followed by a read, INTA or halt.

5.3 Major Cycle Timings – Interrupt Acknowledge Cycle

- $T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}, V_{CC} = 5 \text{V} + 10\%$
- All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.
- All output test conditions are with $C_L = 50 \text{ pF}$.
- For AC tests, input $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$ except at X1 where $V_{IH} = V_{CC} 0.5V$.

Table 15. Major Cycle Timings – Interrupt Acknowledge Cycle

Cumbal	Parameter	Values		Unit	Test
Symbol	Parameter	Min	Max	Unit	Conditions
T _{DVCL}	Data in Setup (A/D)	8		ns	
T _{CLDX}	Data in Hold (A/D)	3		ns	
T _{CHSV}	Status Active Delay	3	20	ns	
T _{CHSH}	Status Inactive Delay	3	20	ns	
T _{CLAV}	Address Valid Delay	3	20	ns	
T _{AVCH}	Address Valid to Clock High	0		ns	
T _{CLAX}	Address Hold	0		ns	
T _{CLDV}	Data Valid Delay	3	20	ns	
T _{CHDX}	Status Hold Time	10		ns	
T _{CHLH}	ALE Active Delay		20	ns	
T _{LHLL}	ALE Width	T _{CLCL} - 15		ns	
T _{CHLL}	ALE Inactive Delay		20	ns	
T _{AVLL}	Address Valid to ALE Low	T _{CLCH} - 10		ns	Equal Loading
T _{LLAX}	Address Hold to ALE Inactive	T _{CHCL} - 10		ns	Equal Loading
T _{CLAZ}	Address Float Delay	T _{CLAX}	20	ns	
T _{CVCTV}	Control Active Delay 1	3	17	ns	
T _{CVCTX}	Control Inactive Delay	3	17	ns	
T _{DXDL}	DEN Inactive to DT/R Low	0		ns	Equal Loading
T _{CHCTV}	Control Active Delay 2	3	20	ns	
T _{CVDEX}	DEN Inactive Delay (Non-Write Cycles)	3	17	ns	
T _{CLLV}	LOCK Valid/Invalid Delay	3	17	ns	·

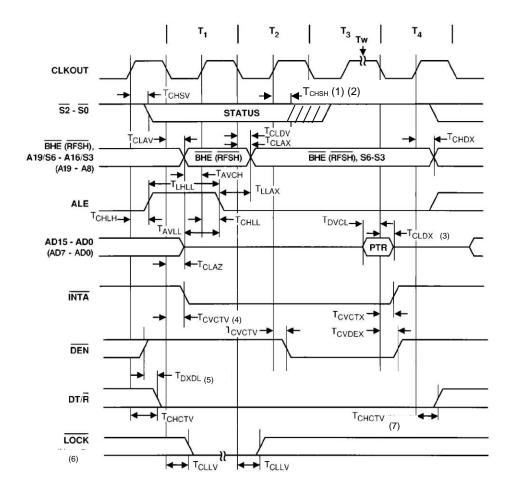


Figure 14. Interrupt Acknowledge Cycle Waveforms

Please note that pins indicated in the parentheses are for the IA188XL version.

Notes:

- (1) The OEM part (80C186XL) operates differently in that it deasserts on the falling edge of CLKOUT.
- (2) Status is inactive in the state preceding T4.
- (3) The data hold time lasts only until INTA goes inactive, even if the INTA transition occurs prior to TCLDX (min).
- (4) INTA occurs one clock later in Slave Mode.
- (5) This applies when a write cycle is followed by an interrupt acknowledge cycle.
- (6) LOCK is active upon T1 of the first interrupt acknowledge cycle, and inactive upon T2 of the second interrupt acknowledge cycle.
- (7) Changes in T-state preceding next bus cycle if followed by write.

Software Halt Cycle Timings 5.4

- $T_A = -40^{\circ} \text{ C to } +85^{\circ} \text{ C}, V_{CC} = 5V \pm 10\%$
- All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.
- All output test conditions are with $C_L = 50 \text{ pF}$.
- For AC tests, input $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$ except at X1 where $V_{IH} = V_{CC} 0.5V$.

Table 16. Software Halt Cycle Timings

Symbol	Parameter	Values		Unit	Test
	Parameter	Min	Max	Unit	Conditions
T _{CHSV}	Status Active Delay	3	20	ns	
T _{CHSH}	Status Inactive Delay	3	20	ns	
T _{CLAV}	Address Valid Delay	3	20	ns	
T _{CHLH}	ALE Active Delay		20	ns	
T _{LHLL}	ALE Width	T _{CLCL} - 15		ns	
T _{CHLL}	ALE Inactive Delay		20	ns	
T _{DXDL}	DEN Inactive to DT/R Low		0	ns	Equal Loading
T _{CHCTV}	Control Active Delay 2	3	20	ns	

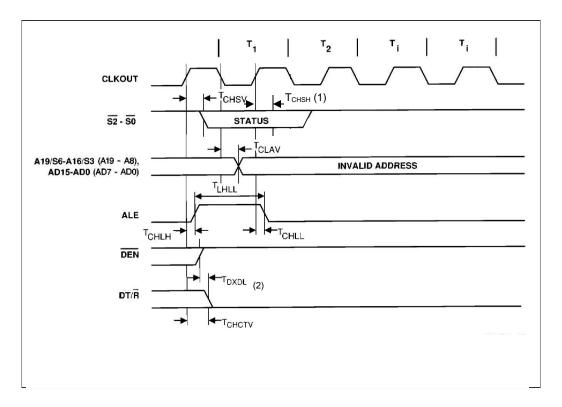


Figure 15. Software Halt Cycle Waveforms

Please note that pins indicated in the parentheses are for the IA188XL version.

Notes:

- (1) The OEM part (80C186XL) operates differently in that it deasserts on the falling edge of CLKOUT.
- (2) This applies when a write cycle is followed by a halt cycle.

5.5 Clock Timings

- $T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}, V_{CC} = 5 \text{V} + 10\%$
- All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.
- All output test conditions are with $C_L = 50 \text{ pF}$.
- For AC tests, input $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$ except at X1 where $V_{IH} = V_{CC} 0.5V$.

Table 17. Clock Timings

Symbol	Parameter	Values		Unit	Test
Symbol	Faranietei	Min	Max	Ullit	Conditions
T _{CKIN}	CLKIN Period	20	8	ns	
T _{CLCK}	CLKIN Low Time	8	8	ns	1.5V(2)
T _{CHCK}	CLKIN High Time	8	∞	ns	1.5V(2)
T _{CKHL}	CLKIN Fall Time		5	ns	3.5 to 1.0V
T _{CKLH}	CLKIN Rise Time		5	ns	1.0 to 3.5V
T _{CICO}	CLKIN to CLKOUT Skew		17	ns	
T _{CLCL}	CLKOUT Period	40	8	ns	
T _{CLCH}	CLKOUT Low Time	0.5 T _{CLCL} - 5		ns	$C_L = 100 \text{ pF}(3)$
T _{CHCL}	CLKOUT High Time	0.5 T _{CLCL} - 5		ns	C _L = 100 pF(4)
T _{CH1CH2}	CLKOUT Rise Time		6	ns	1.0 to 3.5V
T _{CL2CL1}	CLKOUT Fall Time		6	ns	3.5 to 1.0V

NOTES:

- 1. External clock applied to X1 and X2 not connected.
- 2. T_{CLCK} and T_{CHCK} (CLKIN Low and High times) should not have a duration less than 40% of T_{CKIN}.
- 3. Tested under worst case conditions: $V_{CC} = 5.5V$. $T_A = 70^{\circ}C$.
- 4. Tested under worst case conditions: $V_{CC} = 4.5V$. $T_A = 0$ °C.

5.6 Ready, Peripheral and Queue Status Timings

- $T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}, V_{CC} = 5 \text{V} + 10\%$
- All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.
- All output test conditions are with $C_L = 50 \text{ pF}$.
- For AC tests, input $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$ except at X1 where $V_{IH} = V_{CC} 0.5V$.

Table 18. Ready, Peripheral and Queue Status Timings

Cumbal	Doromotor	Values		I Imit	Test
Symbol	Parameter	Min	Max	Unit	Conditions
T _{SRYCL}	Synchronous Ready (SRDY) Transition Setup Time(1)	8		ns	
T _{CLSRY}	SRDY Transition Hold Time(1)	8		ns	
T _{ARYCH}	ARDY Resolution Transition Setup Time(2)	8		ns	
T _{CLARX}	ARDY Active Hold Time(1)	8		ns	
T _{ARYCHL}	ARDY Inactive Holding Time	8		ns	
T _{ARYLCL}	Asynchronous Ready (ARDY) Setup Time(1)	10		ns	
T _{INVCH}	INTx, NMI, TEST, BUSY, TMR IN Setup Time(2)	8		ns	
T _{INVCL}	DRQ0, DRQ1 Setup Time(2)	8		ns	
T _{CLTMV}	Timer Output Delay		17	ns	
T _{CHQSV}	Queue Status Delay		22	ns	

NOTES:

- 1. To guarantee proper operation.
- 2. To guarantee recognition at clock edge.

5.7 Reset and HOLD/HLDA Timings

- $T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}, V_{CC} = 5 \text{V} + 10\%$
- All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.
- All output test conditions are with $C_L = 50 \text{ pF}$.
- For AC tests, input $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$ except at X1 where $V_{IH} = V_{CC} 0.5V$.

Table 19. Reset and HOLD/HLDA Timings

Cumbal	Parameter	Value	es	Unit	Test
Symbol	Parameter	Min	Max	Unit	Conditions
T _{RESIN}	RES Setup	15		ns	
T _{HVCL}	HOLD Setup(1)	8		ns	
T _{CLAZ}	Address Float Delay	T _{CLAX}	20	ns	
T _{CLAV}	Address Valid Delay	3	20	ns	
T _{CLRO}	Reset Delay		17	ns	
T _{CLHAV}	HLDA Valid Delay	3	17	ns	
T _{CHCZ}	Command Lines Float Delay		22	ns	
T _{CHCV}	Command Lines Valid Delay (after Float)		20	ns	

NOTE:

1. To guarantee recognition at next clock.

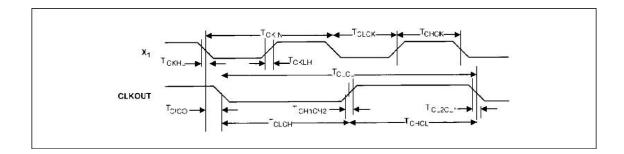


Figure 16. Clock Waveforms

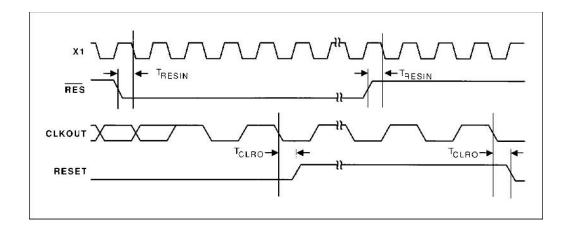


Figure 17. Reset Waveforms

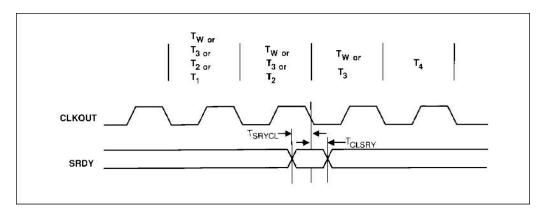


Figure 18. Synchronous Ready (SRDY) Waveforms

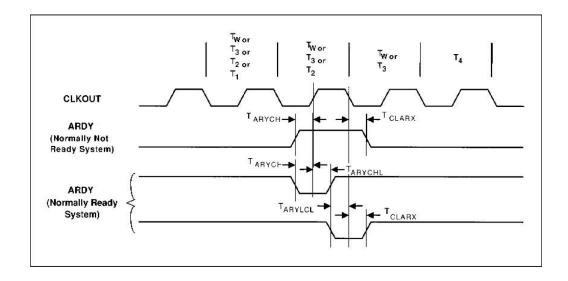


Figure 19. Asynchronous Ready (ARDY) Waveforms

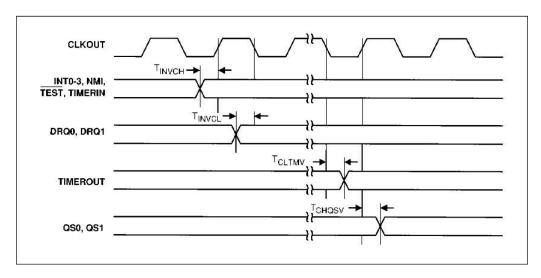


Figure 20. Peripheral and Queue Status Waveforms

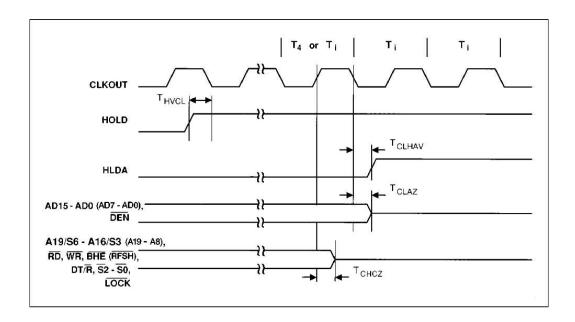


Figure 21. HOLDA/HLDA Waveforms (Entering Hold)

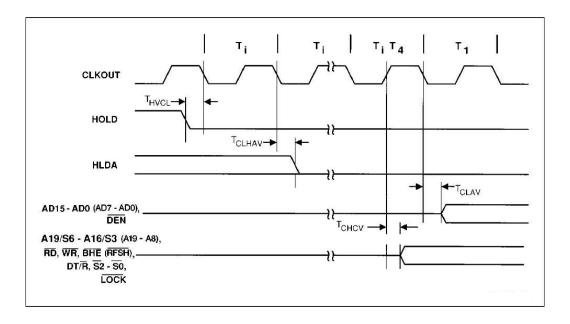


Figure 22. HOLD/HLDA Waveforms (Leaving Hold)

Instruction Execution Times 6.

Table 20 provides IA186XL and IA188XL execution times, mnemonic instruction, and additional information on execution, if required.

Table 20. Instruction Set Timing

	Clock Cycles		
Instruction	IA186XL	IA188XL	Comments
AAA	3	3	_
AAD	6	6	-
AAM	40	40	_
AAS	3	3	_
ADC Immediate to accumulator	1	1	_
ADC Immediate to register/memory	3	13	-
ADC Register/memory with register to either	1/16	1/24	register/memory
ADD Immediate to accumulator	1	1	_
ADD Immediate to register/memory	1/19	1/32	register/memory
ADD Register/memory with register either	1/20	1/28	
AND Immediate to accumulator	1	1	_
AND Immediate to register/memory	1/24	1/33	register/memory
AND Register/memory and register to either	1/12	1/15	
BOUND	20/40	24/64	Interrupt not taken/Interrupt taken
CBW	1	4	_
CLC	1	1	_
CLD	1	1	_
CLI	1	1	-
CMC	2	2	-
CMPS	9	20	_
CS	1	1	-
CWD	1	1	-
DAA	4	4	-
DAS	2	2	_
DEC Register	1	1	-
DEC Register/memory	1/24	1/32	register/memory

Table 20. Instruction Set Timing (Continued)

Table 20. Instruction Set Til			
Instruction	IA186XL	Cycles IA188XL	Comments
DIV Memory-Byte	46	46	_
DIV Memory-Word	49	51	_
DIV Register-Byte	39	39	_
DIV Register-Word	39	39	_
IDIV Memory-Byte	46	46	_
IDIV Memory-Word	49	51	_
IDIV Register-Byte	39	39	_
IDIV Register-Word	39	39	_
IMUL Immediate (signed)	5/24	5/33	register/memory
IMUL Memory-Byte	4	20	
IMUL Memory-Word	13	28	_
IMUL Register-Byte	5	5	_
IMUL Register-Word	5	5	_
INC Register	1	1	_
INS	8	16	_
INS (repeated <i>n</i> times)	8+8 <i>n</i>	16+16 <i>n</i>	_
INT Type specified	33	41	_
INT Type 3	33	41	_
INTO	33	48	_
IRET	30	30	_
JA	3/5	3/5	Jump not taken/Jump taken
JAE	3/5	3/5	
JB	3/5	3/5	
JBE	3/5	3/5	
JCXZ	3/4	3/4	Jump not taken/Jump taken
JE	3/5	3/5	Jump not taken/Jump taken
JG	3/5	3/5	
JGE	3/5	3/5	
JL	3/5	3/5	
JLE	3/5	3/5	
JMP Direct intersegment	3	3	_
JMP Direct within segment	3	3	_
JMP Short/long	4	4	_
JNA	3/5	3/5	Jump not taken/Jump taken
JNAE	3/5	3/5	
JNB	3/5	3/5	
JNBE	3/5	3/5	
JNE	3/5	3/5	_
JNG	3/5	3/5	
JNGE	3/5	3/5	
JNL	3/5	3/5	
JNLE	3/5	3/5	_
JNO	3/5	3/5	_
JNP	3/5	3/5	

Table 20. Instruction Set Timing (Continued)

Clock Cycles			
Instruction	IA186XL	IA188XL	Comments
JNS	3/5	3/5	Jump not taken/Jump taken
JNZ	3/5	3/5	- · · · · · · · · · · · · · · · · · · ·
JO	3/5	3/5	
JP	3/5	3/5	
JPE	3/5	3/5	1
JPO	3/5	3/5	
JS	3/5	3/5	
JZ	3/5	3/5	
LAHF	2	2	_
LDS	1/24	1/33	register/memory
LEA	3	3	_
LEAVE	12	12	_
LES	12	32	_
LOCK	1	1	_
LODS	8	12	_
LODS (repeated <i>n</i> times)	8+8 <i>n</i>	12+12 <i>n</i>	_
LOOP	3/4	3/4	Loop not taken/Loop taken
LOOPE	3/4	3/4	Loop not taken/Loop taken
LOOPNE	3/4	3/4	7
LOOPNZ	3/4	3/4	
LOOPZ	3/4	3/4	
MOV Accumulator to memory	5	8/12	8-bit/16-bit
MOV Immediate to register	1	1	-
MOV Immediate to	1/5	1/12	register/memory
register/memory			
MOV Memory to accumulator	5	8/12	8-bit/16-bit
MOV Register to	2/5	2/20	register/memory
Register/Memory		- 1	
MOV Register/memory to	2/5	2/20	
register	2/5	2/20	-
MOV Register/memory to segment register	2/5	2/20	
MOV Segment register to	2/5	2/20	
register/memory	2/3	2/20	
MOVS	24	32	_
MOVS (repeated <i>n</i> times)	24+24 <i>n</i>	32+32 <i>n</i>	_
MUL Memory-Byte	16	20	_
MUL Memory-Word	15	25	_
MUL Register-Byte	5	5	_
MUL Register-Word	5	5	_
NEG	1/32	1/15	register/memory
NOP	1	1	_
NOT	1/24	1/24	register/memory
OR Immediate to accumulator	1	1	

Table 20. Instruction Set Timing (Continued)

	Clock	< Cycles	
Instruction	IA186XL	IA188XL	Comments
OR Immediate to	1/32	1/32	register/memory
register/memory			,
OR Register/memory and	1/32	1/24	
register to either			
OUT Fixed port	5	8/12	8-bit/16-bit
OUT Variable port	5	12	-
OUTS	8	12/20	8-bit/16-bit
OUTS (repeated <i>n</i> times)	8+8 <i>n</i>	12/20+12/20 <i>n</i>	8-bit/16-bit
POP Memory	10	20	_
POP Register	10	12	_
POP Segment register	16	12	_
POPA	80	93	_
POPF	13	13	_
PUSH Immediate	8	12	_
PUSH Memory	15	28	_
PUSH Register	4	12	_
PUSH Segment register	4	12	_
PUSHA	64	72	_
PUSHF	4	16	_
RET Inter-segment	14	21	_
RET Inter-segment adding	25	21	_
immediate to SP			
RET Within segment	14	13	_
RET Within segment adding	16	13	_
immediate to SP			
ROL Register/Memory by 1	1/8	1/16	register/memory
ROL Register/Memory by CL	1/8	1/16	
ROL Register/Memory by	1/8	1/24	
Count			
ROR Register/Memory by 1	1/8	1/16	
ROR Register/Memory by CL	1/8	1/16	
ROR Register/Memory by	1/8	1/24	
Count			
SAHF	2	2	
SBB Immediate from	1	1	_
accumulator			
SBB Immediate from	1/15	1/28	register/memory
register/memory	4 /4 4	4/10	and add and a second
SBB Register/memory and	1/11	1/40	register/memory
register to either	4.4	0/40	0 64/40 54
SCAS	11	8/12	8-bit/16-bit
SCAS (repeated <i>n</i> times)	11+8 <i>n</i>	8/12+8/12 <i>n</i>	8-bit/16-bit
SHL Register/Memory by 1	5	1/32	register/memory

Table 20. Instruction Set Timing (Continued)

	Clock Cycles			
Instruction	IA186XL	IA188XL	Comments	
SHL Register/Memory by CL	1/20	1/24	register/memory	
SHL Register/Memory by	1/11	1/24		
Count				
SHR Register/Memory by 1	1/5	1/24		
SHR Register/Memory by CL	1/20	1/28		
SHR Register/Memory by	1/11	1/24		
Count				
SS	1	1	_	
STC	1	1	_	
SUB Immediate from	1	1	-	
accumulator				
SUB Immediate from	1/11	1/28	register/memory	
register/memory	4/45	4/40		
SUB Register/memory and	1/15	1/40		
register to either STD	1	1		
STI	<u></u>	1		
STOS	6	8		
STOS (repeated n times)	6+4n	8+8n	_	
TEST Immediate data and	1	1	_	
accumulator	'	l l	_	
TEST Immediate data and	1/16	1/16	register/memory	
register/memory	.,	1710	regietei, memery	
TEST Register/memory and	1/12	1/20	register/memory	
register			,	
WAIT	1	1	test_n = 0	
XCHG Register with	2	2	_	
accumulator				
XCHG Register/memory with	3/16	3/20	register/memory	
register		_		
XLAT	16	8	-	
XOR Immediate to accumulator	1	1	_	
XOR Immediate to	1/11	1/32	register/memory	
register/memory				
XOR Register/memory and	1/16	1/32	register/memory	
register to either				

Innovasic Part Number Cross-Reference 7.

Tables 21 through 23 cross-reference the Innovasic part number with the corresponding Intel part number.

Table 21. Innovasic Part Number Cross-Reference for the PLCC

Innovasic Part Number	Intel Part Number	Package Type	Temperature Range
IA186XLPLC68IR2 (lead free–RoHS)	N80C186XL25 N80C186XL20 N80C186XL12 TN80C186XL25 TN80C186XL20 TN80C186XL12 EE80C186XL25 EE80C186XL20 EE80C186XL20 EN80C186XL12	68-Lead PLCC	Industrial
IA188XLPLC68IR2 (lead free–RoHS)	N80C188XL25 N80C188XL20 N80C188XL12 TN80C188XL25 TN80C188XL20 TN80C188XL12 EE80C188XL25 EE80C188XL20 EE80C188XL12 EN80C188XL12 EN80C188XL12	68-Lead PLCC	Industrial

Table 22. Innovasic Part Number Cross-Reference for the PQFP (Special Order only)

Innovasic Part Number	Intel Part Number	Package Type	Temperature Range
IA186XLPQF80IR2 (lead free-RoHS)	\$80C186XL25 \$80C186XL20 \$80C186XL12 T\$80C186XL25 T\$80C186XL20 T\$80C186XL20 EG80C186XL25 EG80C186XL20 ES80C186XL20	80-Lead PQFP	Industrial
IA188XLPQF80IR2 (lead free-RoHS)	\$80C188XL25 \$80C188XL20 \$80C188XL12 T\$80C188XL25 T\$80C188XL20 T\$80C188XL12 EG80C188XL25 EG80C188XL20 ES80C188XL20	80-Lead PQFP	Industrial

Table 23. Innovasic Part Number Cross-Reference for the LQFP (Special Order only)

Innovasic Part Number	Intel Part Number	Package Type	Temperature Range
	SB80C186XL25		
IA186XLPLQ80IR2	SB80C186XL20		
(lead free–RoHS)	SB80C186XL12	80-Lead LQFP	Industrial
(lead free–Rons)	YW80C186XL25		
	YW80C186XL20		
	SB80C188XL25		
IA188XLPLQ80IR2	SB80C188XL20		
(lead free–RoHS)	SB80C188XL12	80-Lead LQFP	Industrial
	YW80C188XL25		
	YW80C188XL20		

8. **Errata**

The following errata are associated with the IA186XL/IA188XL. A workaround to the identified problem has been provided where possible.

8.1 **Summary**

Table 24 presents a summary of errata.

Table 24. Summary of Errata

Errata No.	Problem	Ver. 0	Ver. 1	Ver. 2
1	Pin LOCK_n does not have an internal pullup and will float during reset and bus hold.	Exists	Exists	Exists
2	When the timer compare register for any of the timers is set to x0000, the max count is xFFFF instead of x10000 as in the OEM part.	Exists	Fixed	Fixed
3	When using external interrupts IRQ0 or IRQ1 in Cascade Mode, the acknowledge signal on INTA0 or INTA1 may be lost or truncated.	Exists	Fixed	Fixed
4	Memory->Memory moves interrupted by two DMA cycles can corrupt data.	Exists	Fixed	Fixed
5	Bit 15 of RELREG (offset 0xFE) behaves differently than Intel device.	Exists	Fixed	Fixed
6	Enhanced mode makes bit 15 of RELREG (offset 0xFE) read-only.	Exists	Fixed	Fixed
7	Sbus deasserts on the wrong edge of CLKOUT.	Exists	Fixed	Fixed
8	Timer2 count register must be written to enable counting.	Exists	Exists	Fixed
9	Non-maskable interrupt (NMI) can be pre-empted by maskable interrupt.	Exists	Exists	Fixed
10	DMA can hang.	Exists	Exists	Fixed

Errata No.	Problem	Ver. 0	Ver. 1	Ver. 2
11	MOVS/POP/PUSH instructions interrupted by DMA can corrupt data.	Exists	Exists	Fixed
12	MOVS/POP/PUSH instructions interrupted by DMA can corrupt data.	Exists	Exists	Fixed

8.2 Detail

Errata No. 1

Problem: Pin LOCK_n does not have an internal pullup.

Description: Because Pin LOCK_n does not have an internal pullup, it will float during reset and bus hold.

Workaround: An external pullup may be necessary if there is high external load on the signal.

Errata No. 2

Problem:

When the timer compare register for any of the timers is set to x0000, the max count is xFFFF instead of x10000 as in the OEM part.

Description: The timer output will change one count earlier than it should when the max count is set to x0000.

Workaround: The workaround is application dependent. Please contact Innovasic Technical Support if this erratum is an issue.

Errata No. 3

Problem:

When using external interrupts IRQ0 or IRQ1 in Cascade Mode, the acknowledge signal on INTA0 or INTA1 may be lost or truncated.

Description: The acknowledge for IRQ0 or IRQ1 will be lost or truncated in Cascade Mode if another interrupt, with a higher priority setting (as configured in the interrupt control registers), occurs just before or during the acknowledge. This does not apply to interrupts generated by the DMA. This also does not apply when using the inherent priority settings (all interrupts configured with the same priority).

Workaround: When using external interrupts in cascade mode, do not program other interrupts to have a high priority (except DMAs). When using both IRQ0 and IRQ1 in Cascade Mode they must be programmed to have the same priority level.

Errata No. 4

Problem:

Memory->Memory moves interrupted by two DMA cycles can corrupt data.

Description:

This problem occurs if Memory->Memory operation is interrupted by 2 DMA cycles with the following sequence:

- 1. The instruction reads data from memory.
- 2. The first DMA cycle occurs.
- 3. The second DMA request occurs between 1 and 4 clocks after the falling edge of ALE for the deposit phase of the first DMA.
- 4. An instruction fetch occurs (this will be the data that shows up later).
- 5. The second DMA cycle occurs.
- 6. The write phase of the instruction happens with bad data (from step 4).

If the second DMA request occurs earlier than 1 clock after ALE for the first DMA's deposit phase, step 4 will be preempted by the second DMA, and operation is correct.

If the second DMA request occurs later than 4 clocks after ALE for the first DMA's deposit phase, the write phase will follow step 4 immediately, and operation is correct.

Of the total 163 instructions, the following 8 are impacted by this issue, with both the 8 & 16 bit versions of the first 7 on the list being affected.

- 1. MOVS
- 2. PUSH mem
- 3. POP mem
- 4. INS
- 5. IN
- 6. OUTS
- 7. OUT
- 8. ENTER

Workaround: If the conditions described above occur, there is no workaround. However, this DMA issue will be corrected in Revision 1 of the device.

Errata No. 5

Problem:

Bit 15 of RELREG (offset 0xFE) behaves differently than Intel device.

Description: For both 188 and 186 devices, an ESC opcode will generate a type 7 interrupt only when RELREG[15] is a 0.

Workaround: Initialize RELREG[15] to 0 if a type 7 interrupt is desired.

Errata No. 6

Problem:

Enhanced mode makes bit 15 of RELREG (offset 0xFE) read-only.

Description: If the device comes out of reset in enhanced mode, RELREG[15] will be set to a

Workaround: Avoid enhanced mode if a type 7 interrupt is desired.

Errata No. 7

Problem:

Sbus deasserts on the wrong edge of CLKOUT.

Description: The sbus goes inactive (high) at the end of a bus cycle on the falling edge of CLKOUT. It should be on the rising edge of CLKOUT.

Workaround: None.

Errata No. 8

Problem:

Timer2 count register must be written to enable counting.

Description: If timer 2 count register is not explicitly written timer 2 will not count; this can also prevent timers 0 & 1 from counting if timer 2 is used as a prescaler.

Workaround: Write timer 2 count register before enabling timer 2.

Errata No. 9

Problem:

Non-maskable interrupt (NMI) can be pre-empted by maskable interrupt.

Description: When instruction execution unit is in Decode state for 2 or more consecutive cycles and an NMI is recognized, it could be pre-empted by a maskable interrupt.

Workaround: None.

Errata No. 10

Problem:

DMA can hang.

Description: DMA to a region of memory using destination synchronization and a chip select with extra wait states can hang.

Workaround: Do not use wait states and destination synchronization together.

Errata No. 11

Problem:

MOVS/POP/PUSH instructions interrupted by DMA can corrupt data.

Description: MOVS/POP/PUSH instructions interrupted by both a DMA transaction and an instruction fetch bus cycle can corrupt data. *This affects the IA186XL only*.

Workaround: None.

Errata No. 12

Problem:

MOVS/POP/PUSH instructions interrupted by DMA can corrupt data.

Description: MOVS/PUSH/POP instructions with 16-bit, non-aligned destination address interrupted by DMA can corrupt data. *This affects the IA186XL only*.

Workaround: None.

Data Sheet Revision History 9.

Table 25 presents the sequence of revisions to document IA211080711.

Table 25. Data Sheet Revision History

Date	Revision	Description	Page(s)
September 30, 2008	00	Initial release	NA
August 5, 2009	01	Updated DC Parameters; Updated AC Specifications and timing diagrams; Updated Instruction Set Timing; Added errata.	Multiple pages throughout the document
August 19, 2009	02	Final version of the data sheet released to support production of Version 0 of the IA186/188 XL. Release date changed, "Preliminary" removed from heading and document number revised to reflect final release. No other changes.	Headers and Footers on all pages
September 4, 2009	03	Updated the package dimensions table for the 68 PLCC; Added a note to Table 12 regarding the Step ID register; Updated Errata 4 to include more recent information.	14, 46, 69, 71
January 15, 2010	04	Updated AC and DC table notes to show T _A at industrial temperature instead of commercial; Updated Errata information for Version 1 of the device; Updated note regarding StepID register.	46, 47, 49, 51, 53, 55, 56, 57, 69
January 12, 2011	05	Updated to add Errata 8.	69, 72
January 13, 2011	06	Updated to add Errata 9 – 12.	69 - 73
March 23, 2011	07	Updated Instruction Set Timing Table to incorporate DIV and IDIV values.	62
June 30, 2011	08	Updated Errata table to note fixes in Ver. 2.	69, 70
July 6, 2011	09	Updated pin descriptions for inputs/outputs.	25, 28, 31, 32, 34
February 11, 2013	10	Changed revision in part number from R1 to R2, updated company logo	66, 67, 68, footers on all pages
September 3, 2014	11	Changed Value of ucs_n to 0x0FFFFFH	43
January 9, 2015	12	Modified the chip compatibility claim	7

10. For Additional Information

The Innovasic Semiconductor IA186XL and IA188XL microcontrollers are form, fit, and function replacements for the original Intel 80C186XL and 80C188XL 16-bit high-integration embedded processors.

The Innovasic Support Team wants our information to be complete, accurate, useful, and easy to understand. Please feel free to contact our experts at Innovasic at any time with suggestions, comments, or questions.

Innovasic Support Team 5635 Jefferson St. NE, Suite A Albuquerque, NM 87109

(505) 883-5263 Fax: (505) 883-5477 Toll Free: (888) 824-4184

E-mail: support@innovasic.com Website: http://www.Innovasic.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

 M30302FCPFP#U3
 MB90F036APMC-GSE1
 MB90F428GCPFR-GSE1
 MB96F683RBPMC-GSAE1
 R5F10MMGDFB#30

 R5F111PGGFB#30
 R5F117BCGNA#20
 DF3026XBL25V
 DF36014GFTV
 DF36014GFXV
 DF36034GFPV
 R5F11B7EANA#U0

 R5F21172DSP#U0
 MB90092PF-G-BNDE1
 MB90F335APMC1-G-SPE1
 MB90F345CAPFR-GSE1
 MB90F568PMCR-GE1

 MB96F395RSAPMC-GSE2
 DF36024GFXV
 UPD78F1018F1-BA4-A
 MB90F018RBPMC-GSE1
 MB90F867ASPFR-GE1

 M30290FCHP#U3A
 DF2239FA20IV
 R5F117BCGFP#30
 LC88F58B0AU-SQFPH
 MB90F548GPF-GE1
 MB90214PF-GT-310-BND-AE1

 MB90F342CESPQC-GSE2
 MB90F428GAPF-GSE1
 ML62Q0504H-NNNTBWBX
 S912ZVH128F2VLL
 UPD78F1500AGK-GAK-AX

 HD64F3337SF16V
 MB90F428GCPF-GSE1
 MB90F342ESPMC-G-JNE1
 MB90022PF-GS-358E1
 MB96F395RWAPMC-GSE2

 MB96395RSAPMC-GS-110E2
 MB90F883CSPMC-GE1
 S912ZVHY64F1CLL
 S912ZVHY64F1VLQ
 ST10F280
 MB96F338RSAPMCR-GK5E2

 GK5E2
 CY90096PF-G-002-BND-ERE1
 ML62Q1569-NNNGAZ0AX
 ML62Q1739-NNNGAZ0AX
 ML62Q1749-NNNGAZ0AX