

JM38510/11401/11402/11403/ 11404/11405/11406

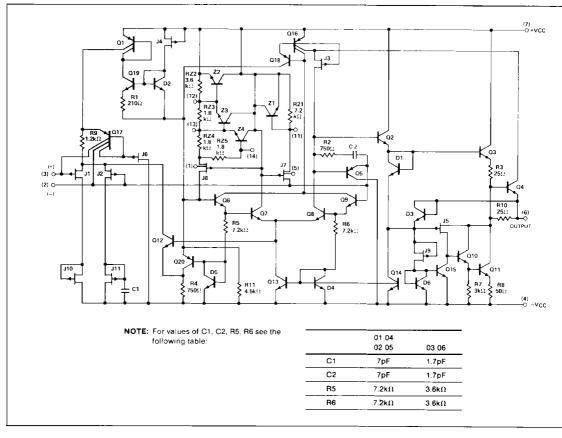
JAN JFET-INPUT OPERATIONAL AMPLIFIERS

Precision Monolithics Inc.

GENERAL DESCRIPTION

This data sheet covers the electrical requirements for a monolithic, low-power, internally-compensated JFET-input operational amplifier as specified in MIL-M-38510/114 for device types 01 to 06. Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510.

Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/114 for Class B and Class S processed devices.


GENERIC CROSS-REFERENCE INFORMATION

This cross-reference information is presented for the convience of the user. The generic-industry types listed may not have iden-

SIMPLIFIED SCHEMATIC

tical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device.

Military Device Type	Generic-Industry Type
01	LF-155
04	LF-155A
02	LF-156
05	LF-156A
03	LF-157
06	LF-157A

NOTES:

power supply voltage.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range ±22V
Input Voltage Range (Note 1) ±20V
Differential Input Voltage Range ±40V
Lead Temperature (Soldering, 60 sec) 300°C
Junction Temperature
Storage Temperature Range
Output Short-Circuit Duration Unlimited (Note 2)

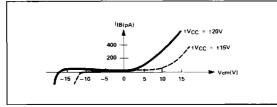
1. The absolute maximum negative input voltage is equal to the negative

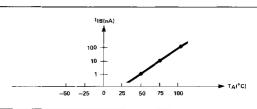
- 2. Short circuit may be to ground to either supply. Rating applies to + 125°C case temperature or +75°C ambient temperature.
- 3. For short-term test (in the specific burn-in and life test configuration when required and up to 168 hours maximum), T_i = 275°C.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	±5 to ±20 VDC
Ambient Temperature Ran	ge55°C to +125°C

ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted.

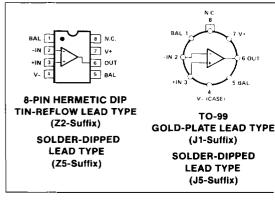

			01 LI	MITS	04 L	LIMITS		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
		$\pm V_{CC} = \pm 5V, V_{CM} = 0V$						
		$T_{\Delta} = 25^{\circ}C$	-5	5	-2	2		
Input Offset	V _{IO}	$\pm V_{CC} = \pm 20V$					۳V	
Voltage	*10	$V_{CM} = \pm 15V, 0V$					in v	
		$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	-7	7	-2.5	2.5		
nput Offset Voltage	ΔV _{IO}	$\pm V_{CC} = \pm 20V$						
Temperature Sensitivity		$V_{CM} = 0V$	-30	30	-10	10	μV/°C	
		$\pm V_{CC} = \pm 20V, V_{CM} = 0V,$						
nput Offset Current	I _{IO}	$T_i = 25^{\circ}C$	-20	20	-20	20	рA	
nput onset ourrent	10	$T_i = 125 °C$	-20	20	-20	20	рд лА	
		_/	20		20			
		$\pm V_{CC} = \pm 20V$, $V_{CM} = \pm 15V$	100	2500	100	0500	- •	
		$T_{j} = 25^{\circ}C$	- 100	3500	-100	3500	pA	
	-1	$t \le 25ms$ $T_j = 125^{\circ}C$	-10	60	-10	60	nA	
nput Bias Current	+1 ₁₈	\pm V _{CC} = \pm 15V, V _{CM} = \pm 10V T _i = 25°C	-100	300	~ 100	300	- •	
(Note 1)	-1	$T_j = 25^{\circ}C$ t $\leq 25ms$ $T_i = 125^{\circ}C$	- 10	300 50	-100	300 50	pA	
(Note 1) (Note 2)	-1 _{IB}	$\pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V$	- 10	50	- 10	50	nA	
(Note 3)		$T_{i} = 25^{\circ}C$	-100	100	- 100	100	- •	
(NOTE 5)		t ≤ 25ms T _i = 125°C	-10	50	-100	50	pA	
			- 10		-10	50	nA	
ower Supply	+PSRR	$+V_{CC} = 10V, -V_{CC} = -20V$	85		85	_	dB	
Rejection Ratio	-PSRR	$+V_{CC} = 20V, -V_{CC} = -10V$						
nput Voltage Common-Mode	CMR	$\pm V_{CC} = \pm 20V$	85		85			
Rejection (Note 4)	CMR	V _{IN} = ± 15V					dB	
djustment for	VIO ADJ(+)	$\pm V_{CC} = \pm 20V$	+8		+8	_		
Input Offset Voltage	VIO ADJ (-)	$\pm V_{CC} = \pm 20V$	—	-8	-	-8	mV	
		$\pm V_{CC} = \pm 15V$						
Dutput Short-Circuit Current	IOS(+)	t ≤ 25ms	-50		-50	_	mA	
(for Positive Output) (Note 5)		(Short Circuit to Ground)						
Output Short-Circuit Current	1 6	$\pm V_{CC} = \pm 15V$						
(for Negative Output)	IOSI-	t ≤ 25ms		50		50	mА	
(Note 5)	001	(Short Circuit to Ground)						
		T _A = ~55°C	-	11		11		
Supply Current	I _{CC}	$\pm V_{CC} = \pm 15V, T_{A} = +25^{\circ}C$		4	_	4	mA	
		T _A = +125°C	_	4	-	4		
Dutput Voltage Swing		$\pm V_{CC} = \pm 20V, R_{\perp} = 10k\Omega$	± 16		± 16			
(Maximum)	V _{OP}	$\pm V_{CC} = \pm 20V, R_{L} = 2k\Omega$	±15		± 15	_	v	
		$\pm V_{CC} = \pm 20V, V_{OUT} = \pm 15V$						
Open-Loop Voltage Gain	Avs.+)	$R_1 = 2k\Omega$, $T_A = 25^{\circ}C$	50		50			
(Single Ended) (Note 6)	AVSIT	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	25		25	_	V/mV	
		$\pm V_{CC} = \pm 5V$						
pen-Loop Voltage Gain	Avs	$\mathbf{R}_{i} = 2\mathbf{k}\mathbf{\Omega}$	10		10	_	V/mV	
(Single Ended) (Note 6)	rvs	$V_{OUT} = \pm 2V$.0		10	_	VANV	
		<u></u>						


ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted. (Continued)

			01 LI	MITS	04 LI	MITS		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
Transient Response Rise Time	TR _(tr)		_	150	-	150	n	
Transient Response Overshoot	TR _(os)	$\pm V_{CC} = \pm 15V$, $R_L = 2k\Omega$, $A_V = 1$ $C_L = 100pF$, See Figure 2 $V_{IN} = 50mV$	_	40	-	40	9/	
Slew Rate	SR(+) and SR(~)	$V_{iN} = \pm 5V, \pm V_{CC} = \pm 15V$ $A_{V} = 1, \text{ See Figure 2}$ $T_{A} = 25^{\circ}\text{C}$ $T_{A} = -55^{\circ}\text{C}, + 125^{\circ}\text{C}$	2		3 1.5	_	۷/µ	
Settling Time	ts(+) and ts(-)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$ T _A = 25°C, A _V = -1 See Figure 3	-	4000	_	4000	ns	
Noise (Referred to Input) Broadband	N _I (BB)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ}C$ Bandwidth = 5kHz		10	_	10	μV _{rms}	
Noise (Referred to Input) Popcorn	N ₁ (PC)	$\pm V_{CC} = \pm 20V$, T _A = 25°C Bandwidth = 5kHz	<u> </u>	40	_	40	μ۷ _{pl}	

NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_j . Measurement of bias current is specified at T_j rather than T_A , since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at $T_A = -55^{\circ}C$ is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:


- Negative I_{IB} minimum limits reflect the characteristics of device with bia current compensation.
- 4. CMR is calculated from V_{IO} measurements at $V_{CM} = +15V$ and -15V.
- 5. Continuous limits shall be considerably lower. Protection for shorts either supply exists providing that $T_i(max) \le 175^{\circ}C$.
- 6. Because of thermal feedback effects from output to input, open-loop ga is not guaranteed to be linear or positive over the operating range. The requirements, if needed, should be specified by the user in addition procurement documents.

CASE OUTLINE

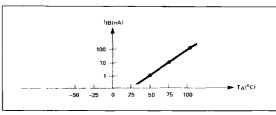
Per MIL-M-38510, Appendix C, Case Outline A-1 (8 Lead Can), Package Type Designator "G"; and Appendix C, Case Outline D-4 (8 Lead Dual-in-Line) Package Type Designator "P".

Package	Case outline		Maximum ∉J—C	Maximum θJ—A
8 Lead Can TO-99	G	330mW at T _A = 125°C	40°C/W	150° C/W
8 Lead Hermetic DIP Dual-in-Line	P	417mW at T _A = 125°C	50°C/W	120°C/W

PIN CONNECTIONS

ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted.

			02 LI	MITS	05 L	MITS	
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
		$\pm V_{CC} = \pm 5V$, $V_{CM} = 0V$	-5	5	-2	2	
nput Offset		T _A = 25°C	-5		-2	2	
Voltage	V _{IO}	$\pm V_{CC} = \pm 20V$					m\
Voltage		V _{CM} = ±15V, 0V	-7	7	-2.5	2.5	
		$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	•		2.5	2.0	
Input Offset Voltage	ΔVIQ	$\pm V_{CC} = \pm 20V$					
Temperature Sensitivity		V _{CM} = 0V	-30	30	- 10	10	μV/° C
		$\pm V_{CC} = \pm 20V, V_{CM} = 0V,$	00	-			
Input Offset Current	I _{IO}	$T_{j} = 25^{\circ}C$	20 20	20	-20 -20	20	pA
		$T_j = 125^{\circ}C$	-20	20	-20	20	nA
		$\pm V_{CC} = \pm 20V, V_{CM} = +15V$					
		T _j = 25°C	-100	3500	-100	3500	рA
		t ≤ 25ms T _j = 125°C	- 10	60	- 10	60	nA
	+1 ₁₈	$\pm V_{CC} = \pm 15V, V_{CM} = +10V$					
Input Bias Current		T _j = 25°C	- 100	300	- 100	300	рA
(Note 1)	-1 _{IB}	t≤25ms T _j =125°C	- 10	50	-10	50	nA
(Note 2)		$\pm V_{CC}$ = $\pm 20 V_{\rm v}$ – 15V $\leq V_{CM} \leq 0 V$					
(Note 3)		T _j = 25°C	-100	100	- 100	100	рA
		t ≤ 25ms T _j ≈ 125°C	- 10	50	- 10	50	nA
Power Supply	+PSRR	$+V_{CC} = 10V, -V_{CC} = -20V$					
Rejection Ratio	-PSRR	$+V_{CC} = 20V_{c} - V_{CC} = -10V$	85		85	-	dE
Input Voltage Common-Mode	CMR	$\pm V_{CC} = \pm 20V$	85		85	_	dB
Rejection (Note 4)		$V_{IN} = \pm 15V$					
Adjustment for	VIO ADJ(+)	$\pm V_{CC} = \pm 20V$	+8		+8	_	
Input Offset Voltage	V _{IO} ADJ (=:	$\pm V_{CC} = \pm 20V$	—	-8	-	-8	۳V
		$\pm V_{CC} = \pm 15V$					
Output Short-Circuit Current	1	t ≤ 25ms	-50		-50	-**	mА
(for Positive Output) (Note 5)	OS(+)	(Short Circuit to Ground)	50		50		1174
							· · · · ·
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$					
(for Negative Output)	1051-1	t ≤ 25ms	-	50	-	50	mA
(Note 5)		(Short Circuit to Ground)					
		$T_A = -55^{\circ}C$	_	11	_	11	
Supply Current	¹ cc	$\pm V_{CC} = \pm 15V, T_A = +25^{\circ}C$	_	7	_	7	mA
		T _A = +125°C	_	7	_	7	
Output Voltage Swing		$\pm V_{GC} = \pm 20V$, R _L = 10k Ω	±16		± 16		
Output Voltage Swing	V _{OP}		± 15		± 15		v
(Maximum)		$\pm V_{CC} = \pm 20V, R_L = 2k\Omega$	± 13		10		
Open-Loop Voltage Gain		$\pm V_{CC} = \pm 20V, V_{OUT} = \pm 15V$					
(Single Ended) (Note 6)	A _{VS(+)}	$R_L = 2k\Omega, T_A = 25^{\circ}C$	50		50	-	V/mV
(ongle Ended) (Note o)	A _{VS(-)}	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	25	-+	25		¥/111V
		$\pm V_{CC} = \pm 5V$					
Open-Loop Voltage Gain	Avs	$R_{\rm L} = 2k\Omega$	10	-	10		V/mV
(Single Ended) (Note 6)		$V_{OUT} = \pm 2V$					¥71/1¥
Transient Response		$\pm V_{CC} = \pm 15V$, $R_{L} = 2k\Omega$, $A_{V} = 1$					
Rise Time	TB (tr)	$C_L = 100 pF$, See Figure 2	-	100	_	100	n
		$V_{IN} = 50 mV$					
		$\pm V_{CC} = \pm 15V, R_{L} = 2k\Omega, A_{V} = 1$					
Transient Response	TR (os)	C _L = 100pF, See Figure 2	-	40	_	40	%
Overshoot	,03/	$V_{IN} = 50 \text{mV}$					
	SR(+)	$V_{IN} = \pm 5V, \pm V_{CC} = \pm 15V$					
Slew Rate	and	A _V = 1, See Figure 2	7.5		**		V/µs
	SR(-)	$T_A = 25^{\circ} C$	7.5		10		•
		T _A = -55°C, +125°C	5		7	—	
	ts(+)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$					
Settling Time	and	$T_A = 25^{\circ} C, A_V = -1$	-	4000	_	4000	ns
Jonnig Thie							


ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 chm; ambient temperature range = -55°C to + 125°C and figure 1, unless otherwise noted. (Continued)

			02 LIMITS		05 LIMITS			
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
Noise (Referred to Input) Broadband	N _J (BB)	$\pm V_{CC} = \pm 20V$, T _A = 25°C Bandwidth = 5kHz		10		10	μV _{rms}	
Noise (Referred to Input) Popcorn	N ₁ (PC)	$\pm V_{CC} = \pm 20V$, T _A = 25° C Bandwidth = 5kHz		40	-	40	μV _{pk}	

NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_j . Measurement of bias current is specified at T_j rather than T_a , since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at $T_A=-55^\circ$ C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

- 3. Negative I_{IB} minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from V_{IO} measurements at V_{CM} = + 15V and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_i(max) ≤ 175°C.
- Because of thermal feedback effects from output to input, open-loop gair is not guaranteed to be linear or positive over the operating range. These requirements, if needed, should be specified by the user in additiona procurement documents.

ORDERING INFORMATION

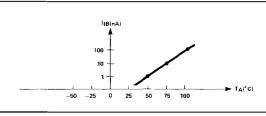
JAN SLASH SHEET	PMI DEVICE
JM38510/11401BGC	PM155J1/38510
JM38510/11401BGA	PM155J5/38510
JM38510/11401BPB	PM155Z2/38510
JM38510/11401BPA	PM155Z5/38510
JM38510/11404BGC	PM155AJ1/38510
JM38510/11404BGA	PM155AJ5/38510
JM38510/11404BPB	PM155AZ2/38510
JM38510/11404BPA	PM155AZ5/38510
JM38510/11402BGC	PM156J1/38510
JM38510/11402BGA	PM156J5/38510
JM38510/11402BPB	PM156Z2/38510
JM38510/11402BPA	PM156Z5/38510
JM38510/11401SGA	PM155SJ5/38510
JM38510/11402SGA	PM156SJ5/38510*
JM38510/11404SGA	PM155SAJ5/38510
JM38510/11405SGA	PM156SAJ5/38510

* Undergoing Part 1 qualification as of 1/90.

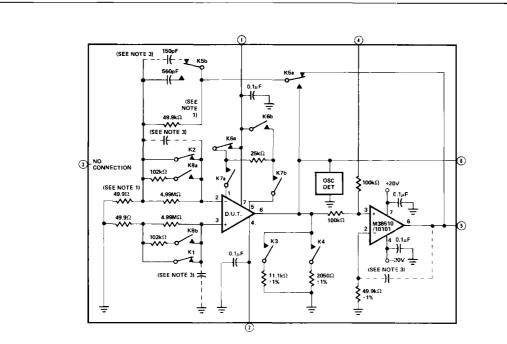
JAN SLASH SHEET	PMI DEVICE
JM38510/11405BGC	PM156AJ1/38510
JM38510/11405BGA	PM156AJ5/38510
JM38510/11405BPB	PM156AZ2/38510
JM38510/11405BPA	PM156AZ5/38510
JM38510/11403BGC	PM157J1/38510
JM38510/11403BGA	PM157J5/38510
M38510/11403BPB	PM157Z2/38510
M38510/11403BPA	PM157Z5/38510
JM38510/11406BGC	PM157AJ1/38510
JM38510/11406BGA	PM157AJ5/38510
M38510/11406BPB	PM157AZ2/38510
JM38510/11406BPA	PM157AZ5/38510

ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted.

			03 LIMITS		06 LI	MITS		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
Input Offset		$\pm V_{CC} = \pm 5V, V_{CM} = 0V$ T _A = 25°C	5	5	-2	2		
Voltage	V _{IO}	$\pm V_{CC} = \pm 20V$ $V_{CM} = \pm 15V, 0V$ $-55^{\circ}C \le T_{A} \le + 125^{\circ}C$	-7	7	-2.5	2.5	mV	
Input Offset Voltage Temperature Sensitivity	_ΔV _{IO} _ ΔT	$ \pm V_{CC} = \pm 20V V_{CM} = 0V $	-30	30	~10	10	μV/°C	
Input Offset Current	i _{IO}	$\pm V_{CC} = \pm 20V, V_{CM} = 0V,$ T _j = 25°C	-20	20	~20	20	рA	
	10	T _j ≈ 125°C	-20	20	-20	20	nA	
		$\pm V_{CC} = \pm 20V, V_{CM} = \pm 15V$ $T_j = 25^{\circ}C$	- 100	3500	- 100	3500	рА	
	+1 _{IB}	$t \le 25ms$ $T_j = 125^{\circ}C$ $\pm V_{CC} = \pm 15V, V_{CM} = +10V$	-10	60	~10	60	nA	
Input Bias Current (Note 1)	~ [‡] 18	$\begin{array}{l} T_{j} = 25^{\circ}C\\ t \leq 25ms \qquad T_{j} = 125^{\circ}C \end{array}$	- 100 10	300 50	100 10	300 50	pA nA	
(Note 2) (Note 3)		$\pm V_{CC} = \pm 20V$, -15V $\leq V_{CM} \leq 0V$ T _j = 25°C	- 100	100	- 100	100	рA	
	····-	$t \le 25ms$ $T_j = 125^{\circ}C$	-10	50	~10	50	nA	
Power Supply Rejection Ratio	+ PSRR - PSRR	$+V_{CC} = 10V, -V_{CC} = -20V$ $+V_{CC} = 20V, -V_{CC} = -10V$	85	-	85	-	dB	
Input Voltage Common-Mode Rejection (Note 4)	CMR		85		85	_	dB	
Adjustment for Input Offset Voltage	V _{IO} ADJ (+) V _{IO} ADJ (-)		+8	 8	+8		٣V	
Output Short-Circuit Current (for Positive Output) (Note 5)	fos(+)	±V _{CC} = ±15V t ≤ 25ms (Short Circuit to Ground)	-50	_	~50	_	mA	
Output Short-Circuit Current (for Negative Output) (Note 5)	I _{OS(-)}	±V _{CC} = ±15V t ≤ 25ms (Short Circuit to Ground)	_	50	_	50	mA	
		T _A = ~55°C		11		11		
Supply Current	Icc	$\pm V_{CC} = \pm 15V, T_A = +25°C$ $T_A = +125°C$	-	7 7	_	7 7	mA	
Output Voltage Swing (Maximum)	V _{OP}	$\pm V_{CC} = \pm 20V, R_{L} = 10k\Omega$ $\pm V_{CC} = \pm 20V, R_{L} = 2k\Omega$	±16 ±15		±16 ±15	-	v	
Open-Loop Voltage Gain (Single Ended) (Note 6)	A _{VS(+)} A _{VS(-)}	$\pm V_{CC} = \pm 20V, V_{OUT} = \pm 15V$ $R_{L} = 2k\Omega, T_{A} = 25^{\circ}C$ $-55^{\circ}C \leq T_{A} \leq \pm 125^{\circ}C$	50 25			_	V/mV	
Open-Loop Voltage Gain (Single Ended) (Note 6)	Avs	$\frac{55 \text{ C} \pm 125 \text{ C}}{\pm \text{V}_{CC} = \pm 5\text{V}}$ $R_{L} = 2k\Omega$ $V_{OUT} = \pm 2\text{V}$	10		10		V/mV	

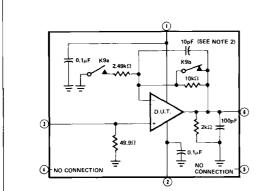

ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted. (Continued)

PARAMETER	SYMBOL	CONDITIONS	03 LIMITS		06 LIMITS		
			MIN	MAX	MIN	MAX	UNITS
Transient Response Rise Time	TR _(tr)	$\pm V_{CC} = \pm 15V$, $R_{\perp} = 2k\Omega$, $A_V = 5$ $C_{\perp} = 100 pF$, See Figure 2 $V_{IN} = 50 mV$		450	_	450	ns
Transient Response Overshoot	TR _(os)	$\pm V_{CC} = \pm 15V$, $R_{\perp} = 2k\Omega$, $A_{V} = 5$ $C_{\perp} = 100 pF$, See Figure 2 $V_{IN} = 50 mV$	_	25	_	25	%
Slew Rate	SR(+) and SR(-)	$\begin{split} V_{iN} &= \pm 1V, \pm V_{CC} = \pm 15V \\ A_V &= 5, \text{See Figure 2} \\ T_A &= 25^\circ \text{C} \\ T_A &= -55^\circ \text{C}, + 125^\circ \text{C} \end{split}$	30 20	-	40 25	_ _	V/µs
Settling Time	ts(+) and ts(-)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$ T _A = 25° C, A _V = -5 See Figure 3		800	~	800	ns
Noise (Referred to Input) Broadband	N _I (BB)	$\pm V_{CC} = \pm 20V$, T _A = 25°C Bandwidth = 5kHz	_	10	_	10	μV _{rms}
Noise (Referred to Input) Popcorn	N _I (PC)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ}C$ Bandwidth = 5kHz	-	40	_	40	μV _{pk}


NOTES:

- 1. Bias currents are actually junction leakage currents which double approximately) for each 10°C increase in junction temperature T₁. Measurement of bias current is specified at T₁ rather than T_A, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T_A = -55°C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

- Negative I_{IB} minimum limits reflect the characteristics of device with bia current compensation.
- 4. CMR is calculated from V_{IO} measurements at V_{CM} = +15V and -15V.
- Continuous limits shall be considerably lower. Protection for shorts t either supply exists providing that T₁(max) ≤ 175°C.
- Because of thermal feedback effects from output to input, open-loop gai is not guaranteed to be linear or positive over the operating range. Thes requirements, if needed, should be specified by the user in additiona procurement documents.


NOTES:

- All resistors are ±0.1% tolerance and all capacitors are ±10% tolerance, unless otherwise specified.
- 2. Precautions shall be taken to prevent damage to the D.U.T. during insertion into socket and change of state of relays (i.e. disable voltage supplies, current limit $\pm V_{CC}$, etc.).
- 3. Compensation capacitors should be added as required for test circuit stability. Two general methods for stability compensation exist. One method is with a capacitor for nulling amp feedback. The other method is with a capacitor in parallel with the 49.9kΩ closedloop feedback resistor. Both methods should not be used simultaneously. Proper wiring procedures shall be followed to prevent unwanted coupling and oscillations, etc. Loop response and

settling time shall be consistent with the test rate such that any value has settled for at least five loop time constants before the value is measured.

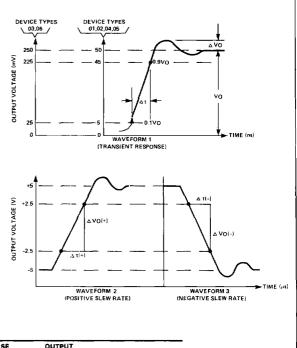
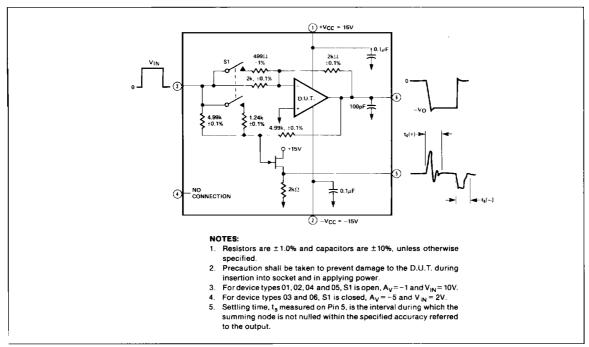
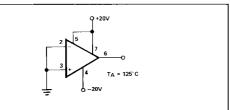

- Adequate settling time should be allowed such that each parameter has settled to within 5% of its final value.
- 5. All relays are shown in the normal de-energized state.
- The nulling amplifier shall be a M38510/10101XXX. Saturation of the nulling amplifier is not allowed on tests where the E (Pin 5) value is measured.
- 7. The load resistors 2050 Ω and 11.1k Ω yield effective load resistances of 2k Ω and 10k Ω respectively.
- Any oscillation greater than 300mV in amplitude (peak-to-peak) shall be cause for device failure.

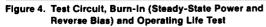
Figure 1. Test Circuit for Static Tests

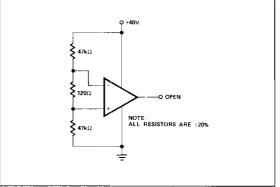

NOTES:

- 1. Resistors are \pm 1.0% tolerance and capacitors are \pm 10% tolerance.
- 2. This capacitance includes the actual measured value with stray and wire capacitance.
- 3. Precautions shall be taken to prevent damage to the D.U.T. during insertion into socket and in applying power.

PARAMETER SYMBOL	DEVICE TYPE	INPUT PULSE SIGNAL AT t _r ≤ 50ns	OUTPUT PULSE SIGNAL	EQUATION		
TR (t _r)	ALL	+50mV	WAVEFORM 1	TH $(t_r) = \Delta t$		
TR (OS)	ALL	+ 50mV	WAVEFORM 1	TR $(O_S) = 100 (\Delta V_O/V_O) \%$		
SR (+)	01, 02, 04, 05 03, 06	-5V to +5V STEP -1V to +1V STEP	WAVEFORM 2 WAVEFORM 2	$SR(+) = \Delta V_O(+) / \Delta t(+)$		
SR (-)	01, 02, 04, 05 03, 06	+5V to -5V STEP -1V to +1V STEP	WAVEFORM 3 WAVEFORM 3	$SR(-) = \Delta V_O(-)/\Delta t(-)$		


Figure 2. Test Circuit for Transient Response and Slew Rate.





BURN-IN

Devices supplied by PMI have been subjected to burn-in per Method 1015 of MIL-STD-883 using test condition C with circuit shown on Figure 4 or test condition F using circuit shown on Figure 5.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7