LT1 122

feATURES

- 100\% Tested Settling Time to 1 mV at Sum Node, 10 V Step
Tested with Fixed Feedback Capacitor
- Slew Rate
- Gain-Bandwidth Product
- Power Bandwidth (20VP-p)
- Unity-Gain Stable; Phase Margin
- Input Offset Voltage
- Input Bias Current
- Input Offset Current
- Low Distortion

APPLICATIONS

- Fast 12-Bit D/A Output Amplifiers
- High Speed Buffers
- Fast Sample-and-Hold Amplifiers
- High Speed Integrators
- Voltage to Frequency Converters
- Active Filters
- Log Amplifiers
- Peak Detectors
$25^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$

DESCRIPTIOn

340ns Typ 540ns Max

60V/us Min 14 MHz 1.2 MHz 60° $600 \mu \mathrm{~V}$ Max 75pA Max 600pA Max
40pA Max
150pA Max

It slews at $80 \mathrm{~V} /$ us and settles in 340 ns. The LT1122 is internally compensated to be unity-gain stable, yet it has a bandwidth of 14 MHz at a supply current of only 7 mA . Its speed makes the LT1122 an ideal choice for fast settling 12-bit data conversion and acquisition systems.
The LT1122 offset voltage of $120 \mu \mathrm{~V}$, and voltage gain of 500,000 also support the 12-bit accurate applications.
The input bias current of 10pA and offset current of 4 pA combined with its speed allow the LT1122 to be used in such applications as high speed sample and hold amplifiers, peak detectors, and integrators.
$\overline{\boldsymbol{G T}}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

[^0]Large-Scale Response

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ... $\pm 20 \mathrm{~V}$	Operating Temperature Range
Differential Input Voltage 40 V	LT1122AM/BM/CM/DM (OBSOLETE).. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage.. 20 V	LT1122AC/BC/CC/DC/CS/DS $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Output Short Circuit Duration Indefinite	Storage Temperature Range
Lead Temperature (Soldering, 10 sec.$)$................ $300^{\circ} \mathrm{C}$	All Devices $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

pIn COnfiguration

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1122ACN8\#PBF	LT1122ACN8\#TRPBF	LT1122ACN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122BCN8\#PBF	LT1122BCN8\#TRPBF	LT1122BCN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122CCN8\#PBF	LT1122CCN8\#TRPBF	LT1122CCN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122DCN8\#PBF	LT1122DCN8\#TRPBF	LT1122DCN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122CS8\#PBF	LT1122CS8\#TRPBF	1122C	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122DS8\#PBF	LT1122DS8\#TRPBF	1122D	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
OBSOLETE PACKAGE				
LT1122AMJ8\#PBF	LT1122AMJ8\#TRPBF	LT1122AMJ8	8-Lead Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1122BMJ8\#PBF	LT1122BMJ8\#TRPBF	LT1122BMJ8	8-Lead Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1122CMJ8\#PBF	LT1122CMJ8\#TRPBF	LT1122CMJ8	8-Lead Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1122DMJ8\#PBF	LT1122DMJ8\#TRPBF	LT1122DMJ8	8-Lead Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1122ACJ8\#PBF	LT1122ACJ8\#TRPBF	LT1122ACJ8	8-Lead Hermetic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122BCJ8\#PBF	LT1122BCJ8\#TRPBF	LT1122BCJ8	8-Lead Hermetic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122CCJ8\#PBF	LT1122CCJ8\#TRPBF	LT1122CCJ8	8-Lead Hermetic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1122DCJ8\#PBF	LT1122DCJ8\#TRPBF	LT1122DCJ8	8-Lead Hermetic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part markings, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS	LT1122AM/BM LT1122AC/BC			LT1122CM/DM LT1122CC/DC LT1122CS/DS			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{0 S}$	Input Offset Voltage			120	600		130	900	$\mu \mathrm{V}$
Ios	Input Offset Current			4	40		5	50	pA
I_{B}	Input Bias Current			10	75		12	100	pA
	Input Resistance Differential Common Mode	$\begin{aligned} & V_{C M}=-10 \mathrm{~V} \text { to } 8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=8 \mathrm{~V} \text { to } 11 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10^{12} \\ & 10^{12} \\ & 10^{11} \\ & \hline \end{aligned}$			$\begin{aligned} & 10^{12} \\ & 10^{12} \\ & 10^{11} \end{aligned}$		Ω Ω Ω
	Input Capacitance			4			4		pF
SR	Slew Rate	$A_{V}=-1$	60	80		50	75		$\mathrm{V} / \mathrm{\mu s}$
	Settling Time (Note 2)	10 V to $0 \mathrm{~V},-10 \mathrm{~V}$ to 0 V 100% Tested: A- and C-Grades to 1 mV at Sum Node B- and D-Grades to 1 mV at Sum Node All Grades to 0.5 mV at Sum Node		$\begin{aligned} & 340 \\ & 350 \\ & 450 \end{aligned}$	540		$\begin{aligned} & 350 \\ & 360 \\ & 470 \end{aligned}$	590	ns ns ns
GBW	Gain-Bandwidth Product Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\text {P-P }}$		$\begin{aligned} & 14 \\ & 1.2 \end{aligned}$			$\begin{aligned} & \hline 13 \\ & 1.1 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\begin{aligned} & 180 \\ & 130 \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$		$\begin{aligned} & 150 \\ & 110 \end{aligned}$	$\begin{aligned} & 450 \\ & 220 \end{aligned}$		V / mV V / mV
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 10 \mathrm{~V}$	83	99		80	98		dB
	Input Voltage Range	(Note 4)	± 10.5	± 11		± 10.5	± 11		V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	86	103		82	101		dB
	Input Noise Voltage	0.1 Hz to 10 Hz		3.0			3.3		$\mu \mathrm{V}_{\text {P-P }}$
	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}_{0}=100 \mathrm{~Hz} \\ & \mathrm{f}_{0}=10 \mathrm{kHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 14 \end{aligned}$			$\begin{aligned} & 27 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Input Noise Current Density	$\mathrm{f}_{0}=100 \mathrm{~Hz}, \mathrm{f}_{0}=10 \mathrm{kHz}$		2			2		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
V OUT	Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\begin{gathered} \pm 12 \\ \pm 11.5 \end{gathered}$	$\begin{gathered} \pm 12.5 \\ \pm 12 \end{gathered}$		$\begin{gathered} \pm 12 \\ \pm 11.5 \end{gathered}$	$\begin{gathered} \pm 12.5 \\ \pm 12 \end{gathered}$		V
IS	Supply Current			7.5	10		7.8	11	mA
	Minimum Supply Voltage	(Note 5)	± 5			± 5			V
	Offset Adjustment Range	RPOT $\geq 10 \mathrm{k}$, Wiper to V^{+}	± 4	± 10		± 4	± 10		mV

LT1 122

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		LT1122AC/BC			LT1122CC/DC LT1122CS/DS			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
V ${ }_{\text {OS }}$	Input Offset Voltage		\bullet		350	1400		400	2000	$\mu \mathrm{V}$
	Average Temperature Coefficient of Input Offset Voltage		\bullet		5	18		6	25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		\bullet		12	150		15	200	pA
IB	Input Bias Current		\bullet		80	600		90	800	pA
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	\bullet	120	380		100	340		V / mV
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	\bullet	82	98		78	96		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$	\bullet	84	101		80	99		dB
	Input Voltage Range		\bullet	± 10	± 10.8		± 10	± 10.8		V
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	\bullet	± 11.5	± 12.4		± 11.5	± 12.4		V
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=-1$	\bullet	50	70		40	65		V / LS

The odenotes the specifications which apply over the full operating temperature range, otherwise specifications are at $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		LT1122AM/BM			LT1122CS/DS			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		\bullet		650	2400		800	3400	$\mu \mathrm{V}$
	Average Temperature Coefficient of Input Offset Voltage		\bullet		6	18		7	25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		\bullet		0.5	6		0.6	9	nA
I_{B}	Input Bias Current		\bullet		6	25		7	35	nA
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	\bullet	70	230		60	200		V / mV
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 10 \mathrm{~V}$	\bullet	80	97		76	94		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$	\bullet	83	100		78	98		dB
	Input Voltage Range		\bullet	± 10	± 10.5		± 10	± 10.5		V
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$,	\bullet	± 11.3	± 12.1		± 11.3	± 12.1		V
SR	Slew Rate	$A_{V}=-1$	\bullet	45	60		35	55		$\mathrm{V} / \mathrm{\mu s}$

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications
are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$. (Note 6)

SYMBOL	PARAMETER	CONDITIONS		LT1122AM/BM			LT1122CS/DS			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		\bullet		450	1900		500	2700	$\mu \mathrm{V}$
	Average Temperature Coefficient of Input Offset Voltage		\bullet		6	20		7	28	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
10 S	Input Offset Current		\bullet		30	600		40	900	pA
I_{B}	Input Bias Current		\bullet		230	2000		260	2700	pA
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	\bullet	95	340		80	300		V / mV
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 10 \mathrm{~V}$	\bullet	80	98		76	96		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$	\bullet	83	100		78	98		dB
	Input Voltage Range		\bullet	± 10	± 10.6		± 10	± 10.6		V
V OUT	Output Voltage Swing		\bullet	± 11.3	± 12.2		± 11.3	± 12.2		V
SR	Slew Rate	$\mathrm{A}_{V}=-1$	\bullet	45	60		35	60		$\mathrm{V} / \mathrm{\mu s}$
										1122fb
4		For more information	T11						K	EAR^{2}

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LT1122 is measured in an automated tester in less than one second after application of power. Depending on the package used, power dissipation, heat sinking, and air flow conditions, the fully warmed up chip temperature can be $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ higher than the ambient temperature.
Note 3: Settling time is 100% tested for $\mathrm{A}-$ and C -grades using the settling time test circuit shown. This test is not included in quality assurance sample testing.

Note 4: Input voltage range functionality is assured by testing offset voltage at the input voltage range limits to a maximum of 4 mV (A, B grades), to 5.7 mV (C, D grades).
Note 5: Minimum supply voltage is tested by measuring offset voltage to 7 mV maximum at $\pm 5 \mathrm{~V}$ supplies.
Note 6: The LT1122 is not tested and not quality-assurance-sampled at $-40^{\circ} \mathrm{C}$ and at $85^{\circ} \mathrm{C}$. These specifications are guaranteed by design, correlation and/or inference from $-55^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ and/or $125^{\circ} \mathrm{C}$ tests.

Settling Time Test Fixture

TYPICAL PERFORMANCE CHARACTERISTICS

Settling Time
(Input from OV to -10V)

Settling Time
(Input from 10V to OV)

100ns/DIV

Large-Signal Response

Settling Time
(Input from OV to 10V)

100ns/DIV

Undistorted Output Swing

 vs Frequency

1122 TPC01

Gain, Phase vs Frequency

1122 TPC04

TYPICAL PERFORMANCE CHARACTERISTICS

TIME AFTER POWER ON (MINUTES)

Total Harmonic Distortion + Noise

 vs Frequency Inverting Gain

Input Bias and Offset Currents
Over Temperature

1122 TPC06

Noise Spectrum

FREQUENCY (Hz)
1122 TPC09
Total Harmonic Distortion + Noise vs Frequency Noninverting Gain

1122 TPC11

1122 TPC07

0.1 Hz to 10 Hz Noise

1122 TPC10
Intermodulation Distortion
(CCIF Method) vs Frequency
LT1122 and LF156*

*SEE LT1115 DATA SHEET FOR DEFINITION OF CCIF TESTING

APPLICATIONS INFORMATION

Settling Time Measurements

Settling time test circuits shown on some competitive devices' data sheets require:

1. A "flat top" pulse generator. Unfortunately, flattop pulse generators are not commercially available.
2. A variable feedback capacitor around the device under test. This capacitor varies over a four-to-one range. Presumably, as each op amp is measured for settling time, the capacitor is fine tuned to optimize settling time for that particular device.
3. A small inductor load to optimize settling.

The LT1122's settling time is 100\% tested in the test circuit shown. No "flat top" pulse generator is required. The test circuit can be readily constructed, using commercially available ICs. Of course, standard high frequency board construction techniques should be followed. All LT1122s are measured with a constant feedback capacitor. No fine tuning is required.

Speed Boost/Overcompensation Terminal

Pin 8 of the LT1122 can be used to change the input stage operating current of the device. Shorting Pin 8 to the positive supply (Pin 7) increases slew rate and bandwidth by about 25%, but at the expense of a reduction in phase margin by approximately 18 degrees. Unity-gain capacitive load handling decreases from typically 500pF to 100pF.

Conversely, connecting a 15 k resistor from Pin 8 to ground pulls 1 mA out of Pin 8 (with $\mathrm{V}^{+}=15 \mathrm{~V}$). This reduces slew rate and bandwidth by 25%. Phase margin and capacitive load handling improve; the latter typically increasing to 800pF.

High Speed Operation

As with most high speed amplifiers, care should be taken with supply decoupling, lead dress and component placement.

The power supply connections to the LT1122 must maintain a low impedance to ground over a bandwidth of 20 MHz . This is especially important when driving a significant resistive or capacitive load, since all current delivered to the load comes from the power supplies. Multiple high quality bypass capacitors are recommended for each power supply line in any critical application. A $0.1 \mu \mathrm{~F}$ ceramic and a $1 \mu \mathrm{~F}$ electrolytic capacitor, as shown, placed as close as possible to the amplifier (with short lead lengths to power supply common) will assure adequate high frequency bypassing, in most applications.

When the feedback around the op amp is resistive (R_{F}), a pole will be created with R_{F}, the source resistance and capacitance ($\mathrm{R}_{\mathrm{S}}, \mathrm{C}_{\mathrm{S}}$), and the amplifier input capacitance ($\mathrm{C}_{\mathrm{IN}} \approx 4 \mathrm{pF}$). In low closed-loop gain configurations and with R_{S} and R_{F} in the kilohm range, this pole can create excess phase shift and even oscillation. A small capacitor $\left(C_{F}\right)$ in parallel with R_{F} eliminates this problem. With $R_{S}\left(C_{S}+C_{I N}\right)=R_{F} C_{F}$, the effect of the feedback pole is completely removed.

TYPICAL APPLICATIONS

Quartz Stabilized Oscillator With 9ppm Distortion

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

N Package

8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510 Rev I)

NOTE:
NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

J8 Package

3-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610 Rev G)

REVISIO HISTORY (Revision history begins at Rev B)

REV	DATE	DESCRIPTION	PAGE NUMBER
B	$02 / 14$	Updated data sheet to current standards. New Order Information Table, Package Descriptions	$2,10-12$

TYPICAL APPLICATION

Wide-Band, Filtered, Full Wave Rectifier

OUTPUT DC = RMS VALUE OF INPUT
BANDWIDTH WITH $10 \mathrm{~V}_{\text {P-P }}$ INPUT $=2 \mathrm{MHz}$

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1022	High Speed Precision JFET Op Amp	$23 \mathrm{~V} / \mu \mathrm{s}$ Min Slew Rate, $250 \mu \mathrm{~V} \mathrm{~V}_{\text {OS }}$
LT1055/LT1056	Precision High Speed JFET Op Amps	$16 \mathrm{~V} / \mu$ s Slew Rate, $150 \mu \mathrm{~V} \mathrm{~V}_{\text {OS }}$
LT1464	1 MHz C-LoadTM Stable JFET Op Amp	Capacitive Loads Up to 10 nF
LTC $^{\oplus} 6244$	50 MHz Low Noise CMOS Op Amp	1 1pA I $\mathrm{I}_{\mathrm{B}}, 100 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 S}, 1.5 \mu \mathrm{~V}_{\mathrm{p}-\mathrm{p}, 0.1 \mathrm{~Hz}}$ to 10 Hz Noise

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR

[^0]: 12-BIT CURRENT OUTPUT D/A CONVERTER
 $\mathrm{C}_{\mathrm{F}}=5 \mathrm{pF}$ T0 17pF
 (DEPENDING ON D/A CONVERTER USED)

