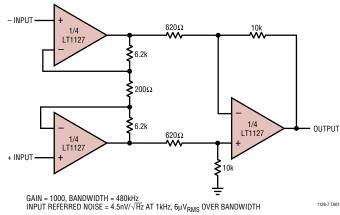


LT1126/LT1127

GY Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps

FEATURES


- 100% Tested Low Voltage Noise: 2.7nV/√Hz Typ, 4.2nV/√Hz Max
- Slew Rate: 11V/µs Typ
- Gain-Bandwidth Product: 65MHz Typ
- Offset Voltage, Prime Grade: 70µV Max Low Grade: 100µV Max
- High Voltage Gain: 5 Million Min
- Supply Current Per Amplifier: 3.1mA Max
- Common Mode Rejection: 112dB Min
- Power Supply Rejection: 116dB Min
- Available in 8-Lead SOIC, 8-Lead DIP, 16-Lead SO and 14-Lead DIP Packages

APPLICATIONS

- Two and Three Op Amp Instrumentation Amplifiers
- Low Noise Signal Processing
- Active Filters
- Microvolt Accuracy Threshold Detection
- Strain Gauge Amplifiers
- Direct Coupled Audio Gain Stages
- Tape Head Preamplifiers
- Microphone Preamplifiers
- Accelerometer Amplifiers
- Infrared Detectors

TYPICAL APPLICATION

Low Noise, Wide Bandwidth Instrumentation Amplifier


DESCRIPTION

The LT[®]1126 dual and LT1127 quad are high performance, decompensated op amps that offer higher slew rate and bandwidth than the LT1124 dual and the LT1125 quad operational amplifiers. The enhanced AC performance is available without degrading DC specs of the LT1124/LT1125. Both LT1126/LT1127 are stable in a gain of 10 or more.

In the design, processing and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Slew rate, gain-bandwidth and 1kHz noise are 100% tested for each individual amplifier. Consequently, the specifications of even the lowest cost grades (the LT1126C and the LT1127C) have been enhanced.

Power consumption of the dual LT1126 is less than one half of two OP-37s. Low power and high performance in an 8-pin SO package makes the LT1126 a first choice for surface mounted systems and where board space is restricted.

T, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 4775884, 4837496.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±22V
Input Voltage	. Equal to Supply Voltage
Output Short Circuit Duration	Indefinite
Differential Input Current (Note	5)±25mA
Lead Temperature (Soldering, 1	0 sec.)

Operating Temperature Range
LT1126AM/LT1126M
LT1127AM/LT1127M (OBSOLETE)55°C to 125°C
LT1126AC/LT1126C
LT1127AC/LT1127C40°C to 85°C
Storage Temperature Range
All Grades –65°C to 150°C

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER	TOP VIEW OUT A 1 -IN A 2 -IN A 2 -IN A 2	ORDER PART NUMBER
V ⁻ 2 +IN B 3 -IN B 4 -IN B 3 -IN B 4 -IN B 3 -IN B	LT1126CS8	+IN A 3 V ⁻ 4 NB PACKAGE	LT1126ACN8 LT1126CN8
S8 PACKAGE 8-LEAD PLASTIC S0	S8 PART MARKING	8-LEAD PDIP T _{JMAX} = 140°C, θ _{JA} = 130°C	
$T_{JMAX} = 140^{\circ}C, \theta_{JA} = 190^{\circ}C/W$ NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE 8-PIN PDIP CONFIGURATION. INSTEAD, IT FOLLOWS THE INDUSTRY STANDARD LT1013DS8 SO PACKAGE PIN LOCATIONS	1126	J8 PACKAGE 8-LEAD CERAMIC DIP $T_{JMAX} = 160^{\circ}C, \theta_{JA} = 100^{\circ}C/W$ OBSOLETE PACKAGE Consider the N8 for Alternate Source	LT1126AMJ8 LT1126MJ8 LT1126CJ8
TOP VIEW OUT A 1 -IN A 2 +IN A 3 $V^+ 4$ +IN B 5 -IN B 6 OUT B 7 NC 8 SW PACKAGE 16 OUT D 15 -IN D 14 +IN D V^- $13 V^-$ 12 +IN C 11 -IN C 0 UT C 9 NC SW PACKAGE 16 -LEAD PLASTIC SO WIDE $T_{IMAX} = 140^{\circ}C, \theta_{IA} = 130^{\circ}C/W$	LT1127CSW	TOP VIEW OUT A 1 -IN A 2 +IN A 3 +IN A 3 V^+ 4 +IN B 5 -IN B 6 OUT B 7 -IN C OUT B 7 -IN C -IN C -	LT1127ACN LT1127CN
1JMAX - 140 0, 0JA - 130 0/W		J PACKAGE 14-LEAD CERAMIC DIP $T_{JMAX} = 160^{\circ}C, \theta_{JA} = 80^{\circ}C/W$ OBSOLETE PACKAGE Consider the N for Alternate Source	LT1127AMJ LT1127MJ LT1127CJ
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel Lead Free Part Marking: http://www.linear.com/			1

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $v_8 = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS (Note 2)		T1126AN T1127AN Typ	//AC //AC Max		.T1126M .T1127M .TYP		UNITS
						IVIIIN			
V _{OS}	Input Offset Voltage	LT1126 LT1127		20 25	70 90		25 30	100 140	μV μV
ΔV _{OS}	Long Term Input Offset			0.3	50		0.3	140	μν μV/Mo
Δ Time	Voltage Stability								
I _{OS}	Input Offset Current	LT1126		5	15		6	20	nA
		LT1127		6	20		7	30	nA
I _B	Input Bias Current			±7	± 20		± 8	± 30	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz (Notes 8, 9)		70	200		70		nVp-p
	Input Noise Voltage Density	f ₀ = 10Hz (Note 5)		3.0	5.5		3.0	5.5	nV/√Hz
		f ₀ = 1000Hz (Note 3)		2.7	4.2		2.7	4.2	nV/√Hz
i _n	Input Noise Current Density	f ₀ = 10Hz		1.3			1.3		pA/√Hz
		f ₀ = 1000Hz		0.3			0.3		pA/√Hz
V _{CM}	Input Voltage Range		± 12.0	±12.8		± 12.0	± 12.8		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12V$	112	126		106	124		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 4 V$ to $\pm 18 V$	116	126		110	124		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 10k\Omega$, $V_0 = \pm 10V$	5.0	17.0		3.0	15.0		V/µV
-		$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	2.0	4.0		1.5	3.0		V/µV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	± 13.0	± 13.8		± 12.5	±13.8		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Notes 3, 7)	8.0	11		8.0	11		V/µs
GBW	Gain-Bandwidth Product	f ₀ = 10kHz (Note 3)	45	65		45	65		MHz
Z ₀	Open Loop Output Resistance	$V_0 = 0, I_0 = 0$		75			75		Ω
Is	Supply Current Per Amplifier			2.6	3.1		2.6	3.1	mA
	Channel Separation	$ \begin{array}{l} f \leq 10 \text{Hz} \; (\text{Note 9}) \\ \text{V}_0 = \pm 10 \text{V}, \; \text{R}_L = 2 k \Omega \end{array} $	134	150		130	150		dB

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at V_S = ±15V, $-55^{\circ}C \leq T_A \leq 125^{\circ}C$, unless otherwise noted.

				LT1126AM LT1127AM			LT1126 LT1127			
SYMBOL	PARAMETER	CONDITIONS (Note 1)		MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1126			50	170		60	250	μV
		LT1127			55	190		70	290	μV
ΔV_{OS}	Average Input Offset Voltage Drift	(Note 5)			0.3	1.0		0.4	1.5	μV/°C
$\Delta Temp$										
l _{os}	Input Offset Current	LT1126			18	45		20	60	nA
		LT1127			18	55		20	70	nA
Ι _Β	Input Bias Current			:	±18	± 55		± 20	±70	nA
V _{CM}	Input Voltage Range			±11.3	± 12		± 11.3	±12		V
CMRR	Common Mode Rejection Ratio	V _{CM} = ±11.3V		106	122		100	120		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 4 V \text{ to } \pm 18 V$	•	110	122		104	120		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 10k\Omega, V_0 = \pm 10V$		3.0	10.0		2.0	10.0		V/µV
		$R_L \ge 2k\Omega, V_0 = \pm 10V$		1.0	3.0		0.7	2.0		V/µV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	•	± 12.5	± 13.6		± 12.0	± 13.6		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Notes 3, 7)		7.2	10		7.0	10		V/µs
I _S	Supply Current Per Amplifier		•		2.8	3.5		2.8	3.5	mA

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at V_S = $\pm 15V$, 0°C $\leq T_A \leq 70$ °C, unless otherwise noted.

				LT1126AC LT1127AC		LT1126C LT1127C		-		
SYMBOL	PARAMETER	CONDITIONS (Note 2)		MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1126 LT1127	•		35 40	120 140		45 50	170 210	μV μV
$\Delta V_{OS}/\Delta T$	Average Input Offset Voltage Drift	(Note 5)			0.3	1.0		0.4	1.5	μV/°C
I _{OS}	Input Offset Current	LT1126 LT1127	•		6 7	25 35		7 8	35 45	nA nA
I _B	Input Bias Current				±8	±35		±9	±45	nA
V _{CM}	Input Voltage Range			±11.5	± 12.4		±11.5	±12.4		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11.5V$		109	125		102	122		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 4V$ to $\pm 18V$		112	125		107	122		dB
A _{VOL}	Large Signal Voltage Gain	$\begin{array}{l} R_L \geq 10 k\Omega, V_0 = \pm 10 V \\ R_L \geq 2 k\Omega, V_0 = \pm 10 V \end{array}$	•	4.0 1.5	15.0 3.5		2.5 1.0	14.0 2.5		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$		±12.5	±13.7		±12.0	±13.7		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Notes 3, 7)		7.5	10.5		7.3	10.5		V/µs
ls	Supply Current Per Amplifier				2.7	3.3		2.7	3.3	mA

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at V_S = ±15V, -40°C \leq T_A \leq 85°C, unless otherwise noted. (Note 10)

SYMBOL	PARAMETER	CONDITIONS (Note 2)			LT1126 LT1127 TYP	-	MIN	LT1126 LT1127 TYP	-	UNITS
V _{OS}	Input Offset Voltage	LT1126 LT1127	•		40 45	140 160		50 55	200 240	μV μV
$\Delta V_{OS}/\Delta T$	Average Input Offset Voltage Drift	(Note 5)			0.3	1.0		0.4	1.5	μV/°C
I _{OS}	Input Offset Current	LT1126 LT1127	•		15 15	40 50		17 17	55 65	nA nA
I _B	Input Bias Current				±15	±50		±17	±65	nA
V _{CM}	Input Voltage Range			±11.4	±12.2		±11.4	±12.2		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11.4V$		107	124		101	121		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 4V$ to $\pm 18V$		111	124		106	121		dB
A _{VOL}	Large Signal Voltage Gain	$\begin{array}{l} R_L \geq 10 k \Omega, V_0 = \pm 10 V \\ R_L \geq 2 k \Omega, V_0 = \pm 10 V \end{array}$	•	3.5 1.2	12.0 3.2		2.2 0.8	12.0 2.3		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$		± 12.5	± 13.6		±12.0	±13.6		V
SR	Slew Rate	$R_L \ge 2k\Omega$ (Note 7)		7.3	10.2		7.1	10.2		V/µs
I _S	Supply Current Per Amplifier				2.8	3.4		2.8	3.4	mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1127s (or 100 LT1126s) typically 240 op amps (or 120) will be better than the indicated specification.

Note 3: This parameter is 100% tested for each individual amplifier.

Note 4: This parameter is sample tested only.

Note 5: This parameter is not 100% tested.

Note 6: The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds $\pm 1.4V$, the input current should be limited to 25mA.

Note 7: Slew rate is measured in A_V = –10; input signal is $\pm 1V,$ output measured at $\pm 5V.$

Note 8: 0.1Hz to 10Hz noise can be inferred from the 10Hz noise voltage density test. See the test circuit and frequency response curve for 0.1Hz to 10Hz tester in the Applications Information section of the LT1007 or LT1028 datasheets.

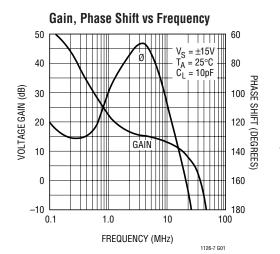
Note 9: This parameter is guaranteed but not tested.

Note 10: The LT1126/LT1127 are designed, characterized and expected to meet these extended temperature limits, but are not tested at -40° C and at 85°C. Guaranteed I grade parts are available. Consult factory.

TYPICAL PERFORMANCE CHARACTERISTICS

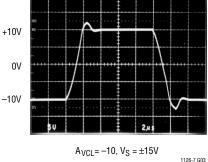
The typical behavior of many LT1126/LT1127 parameters is identical to the LT1124/LT1125. Please refer to the LT1124/LT1125 data sheet for the following performance characteristics:

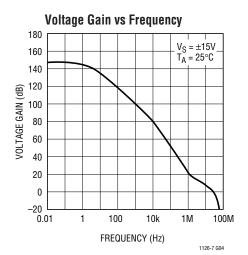
0.1Hz to 10Hz Voltage Noise 0.01Hz to 1Hz Voltage Noise **Current Noise vs Frequency** Input Bias or Offset Current vs Temperature **Output Short Circuit Current vs Time**

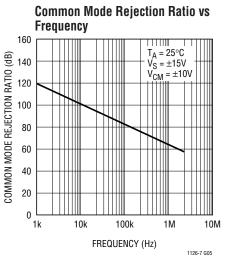

Input Bias Current Over the Common Mode Range Voltage Gain vs Temperature Input Offset Voltage Drift Distribution **Offset Voltage Drift with Temperature of Representative** Units **Output Voltage Swing vs Load Current**

Common Mode Limit vs Temperature

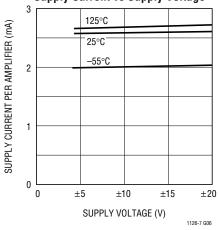
Channel Separation vs Frequency

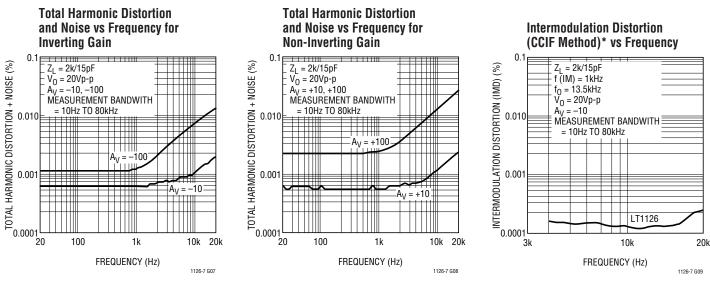

Warm-Up Drift


Power Supply Rejection Ratio vs Frequency



Small-Signal Transient Response 50mV 0mV -50mV A_{VCL} = -10, V_S = \pm 15V OR \pm 5V C_L = 15pF 1126-7 G02




Supply Current vs Supply Voltage

*See LT1115 data sheet for definition of CCIF testing

TYPICAL PERFORMANCE CHARACTERISTICS

*See LT1115 data sheet for definition of CCIF testing

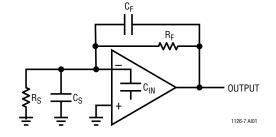
APPLICATIONS INFORMATION

Matching Specifications

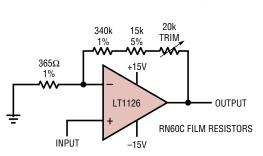
In many applications the performance of a system depends on the matching between two op amps, rather than the individual characteristics of the two devices. The three op amp instrumentation amplifier configuration shown in this data sheet is an example. Matching characteristics are not 100% tested on the LT1126/LT1127. Some specifications are guaranteed by definition. For example, $70\mu V$ maximum offset voltage implies that mismatch cannot be more than $140\mu V$. 112dB (= $2.5\mu V/V$) CMRR means that worst case CMRR match is 106dB ($5\mu V/V$). However, the following table can be used to estimate the expected matching performance between the two sides of the LT1126, and between amplifiers A and D, and between amplifiers B and C of the LT1127.

			SAM/AC 7am/ac		26M/C 27M/C	
PARAMETER		50% YIELD	98% YIELD	50% YIELD	98% YIELD	UNITS
V_{0S} Match, ΔV_{0S}	LT1126 LT1127	20 30	110 150	30 50	130 180	μV μV
Temperature Coeffi	cient Match	0.35	1.0	0.5	1.5	μV/°C
Average Non-Invert	ing I _B	6	18	7	25	nA
Match of Non-Inver	ting I _B	7	22	8	30	nA
CMRR Match		126	115	123	112	dB
PSRR Match		127	118	127	114	dB

Expected Match

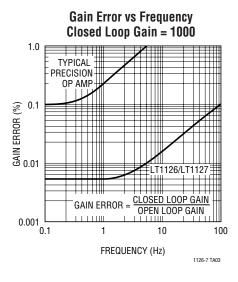


APPLICATIONS INFORMATION

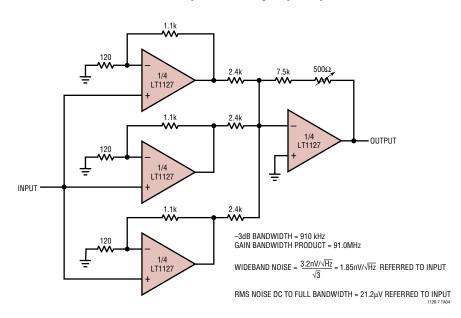

High Speed Operation

When the feedback around the op amp is resistive (R_F), a pole will be created with R_F, the source resistance and capacitance (R_S, C_S), and the amplifier input capacitance (C_{IN} \approx 2pF). In low closed loop gain configurations and

with R_S and R_F in the kilohm range, this pole can create excess phase shift and even oscillation. A small capacitor (C_F) in parallel with R_F eliminates this problem. With R_S ($C_S + C_{IN}$) = $R_F C_F$, the effect of the feedback pole is completely removed.

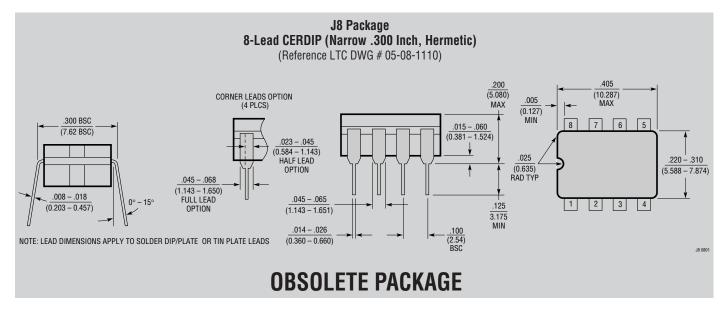


TYPICAL APPLICATIONS



Gain 1000 Amplifier with 0.01% Accuracy, DC to 5Hz

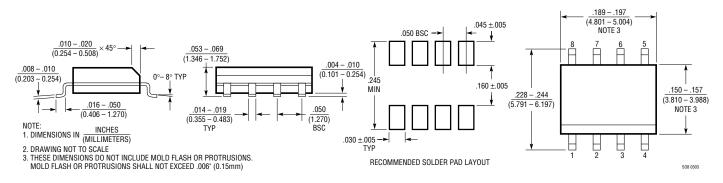
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1126/LT1127 IS USEFUL IN LOW FREQUENCY HIGH CLOSED LOOP GAIN AMPLIFIER APPLICATIONS. A TYPICAL PRECISION OP AMP MAY HAVE AN OPEN LOOP GAIN OF ONE MILLION WITH 500kHz BANDWIDTH. AS THE GAIN ERROR PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1% AMPLIFYING ACCURACY UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE SIGNALS CAN VARY AT A FASTER RATE. THE LT1126/LT1127 "GAIN PRECISION — BANDWIDTH PRODUCT" IS 330 TIMES HIGHER, AS SHOW. 11126/TM22

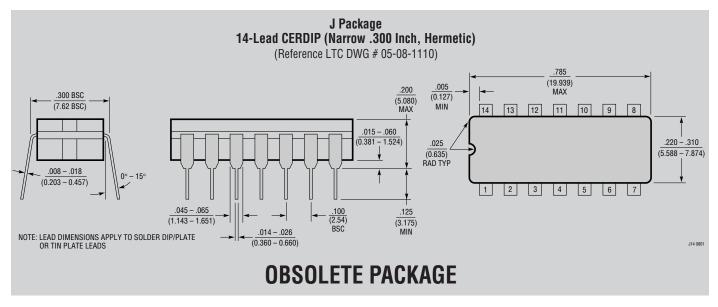


TYPICAL APPLICATIONS

Low Noise, Wideband, Gain = 100 Amplifier with High Input Impedance

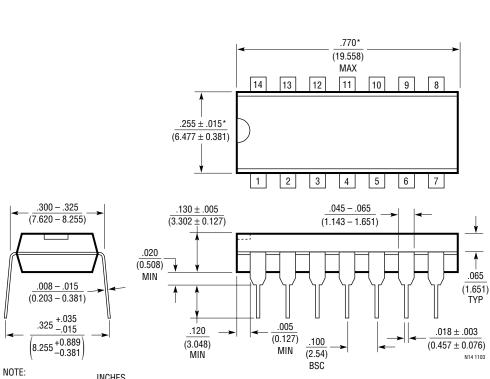
PACKAGE DESCRIPTION


PACKAGE DESCRIPTION

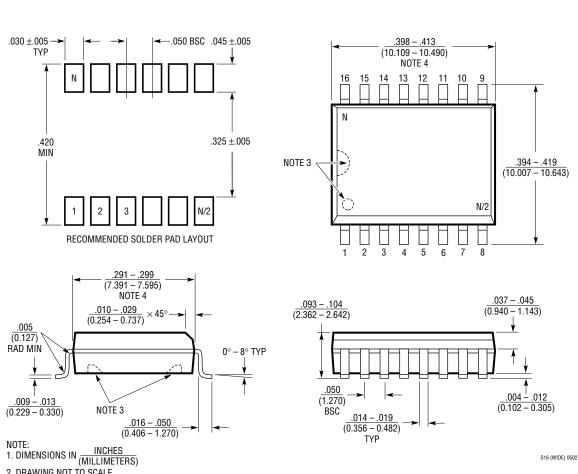

.400* (10.160) .300 – .325 .045 – .065 $.130 \pm .005$ MAX (7.620 - 8.255) (1.143 - 1.651) $(\overline{3.302 \pm 0.127})$ 7 6 8 5 .065 (1.651) .255 ± .015* $(\overline{6.477 \pm 0.381})$ TYP .008 – .015 $(\overline{0.203 - 0.381})$.120 (3.048) .020 .325 ^{+.035} -.015 MIN (0.508) 1 2 3 4 MIN .018 ± .003 .100 8.255+0.889 (2.54) $(\overline{0.457 \pm 0.076})$ N8 1005 BSC

N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)

NOTE: 1. DIMENSIONS ARE INCHES *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)


> S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610)

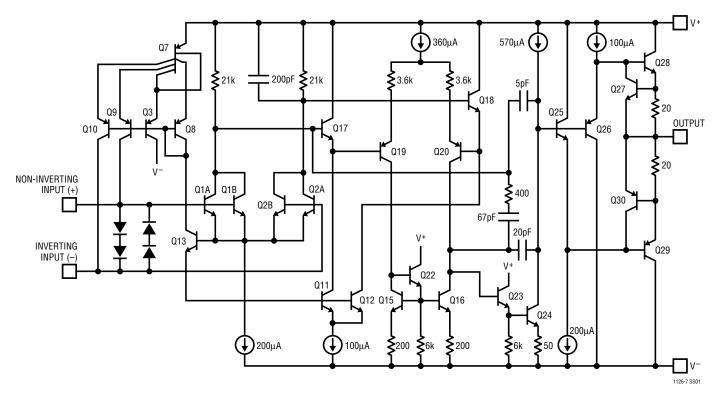
PACKAGE DESCRIPTION


N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)

NOTE: 1. DIMENSIONS ARE <u>INCHES</u> <u>MILLIMETERS</u>

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION


SW Package 16-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620)

2. DRAWING NOT TO SCALE

DRAWING NOT TO SCALE
PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

SCHEMATIC DIAGRAM (1/2 LT1126, 1/4 LT1127)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1124/LT1125	Dual/Quad Low Noise High Speed Precision Op Amps	Unity Gain Stable
LT1037	Low Noise, High Speed Precision Op Amps	60MHz GBW, 11V/µs Slew Rate
LT1678/LT1679	Dual/Quad Low Noise Rail-to-Rail Precision Op Amps	20MHz GBW, 100µV V _{0S}
LT1028	Ultralow Noise Precision High Speed Op Amps	1.1nV/√Hz Max, 0.85 μV/Hz Typ
LT6230	215MHz, Rail-to-Rail Output Low Noise Op Amps	1.1nV/√Hz, 3.5mA Supply Current

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Operational Amplifiers category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

NJU7047RB1-TE2 LTC6226IS8#PBF LTC6226HS8#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5#TRMPBF LT1206CR#PBF LTC6253CMS8#PBF LT1813CDD#PBF ADA4851-4YRUZ-RL LT1037IN8#PBF LTC6401CUD-20#PBF LT192CN8#PBF LTC6401IUD-26#PBF LT1037ACN8#PBF LTC6253CTS8#TRMPBF LT1399HVCS#PBF LT1993CUD-2#PBF LT6203CDD#PBF LT1722CS8#PBF LT1208CN8#PBF LT1222CN8#PBF LT6203IDD#PBF LT6411IUD#PBF LTC6400CUD-26#PBF LTC6400CUD-8#PBF LT6211IDD#PBF OP27EN8#PBF LT1810IMS8#PBF OP37EN8#PBF LTC6253IMS8#PBF LT1360CS8 OPA2132PAG4 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB 5962-9151901MPA ADP5302ACPZ-3-R7 AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZ-REEL7 AD8010ANZ