LT1176/LT1176-5

Step-Down Switching Regulator

feATURES

- 1.2A Onboard Switch
- 100kHz Switching Frequency
- Excellent Dynamic Behavior
- DIP and Surface Mount Packages
- Only 8mA Quiescent Current
- Preset 5V Output Available
- Operates Up to 35V Input
- Micropower Shutdown Mode

APPLICATIONS

- Buck Converter with Output Voltage Range of 2.5 V to 30 V
- Positive-to-Negative Converter
- Negative Boost Converter
- Multiple Output Buck Converter

DESCRIPTIOn

The LT ${ }^{\circledR} 1176$ is a 1 A monolithic bipolar switching regulator which requires only a few external parts for normal operation. The power switch, all oscillator and control circuitry
and all current limit components are included on the chip. The topology is a classic positive buck configuration but several design innovations allows this device to be used as a positive-to-negative converter, a negative boost converter, and as a flyback converter. The switch output is specified to swing below ground.

The LT1176 uses a true analog multiplier in the feedback loop. This makes the device respond nearly instantaneously to input voltage fluctuations and makes loop gain independent of input voltage. As a result, dynamic behavior of the regulator is significantly improved over previous designs.

On-chip pulse by pulse current limiting makes the LT1176 nearly bust proof for output overloads or shorts. The input voltage range as a buck converter is 8 V to 35 V , but a self boot feature allows input voltages as low as 5 V in the inverting and boost configurations.

The LT1176 is available in a low cost 8 -lead DIP package with frequency preset at 100 kHz and current limit at 1.7A. An adjustable output is offered as well as a preset 5 V version. For further design details and application help, see the LT1074/LT1076 data sheet and Application Note 44.

[^0]
TYPICAL APPLICATION

Basic 5V Positive Buck Converter

5V Buck Converter Efficiency

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Input Voltage..38V
Switch Voltage with Respect to Input Voltage...........50V
Switch Voltage with Respect to Ground Pin
(VSW Negative) (Note 7)...20V
Feedback Pin Voltage.......................................-2V, 10V
Shutdown Pin Voltage (Not to Exceed V_{IN}) 35 V
Status Pin Voltage
(Current Must Be Limited to 5mA When Status Pin
Switches ON) \qquad
ILIM Pin Voltage (Forced) 5.5 V
Maximum Operating Ambient Temperature Range LT1176C/LT1176C-5 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature RangeLT1176C/LT1176C-5
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)$300^{\circ} \mathrm{C}$

[^1]
PIn CONFIGURATION

	TOP VIEW	
	$\mathrm{V}_{\text {IN }} 1$	20 V SW
	NC 2	19 NC
TOP VIEW	lim 3	18 V
	GND 4	17 GND
LIM 2	GND 5	16 GND
GND 3 3 6 STATUS	GND 6	15 GND
FB/SENSE 4 - 5 Shutdown	GND 7	14 GND
	NC 8	13 status
8-LEAD PLASTIC DIP	FB/SENSE 9	12 SHUTDOWN
$T_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=90^{\circ} \mathrm{C} / \mathrm{W}$	NC 10	11 NC
	SW PACKAGE 20-LEAD PLASTIC SOL	
	$\mathrm{T}_{\mathrm{JMaX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$	

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1176CN8\#PBF		LT1176CN8	8 -Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1176CN8-5\#PBF		LT1176CN8-5	8 -Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1176CSW\#PBF	LT1176CSW\#TRPBF	LT1176CSW	20-Lead Plastic SOL	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1176CSW-5\#PBF	LT1176CSW-5\#TRPBF	LT1176CSW-5	20-Lead Plastic SOL	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The odenotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }} 25 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switch ON Voltage (Note 2)	$\begin{aligned} & I_{S W}=0.2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A} \end{aligned}$				$\begin{aligned} & 1.1 \\ & 1.4 \end{aligned}$	V
Switch OFF Leakage	$\begin{aligned} & V_{\text {IN }}=25 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \\ & V_{\text {IN }}=V_{\text {MAX }}, V_{S W}=0 \text { (Note 8) } \end{aligned}$				$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current (Note 3)	$\begin{aligned} & V_{\text {FB }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \leq 35 \mathrm{~V} \\ & V_{S H D N}=0.1 \mathrm{~V}(\text { Device Shutdown })(\text { Note } 9) \end{aligned}$	\bullet		$\begin{gathered} \hline 7.5 \\ 140.0 \end{gathered}$	$\begin{gathered} 10 \\ 300 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$
Minimum Supply Voltage	Normal Mode Startup Mode (Note 4)	\bullet		$\begin{aligned} & 7.3 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.8 \end{aligned}$	V
Switch Current Limit (Note 5)	lıim Open $\mathrm{R}_{\text {LIM }}=10 \mathrm{k}$ (Note 6) $\mathrm{R}_{\text {LIM }}=7 \mathrm{k}$ (Note 6)	\bullet	1.2	$\begin{aligned} & 1.7 \\ & 1.2 \\ & 0.8 \end{aligned}$	2.2	A
Maximum Duty Cycle		\bullet	85	90		\%
Switching Frequency	$\mathrm{V}_{\text {FB }}=0 \mathrm{~V}$ Through 2k (Note 5) (LT1176) $V_{\text {SENSE }}=0 V$ (Note 5) (LT1176-5)	\bullet	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Switching Frequency Line Regulation	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MaX }}$ (Note 8)	\bullet		0.03	0.1	\%/V
Error Amplifier Voltage Gain (Note 10)	$1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 4 \mathrm{~V}$			2000		V / V
Error Amplifier Transconductance (Note 10)			3700	5000	8000	$\mu \mathrm{mho}$
Error Amplifier Source and Sink Current	Source $\left(V_{\text {FB }}=2 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\text {SENSE }}=4 \mathrm{~V}\right)$ Sink ($\mathrm{V}_{\text {FB }}=2.5 \mathrm{~V}$ or $\mathrm{V}_{\text {SENSE }}=5.5 \mathrm{~V}$)		$\begin{gathered} 100.0 \\ 0.7 \end{gathered}$	$\begin{aligned} & \hline 140 \\ & 1.0 \end{aligned}$	$\begin{gathered} 225.0 \\ 1.6 \end{gathered}$	$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
Feedback Pin Bias Current (LT1176)	$V_{\text {FB }}=V_{\text {REF }}$	\bullet		0.5	2	$\mu \mathrm{A}$
Reference Voltage (LT1176)	$V_{C}=2 \mathrm{~V}$	\bullet	2.155	2.21	2.265	V
Reference Voltage Tolerance (LT1176)	$\mathrm{V}_{\text {REF }}(\text { Nominal })=2.21 \mathrm{~V}$ All Conditions of Input Voltage, Output Voltage, Temperature and Load Current	\bullet		$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 3 \end{aligned}$	\%
Sense Voltage (LT1176-5)	$\mathrm{V}_{\mathrm{C}}=2 \mathrm{~V}$	\bullet	4.85	5	5.15	V
Sense Voltage Tolerance (LT1176-5)	$\mathrm{V}_{\text {OUT }}$ (Nominal) $=5 \mathrm{~V}$ All Conditions of Input Voltage, Temperature and Load Current	\bullet		$\begin{aligned} & \pm 0.5 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 3 \end{aligned}$	\%
Sense Pin Divider Resistance (LT1176-5)			3	5	8	k Ω
Output Voltage Line Regulation	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$ (Note 8)	\bullet		0.005	0.02	\%/V
V_{C} Voltage at 0\% Duty Cycle	Overtemperature	\bullet		$\begin{gathered} 1.5 \\ -4.0 \end{gathered}$		$\begin{array}{r} \mathrm{V} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{array}$
Multiplier Reference Voltage				24		V
Shutdown Pin Current	$\begin{aligned} & \mathrm{V}_{\text {SHDN }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }} \leq \mathrm{V}_{\text {THRESHOLD }}(\cong 2.5 \mathrm{~V}) \end{aligned}$	\bullet	5	10	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Shutdown Thresholds	Switch Duty Cycle = 0 Fully Shutdown	\bullet	$\begin{aligned} & 2.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 0.5 \end{aligned}$	V
Status Window	As a Percent of Output Voltage		± 4	± 5	± 6	\%
Status High Level	$I_{\text {STATUS }}=10 \mu$ A Sourcing	\bullet	3.5	4.5	5.0	V

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}} 25 \mathrm{~V}$, unless otherwise noted.| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Status Low Level | ISTATUS $=1.6 \mathrm{~mA}$ Sinking | \bullet | 0.25 | 0.4 | V |
| Status Delay Time | | | 9 | $\mu \mathrm{~s}$ | |
| Status Minimum Width | | | 30 | $\mu \mathrm{~s}$ | |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: To calculate maximum switch ON voltage at current between low and high conditions, a linear interpolation may be used.
Note 3: A feedback pin voltage $\left(V_{F B}\right)$ of 2.5 V forces the V_{C} pin to its low clamp level and the switch duty cycle to zero. This approximates the zero load condition where duty cycle approaches zero. The LT1176-5 has $V_{\text {SENSE }}=5.5 \mathrm{~V}$.
Note 4: Total voltage from $V_{I N}$ pin to ground pin must be $\geq 8 \mathrm{~V}$ after start-up for proper regulation.

Note 5: Switch frequency is internally scaled down when the feedback pin voltage is less than 1.3 V to avoid extremely short switch-on times. During testing, $V_{\text {FB }}$ or $V_{\text {SENSE }}$ is adjusted to give a minimum switch-on time of 1 $\mu \mathrm{s}$.
Note 6: $\mathrm{I}_{\text {LM }}=\left(\mathrm{R}_{\mathrm{LIM}}-1 \mathrm{k}\right) / 7.65 \mathrm{k}$
Note 7: Switch to input voltage limitation must also be observed.
Note 8: $\mathrm{V}_{\mathrm{MAX}}=35 \mathrm{~V}$
Note 9: Does not include switch leakage.
Note 10: Error amplifier voltage gain and transconductance are specified relative to the internal feedback node. To calculate gain and transconductance from the sense pin (Output) to the V_{C} pin on the LT1176-5, multiply by 0.44 .

Application Hints

Although the LT1176 has a peak switch rating of 1.2A and a maximum duty cycle of 85%, it must be used cautiously in applications which require high switch current and high duty cycle simultaneously, to avoid excessive chip temperature. Thermal resistance is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the 8 -pin DIP package and $50^{\circ} \mathrm{C} / \mathrm{W}$ for the 20 -pin SO. This limits continuous chip power dissipation to the 0.5 W to 1 W range. These numbers assume typical mounting techniques. Extra or thick copper connected to the leads can reduce thermal resistance. Bonding the package to the board or using a clip style heat sink can also help. The following formulas will give chip power dissipation and peak switch current for the standard buck converter. Note that surges less than 30 seconds do not need to be considered from a thermal standpoint, but for proper regulation, they must not result in peak switch currents exceeding the 1.2A limit.

Power $=I_{\text {LOAD }}\left(V_{\text {OUT }} V_{\text {IN }}\right)+V_{\text {IN }}\left[7 \mathrm{~mA}+3 \mathrm{~mA}\left(\mathrm{~V}_{\text {OUT }} / V_{\text {IN }}\right)+0.012\left(I_{\text {LOAD }}\right)\right]$
$I_{\text {PEAK }}=I_{\text {LOAD }}$ (PEAK $)+\left[V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)\right] / 2 E^{5}\left(V_{\text {IN }}\right)(\mathrm{L})$
Example: $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$ Continuous, 0.8 A Peak, $L=100 \mu \mathrm{H}$
Power $\left(l_{\text {LOAD }}=0.5 \mathrm{~A}\right)=0.38 \mathrm{~W}$
$I_{\text {PEAK }}\left(l_{\text {LOAD }}=0.8 \mathrm{~A}\right)=0.97 \mathrm{~A}$
Where component size or height is critical, we suggest using solid tantalum capacitors (singly or in parallel), but be sure to use units rated for switching applications. Coiltronics is a good source for low profile surface mount inductors and AVX makes high quality surface mount tantalum capacitors. For further help, use Application Notes 19 and 44,LTC's SwitcherCAD ${ }^{\circledR}$ computer design program, and our knowledgeable application department.

BLOCK DIAGRAm

*CONNECTED ON 5V VERSION ONLY

LT1176/LT1176-5

PACKAGE DESCRIPTION

N8 Package

8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

NOTE

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$01 / 11$	Corrected Typical Application	1
		Updated part markings in Order Information	2
		Revised Electrical Characteristics	3
		Updated Package Description	8
B	$2 / 11$	Revised Shutdown Pin Current in Electrical Characteristics	3

SW Package

20-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G MP3416GJ-P MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

[^0]: $\boldsymbol{\mathcal { C }}$, LT, LTC, LTM, Linear Technology, SwitcherCAD and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners

[^1]: *These thermal resistance numbers are for typical mounting technique. Lower thermal resistance can be obtained with large copper lands, thermal glues or heat sinks.

