feAtures

- 45MHz Gain-Bandwidth
- 400V/us Slew Rate
- Unity-Gain Stable
- $7 \mathrm{~V} / \mathrm{mV}$ DC Gain, $\mathrm{R}_{\mathrm{L}}=500 \Omega$
- 3mV Maximum Input Offset Voltage
- $\pm 12 \mathrm{~V}$ Minimum Output Swing into 500Ω
- Wide Supply Range: $\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- 7mA Supply Current per Amplifier
- 90ns Settling Time to 0.1%, 10V Step
- Drives All Capacitive Loads

APPLICATIONS

- Wideband Amplifiers
- Buffers
- Active Filters
- Video and RF Amplification
- Cable Drivers
- Data Acquisition Systems

DESCRIPTIOn

The LT1208/LT1209 are dual and quad very high speed operational amplifiers with excellent DC performance. The LT1208/LT1209 feature reduced input offset voltage and higher DC gain than devices with comparable bandwidth and slew rate. Each amplifier is a single gain stage with outstanding settling characteristics. The fast settling time makes the circuit an ideal choice for data acquisition systems. Each output is capable of driving a 500Ω load to $\pm 12 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and a 150Ω load to $\pm 3 \mathrm{~V}$ on $\pm 5 \mathrm{~V}$ supplies. The amplifiers are also capable of driving large capacitive loads which make them useful in buffer or cable driver applications.

The LT1208/LT1209 are members of a family of fast, high performance amplifiers that employ Linear Technology Corporation's advanced bipolar complementary processing.

TYPICAL APPLICATION

ABSOLUTE mAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-})............................. 36 V
Differential Input Voltage $\pm 6 \mathrm{~V}$
Input Voltage .. $\pm V_{S}$
Output Short-Circuit Duration (Note 1)........... Indefinite
Operating Temperature Range LT1208C/LT1209C \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Maximum Junction Temperature
Plastic Package \qquad $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS $v_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MII	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text { (Note 2) } \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet		0.5	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	mV mV
		$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \text { (Note 2) } \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet		1.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	mV mV
	Input $\mathrm{V}_{\text {OS }}$ Drift				25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text { and } V_{S}= \pm 15 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet		100	$\begin{aligned} & \hline 400 \\ & 600 \end{aligned}$	nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text { and } V_{S}= \pm 15 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet		4	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
e_{n}	Input Noise Voltage	$f=10 \mathrm{kHz}$			22		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\underline{i_{n}}$	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$			1.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

ELECTRICAL CHARACTGRISTICS $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
RIN	Input Resistance	$V_{C M}= \pm 12 \mathrm{~V}$ Differential		20	$\begin{gathered} 40 \\ 250 \end{gathered}$		$M \Omega$ $k \Omega$
$\overline{\mathrm{C}_{\text {IN }}}$	Input Capacitance				2		pF
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \\ & \mathrm{~V}_{C M}= \pm 2.5 \mathrm{~V}, 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 86 \\ & 83 \end{aligned}$	98		dB dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 76 \\ & 75 \end{aligned}$	84		dB dB
	Input Voltage Range	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 12 \\ \pm 2 . \end{gathered}$	$\begin{gathered} \pm 13 \\ \pm 3 \end{gathered}$		V
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	7		V / mV V / mV
		$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	7		V / mV V / mV
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$			3		V / mV
$\overline{\text { VOUT }}$	Output Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=500 \Omega, 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & V_{S}= \pm 5 \mathrm{~V}, R_{L}=150 \Omega, 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	12.0 3.0	$\begin{array}{r} 13.3 \\ 3.3 \end{array}$		$\pm V$ $\pm V$
IOUT	Output Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 12 \mathrm{~V}, 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{\text {OUT }}= \pm 3 \mathrm{~V}, 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		mA
SR	Slew Rate	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, A_{V C L}=-2,(\text { Note } 3) \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	400		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
		$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, A_{V C L}=-2,(\text { Note } 3) \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 150 \\ & 130 \end{aligned}$	250		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
	Full Power Bandwidth	10V Peak, (Note 4)			6.4		MHz
GBW	Gain-Bandwidth	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & \hline 45 \\ & 34 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\overline{t_{r}, t_{f}}$	Rise Time, Fall Time	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, A_{V C L}=1,10 \% \text { to } 90 \%, 0.1 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, A_{V C L}=1,10 \% \text { to } 90 \%, 0.1 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & 5 \\ & 7 \end{aligned}$		ns ns
	Overshoot	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, A_{V C L}=1,0.1 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, A_{V C L}=1,0.1 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 30 \\ & 20 \end{aligned}$		\% \%
	Propagation Delay	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, 50 \% V_{\text {IN }} \text { to } 50 \% V_{\text {OUT }} \\ & V_{S}= \pm 5 \mathrm{~V}, 50 \% V_{\text {IN }} \text { to } 50 \% V_{\text {OUT }} \end{aligned}$			$\begin{aligned} & \hline 5 \\ & 7 \end{aligned}$		ns ns
$\mathrm{t}_{\text {s }}$	Settling Time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, 10 \mathrm{~V} \text { Step, } \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text {, } \\ & 5 \mathrm{~V} \text { Step, } 0.1 \% \end{aligned}$			90		ns
	Differential Gain	$\begin{aligned} & f=3.58 \mathrm{MHz}, R_{L}=150 \Omega \\ & f=3.58 \mathrm{MHz}, R_{L}=1 \mathrm{k} \end{aligned}$			$\begin{aligned} & 1.30 \\ & 0.09 \end{aligned}$		\% \%
	Differential Phase	$\begin{aligned} & f=3.58 \mathrm{MHz}, R_{L}=150 \Omega \\ & \mathrm{f}=3.58 \mathrm{MHz}, R_{L}=1 \mathrm{k} \end{aligned}$			$\begin{aligned} & 1.8 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \text { Deg } \\ & \text { Deg } \end{aligned}$
R_{0}	Output Resistance	$A_{V C L}=1, \mathrm{f}=1 \mathrm{MHz}$			2.5		Ω
	Crosstalk	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$			-100	-94	dB
IS	Supply Current	Each Amplifier, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	\bullet		7	$\begin{gathered} 9 \\ 10.5 \end{gathered}$	mA mA

The denotes the specifications which apply over the full operating temperature range.
Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 2: Input offset voltage is tested with automated test equipment and is exclusive of warm-up drift.

Note 3: Slew rate is measured in a gain of -2 . For $\pm 15 \mathrm{~V}$ supplies measure between $\pm 10 \mathrm{~V}$ on the output with $\pm 6 \mathrm{~V}$ on the input. For $\pm 5 \mathrm{~V}$ supplies measure between $\pm 2 \mathrm{~V}$ on the output with $\pm 1.75 \mathrm{~V}$ on the input.
Note 4: Full power bandwidth is calculated from the slew rate measurement: $F P B W=S R / 2 \pi V_{p}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs Supply Voltage and Temperature

Input Bias Current vs Input Common-Mode Voltage

1208/09 G05

Output Voltage Swing vs Supply Voltage

Open-Loop Gain vs Resistive Load

Output Short-Circuit Current vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

Voltage Gain and Phase vs Frequency

Closed-Loop Output Impedance vs Frequency

Power Supply Rejection Ratio vs Frequency

1208/09 G11

Frequency Response vs Capacitive Load

TYPICAL PGRFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Layout and Passive Components

As with any high speed operational amplifier, care must be taken in board layout in order to obtain maximum performance. Key layout issues include: use of a ground plane, minimization of stray capacitance at the input pins, short lead lengths, RF-quality bypass capacitors located close to the device (typically $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$), and use of low ESR bypass capacitors for high drive current applications (typically $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum). Sockets should be avoided when maximum frequency performance is required, although low profile sockets can provide reasonable performance up to 50 MHz . For more details see Design Note 50. The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole which can cause peaking. If feedback resistors greater than 5 k are used, a parallel capacitor of value

Capacitive Loading

The LT1208/LT1209 amplifiers are stable with capacitive loads. This is accomplished by sensing the load induced output pole and adding compensation at the amplifier gain node. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the frequency domain and in the transient response. The photo of the small-signal response with 1000 pF load shows 50% peaking. The large-signal response with a $10,000 \mathrm{pF}$ load shows the output slew rate being limited by the short-circuit current. To reduce peaking with capacitive loads, insert a small decoupling resistor between the output and the load, and add a capacitor between the output and inverting input to provide an AC feedback path. Coaxial cable can be driven directly, but for best pulse fidelity the cable should be doubly terminated with a resistor in series with the output.

$$
C_{F} \geq R_{G} \times C_{I_{N}} / R_{F}
$$

should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications where a large feedback resistor is used, C_{F} should be greater than or equal to C_{IN}.

APPLICATIONS InFORMATION

Large-Signal Capacitive Loading

$A_{V}=1$
$C_{L}=10,000 \mathrm{pF}$
1208/09 A102

Input Considerations

Resistors in series with the inputs are recommended for the LT1208/LT1209 in applications where the differential input voltage exceeds $\pm 6 \mathrm{~V}$ continuously or on a transient basis. An example would be in noninverting configurations with high input slew rates or when driving heavy capacitive loads. The use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized.

Transient Response

The LT1208/LT1209 gain-bandwidth is 45MHz when measured at 100 kHz . The actual frequency response in unitygain is considerably higher than 45 MHz due to peaking
caused by a second pole beyond the unity-gain crossover. This is reflected in the 50° phase margin and shows up as overshoot in the unity-gain small-signal transient response. Higher noise gain configurations exhibit less overshoot as seen in the inverting gain of one response.

The large-signal response in both inverting and noninverting gain show symmetrical slewing characteristics. Normally the noninverting response has a much faster rising edge due to the rapid change in input commonmode voltage which affects the tail current of the input differential pair. Slew enhancement circuitry has been added to the LT1208/LT1209 so that the falling edge slew rate is balanced.

Small-Signal Transient Response

$A_{V}=1$
1208/09 A103

Small-Signal Transient Response
$A_{V}=-1$
1208/09 A104

APPLICATIONS InFORMATION

Large-Signal Transient Response

Large-Signal Transient Response

Low Voltage Operation

The LT1208/LT1209 are functional at room temperature with only 3 V of total supply voltage. Under this condition, however, the undistorted output swing is only 0.8 V p-p. A more realistic condition is operation at $\pm 2.5 \mathrm{~V}$ supplies (or 5 V and ground). Under these conditions, at room temperature, the typical input common-mode range is 1.9 V to -1.3 V (for a $\mathrm{V}_{0 \mathrm{~S}}$ change of 1 mV), and a $5 \mathrm{MHz}, 2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sine wave can be faithfully reproduced. With 5 V total supply voltage the gain-bandwidth is reduced to 26 MHz and the slew rate is reduced to $135 \mathrm{~V} / \mu \mathrm{s}$.

Power Dissipation

The LT1208/LT1209 combine high speed and large output current drive in small packages. Because of the wide supply voltage range, it is possible to exceed the maximum junction temperature under certain conditions.

Maximum junction temperature $\left(T_{J}\right)$ is calculated from the ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ and power dissipation $\left(\mathrm{P}_{\mathrm{D}}\right)$ as follows:

$$
\begin{array}{ll}
\text { LT1208CN8: } & T_{J}=T_{A}+\left(P_{D} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1208CS8: } & T_{J}=T_{A}+\left(P_{D} \times 150^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1209CN: } & T_{J}=T_{A}+\left(P_{D} \times 70^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1209CS: } & T_{J}=T_{A}+\left(P_{D} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{array}
$$

Maximum power dissipation occurs at the maximum supply current and when the output voltage is at $1 / 2$ of either supply voltage (or the maximum swing if less than $1 / 2$ supply voltage).

For each amplifier $\mathrm{P}_{\mathrm{DMAX}}$ is as follows:

$$
P_{\text {DMAX }}=\left(V^{+}-V^{-}\right)\left(I_{\text {SMAX }}\right)+\frac{\left(0.5 V^{+}\right)^{2}}{R_{L}}
$$

Example: LT 1208 in S 8 at $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

$$
\begin{aligned}
& P_{\text {DMAX }}=(20 \mathrm{~V})(10.5 \mathrm{~mA})+\frac{(5 \mathrm{~V})^{2}}{500 \Omega}=260 \mathrm{~mW} \\
& \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}+(2 \times 260 \mathrm{~mW})\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)=148^{\circ} \mathrm{C}
\end{aligned}
$$

DAC Current-to-Voltage Converter

The wide bandwidth, high slew rate and fast settling time of the LT1208/LT1209 make them well-suited for current-to-voltage conversion after current output D/A converters. A typical application with a DAC-08 type converter (fullscale output of 2 mA) uses a 5 k feedback resistor. A 7pF compensation capacitor across the feedback resistor is used to null the pole at the inverting input caused by the DAC output capacitance. The combination of the LT1208/ LT1209 and DAC settles to less than 40 mV (1LSB) in 140ns for a 10V step.

TYPICAL APPLICATIONS

DAC Current-to-Voltage Converter

Cable Driving

Instrumentation Amplifier

$A_{V}=\frac{R 4}{R 3}\left[1+\frac{1}{2}\left(\frac{R 2}{R 1}+\frac{R 3}{R 4}\right)+\frac{R 2+R 3}{R 5}\right]=102$
TRIM R5 FOR GAIN
TRIM R1 FOR COMMON-MODE REJECTION
BW $=430 \mathrm{kHz}$

Full-Wave Rectifier

simpulied schematic

PACKAGE DESCRIPTIOी Dimensions in inches (millimeters) unless otherwise noted.

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. $^{\text {. }}$

NORTHEAST REGION

Linear Technology Corporation
One Oxford Valley
2300 E. Lincoln Hwy.,Suite 306
Langhorne, PA 19047
Phone: (215) 757-8578
FAX: (215) 757-5631
Linear Technology Corporation
266 Lowell St., Suite B-8
Wilmington, MA 01887
Phone: (508) 658-3881
FAX: (508) 658-2701

U.S. Area Sales Offices

SOUTHEAST REGION

Linear Technology Corporation
17060 Dallas Parkway
Suite 208
Dallas, TX 75248
Phone: (214) 733-3071
FAX: (214) 380-5138
CENTRAL REGION
Linear Technology Corporation
Chesapeake Square
229 Mitchell Court, Suite A-25
Addison, IL 60101
Phone: (708) 620-6910
FAX: (708) 620-6977

International Sales Offices

KOREA
Linear Technology Korea Branch
Namsong Building, \#505
Itaewon-Dong 260-199
Yongsan-Ku, Seoul
Korea
Phone: 82-2-792-1617
FAX: 82-2-792-1619

SINGAPORE

Linear Technology Pte. Ltd.
101 Boon Keng Road
\#02-15 Kallang Ind. Estates
Singapore 1233
Phone: 65-293-5322
FAX: 65-292-0398

World Headquarters

Linear Technology Corporation

1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Phone: (408) 432-1900
FAX: (408) 434-0507

SOUTHWEST REGION

Linear Technology Corporation 22141 Ventura Blvd.
Suite 206
Woodland Hills, CA 91364
Phone: (818) 703-0835
FAX: (818) 703-0517
NORTHWEST REGION
Linear Technology Corporation
782 Sycamore Dr.
Milpitas, CA 95035
Phone: (408) 428-2050
FAX: (408) 432-6331

TAIWAN
Linear Technology Corporation
Rm. 801, No. 46, Sec. 2
Chung Shan N. Rd.
Taipei, Taiwan, R.O.C.
Phone: 886-2-521-7575
FAX: 886-2-562-2285

UNITED KINGDOM

Linear Technology (UK) Ltd.
The Coliseum, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone: 44-276-677676
FAX: 44-276-64851

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NJU7047RB1-TE2 LTC6226IS8\#PBF LTC6226HS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LTC6253CMS8\#PBF LT1813CDD\#PBF ADA4851-4YRUZ-RL LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LTC6401IUD-26\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT6203CDD\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF OP27EN8\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LTC6253IMS8\#PBF LT1360CS8 OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7 AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZREEL7 AD8010ANZ

