Low Noise Very High Speed Operational Amplifier

feATURES

- Gain of 25 Stable
- 1GHz Gain Bandwidth
- 400V/ $\mu \mathrm{s}$ Slew Rate
- $2.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Noise Voltage
- $50 \mathrm{~V} / \mathrm{mV}$ Minimum DC Gain, $\mathrm{R}_{\mathrm{L}}=500 \Omega$
- 1mV Maximum Input Offset Voltage
- $\pm 12 \mathrm{~V}$ Minimum Output Swing into 500Ω
- Wide Supply Range $\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- 7 mA Supply Current
- 100ns Settling Time to 0.1%, 10V Step
- Drives All Capacitive Loads

APPLICATIONS

- Wideband Amplifiers
- Buffers
- Active Filters
- Video and RF Amplification
- Cable Drivers
- Data Acquisition Systems

DESCRIPTIOn

The LT1226 is a low noise, very high speed operational amplifier with excellent DC performance. The LT1226 features low input offset voltage and high DC gain. The circuit is a single gain stage with outstanding settling characteristics. The fast settling time makes the circuit an ideal choice for data acquisition systems. The output is capable of driving a 500Ω load to $\pm 12 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and a 150Ω load to $\pm 3 \mathrm{~V}$ on $\pm 5 \mathrm{~V}$ supplies. The circuit is also capable of driving large capacitive loads which makes it useful in buffer or cable driver applications.

The LT1226 is a member of a family of fast, high performance amplifiers that employ Linear Technology Corporation's advanced bipolar complementary processing.

TYPICAL APPLICATION

Photodiode Preamplifier, $A_{V}=5.1 \mathrm{k} \Omega, B W=15 \mathrm{MHz}$

Gain of +25 Pulse Response

absolute maximum ratings

PACKAGE/ORDER INFORMATION
Total Supply Voltage (V^{+}to V^{-}) 36 V
Differential Input Voltage .. $\pm 6 \mathrm{~V}$
Input Voltage ... VV_{S}
Output Short Circuit Duration (Note 1) Indefinite
Operating Temperature Range LT1226C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Maximum Junction Temperature Plastic Package $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$

TOP VIEW	ORDER PART NUMBER
	LT1226CN8 LT1226CS8
$\mathrm{V}^{-} 4 \square 5 \mathrm{4}$	S8 PART MARKING
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC	1226

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	(Note 2)		0.3	1.0	mV
Ios	Input Offset Current			100	400	nA
IB	Input Bias Current			4	8	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$		2.6		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$		1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$ Differential	24	$\begin{aligned} & 40 \\ & 15 \end{aligned}$		$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{k} \Omega \end{gathered}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
	Input Voltage Range +		12	14		V
	Input Voltage Range -			-13	-12	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 12 \mathrm{~V}$	94	103		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	94	110		dB
AvOL	Large Signal Voltage Gain	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	50	150		V / mV
$V_{\text {OUT }}$	Output Swing	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	12.0	13.3		$\pm \mathrm{V}$
$\underline{\text { IOUT }}$	Output Current	$\mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V}$	24	40		mA
SR	Slew Rate	(Note 3)	250	400		$\mathrm{V} / \mathrm{\mu s}$
	Full Power Bandwidth	10V Peak, (Note 4)		6.4		MHz
GBW	Gain Bandwidth	$f=1 \mathrm{MHz}$		1		GHz
$\mathrm{tr}_{\text {r }}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{\text {VCL }}=+25,10 \%$ to $90 \%, 0.1 \mathrm{~V}$		5.5		ns
	Overshoot	$A_{V C L}=+25,0.1 \mathrm{~V}$		35		\%
	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}$		5.5		ns
$\mathrm{t}_{\text {s }}$	Settling Time	10 V Step, 0.1%, $A_{V}=-25$		100		ns
	Differential Gain	$f=3.58 \mathrm{MHz}, A_{V}=+25, R_{L}=150 \Omega$		0.7		\%
	Differential Phase	$f=3.58 \mathrm{MHz}, A_{V}=+25, R_{L}=150 \Omega$		0.6		Deg
R_{0}	Output Resistance	$A_{\text {vCL }}=+25, f=1 \mathrm{MHz}$		3.1		Ω
Is	Supply Current			7	9	mA

ELECTRICAL CHARACTERISTICS $\mathrm{v}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	(Note 2)		1.0	1.4	mV
Ios	Input Offset Current			100	400	nA
I_{B}	Input Bias Current			4	8	$\mu \mathrm{A}$
	Input Voltage Range +		2.5	4		V
	Input Voltage Range -			-3	-2.5	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 2.5 \mathrm{~V}$	94	103		dB
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	50	$\begin{aligned} & 100 \\ & 75 \end{aligned}$		V / mV V / mV
$V_{\text {OUT }}$	Output Voltage	$\begin{aligned} & R_{L}=500 \Omega \\ & R_{L}=150 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.3 \\ & \hline \end{aligned}$		$\pm V$ $\pm V$
$\underline{\text { IOUT }}$	Output Current	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}$	20	40		mA
SR	Slew Rate	(Note 3)		250		$\mathrm{V} / \mathrm{\mu s}$
	Full Power Bandwidth	3V Peak, (Note 4)		13.3		MHz
GBW	Gain Bandwidth	$\mathrm{f}=1 \mathrm{MHz}$		700		MHz
$\underline{t_{r}, t_{f}}$	Rise Time, Fall Time	$A_{\text {VCL }}=+25,10 \%$ to $90 \%, 0.1 \mathrm{~V}$		8		ns
	Overshoot	$A_{\text {VCL }}=+25,0.1 \mathrm{~V}$		25		\%
	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to 50\% $\mathrm{V}_{\text {OUT }}$		8		ns
$\mathrm{t}_{\text {s }}$	Settling Time	-2.5 V to $2.5 \mathrm{~V}, 0.1 \%, \mathrm{~A}_{V}=-24$		60		ns
Is	Supply Current			7	9	mA

ELECTRICFL CHARFCTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { (Note 2) } \\ & V_{S}= \pm 5 \mathrm{~V}, \text { (Note 2) } \end{aligned}$		$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.8 \end{aligned}$	mV mV
	Input $\mathrm{V}_{\text {OS }}$ Drift			6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
108	Input Offset Current	$V_{S}= \pm 15 \mathrm{~V}$ and $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$		100	600	nA
I_{B}	Input Bias Current	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ and $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$		4	9	$\mu \mathrm{A}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$ and $\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$	92	103		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	92	110		dB
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \\ & \hline \end{aligned}$		V / mV V / mV
V OUT	Output Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, R_{L}=500 \Omega \text { or } 150 \Omega \end{aligned}$	$\begin{aligned} & 12.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13.3 \\ & 3.3 \end{aligned}$		$\pm V$ $\pm V$
IOUT	Output Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 12 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}$, (Note 3)	250	400		V/us
IS	Supply Current	$V_{S}= \pm 15 \mathrm{~V}$ and $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$		7	10.5	mA

Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 2: Input offset voltage is tested with automated test equipment in <1 second.

Note 3: Slew rate is measured between $\pm 10 \mathrm{~V}$ on an output swing of $\pm 12 \mathrm{~V}$ on $\pm 15 \mathrm{~V}$ supplies, and $\pm 2 \mathrm{~V}$ on an output swing of $\pm 3.5 \mathrm{~V}$ on $\pm 5 \mathrm{~V}$ supplies.
Note 4: Full power bandwidth is calculated from the slew rate measurement: $F P B W=S R / 2 \pi V p$.

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1226 TPC04

Input Bias Current vs Input Common Mode Voltage

INPUT COMMON MODE VOLTAGE (V)
nput Bias Current vs Temperature

Output Voltage Swing vs Supply Voltage

Open Loop Gain vs Resistive Load

Output Short Circuit Current vs Temperature

TYPICAL PGRFORMANCG CHARACTERISTICS

LT1226 TPC11

Output Swing vs Settling Time

LTC1226 TPC14

Common Mode Rejection Ratio vs Frequency

LT1226 TPC12

Voltage Gain and Phase vs

Frequency

LT1226 TPC13
เا2

Frequency Response vs Capacitive Load

LT1226 TPC15

APPLICATIONS INFORMATION

The LT1226 may be inserted directly into HA2541, HA2544, AD847, EL2020 and LM6361 applications, provided that the amplifier configuration is a noise gain of 25 or greater, and the nulling circuitry is removed. The suggested nulling circuit for the LT1226 is shown below.

Layout and Passive Components

As with any high speed operational amplifier, care must be taken in board layout in order to obtain maximum performance. Key layout issues include: use of a ground plane, minimization of stray capacitance at the input pins, short lead lengths, RF-quality bypass capacitors located close to the device (typically $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$), and use of low ESR bypass capacitors for high drive current applications (typically $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum). Sockets should be avoided when maximum frequency performance is required, although Iow profile sockets can provide reasonable performance up to 50 MHz . For more details see Design Note 50. Feedback resistors greater than $5 \mathrm{k} \Omega$ are not recommended because a pole is formed with the input capacitance which can cause peaking. If feedback resistors greater than $5 \mathrm{k} \Omega$ are used, a parallel capacitor of 5 pF to 10 pF should be used to cancel the input pole and optimize dynamic performance.

Transient Response

The LT1226 gain bandwidth is 1 GHz when measured at 1 MHz . The actual frequency response in a gain of +25 is considerably higher than 40MHz due to peaking caused by a second pole beyond the gain of 25 crossover point. This is reflected in the small signal transient response. Higher noise gain configurations exhibit less overshoot as seen in the inverting gain of 25 response.

The large signal response in both inverting and noninverting gain shows symmetrical slewing characteristics. Normally the noninverting response has a much faster rising edge due to the rapid change in input common mode voltage which affects the tail current of the input differential pair. Slew enhancement circuitry has been added to the LT1226 so that the falling edge slew rate is enhanced which balances the noninverting slew rate response.

Large Signal, $A_{V}=\mathbf{- 2 5}$

LT1226 A103

Input Considerations

Resistors in series with the inputs are recommended for the LT1226 in applications where the differential input voltage exceeds $\pm 6 \mathrm{~V}$ continuously or on a transient basis. An example would be in noninverting configurations with high input slew rates or when driving heavy capacitive loads. The use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized.

Capacitive Loading

The LT1226 is stable with all capacitive loads. This is accomplished by sensing the load induced output pole and adding compensation at the amplifier gain node. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the

APPLICATIONS InFORMATION

frequency domain and in the transient response. The photo of the small signal response with 1000pF load shows 55\% peaking. The large signal response with a $10,000 \mathrm{pFload}$ shows the output slew rate being limited by the short circuit current.

The LT1226 can drive coaxial cable directly, but for best pulse fidelity the cable should be doubly terminated with a resistor in series with the output.

Compensation

The LT1226 has a typical gain bandwidth product of 1 GHz which allows it to have wide bandwidth in high gain
configurations (i.e., in a gain of 1000 it will have a bandwidth of about 1 MHz). The amplifier is stable in a noise gain of 25 so the ratio of the output signal to the inverting input must be $1 / 25$ or less. Straightforward gain configurations of +25 or -24 are stable, but there are a few configurations that allow the amplifier to be stable for lower signal gains (the noise gain, however, remains 25 or more). One example is the inverting amplifier shown in the typical applications sections below. The input signal has a gain of $-R_{F} / R_{I N}$ to the output, but it is easily seen that this configuration is equivalent to a gain of -24 as far as the amplifier is concerned. Lag compensation can also be used to give a low frequency gain less than 25 with a high frequency gain of 25 or greater. The example below has a DC gain of 6 , but an AC gain of +31 . The break frequency of the RC combination across the amplifier inputs should be at least a factor of 10 less than the gain bandwidth of the amplifier divided by the high frequency gain (in this case $1 / 10$ of $1 \mathrm{GHz} / 31$ or 3 MHz).

TYPICAL APPLICATIONS

Compensation for Lower Closed-Loop Gains

Cable Driving

SImPLIFIGD SCHEMATIC

PACKAGE DESCRIPTIOी Dimensions in inches (millimeters) unless otherwise noted.

> N8 Package
> 8-Lead Plastic DIP

S8 Package 8-Lead Plastic SOIC

$T_{J \text { MAX }}$	θ_{JA}
$150^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C} / \mathrm{W}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NJU7047RB1-TE2 LTC6226IS8\#PBF LTC6226HS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LTC6253CMS8\#PBF LT1813CDD\#PBF ADA4851-4YRUZ-RL LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LTC6401IUD-26\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT6203CDD\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF OP27EN8\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LTC6253IMS8\#PBF LT1360CS8 OPA2132PAG4 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB 5962-9151901MPA ADP5302ACPZ-3-R7 AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZREEL7 AD8010ANZ

