7.5A, 150kHz Switching Regulators

FEATURES

- Wide Input Voltage Range: 3.5 V to 30 V
- Low Quiescent Current: 7mA
- Internal 7.5A Switch
- Very Few External Parts Required
- Self-Protected Against Overloads
- Available in Standard and Surface Mount 5-Pin Packages
- Can Be Externally Synchronized
(See LT1072 Data Sheet)

APPLICATI ONS

- High Efficiency Boost Converter
- PCPower Supply with Multiple Outputs
- Battery Upconverter
- Negative-to-Positive Converter

USER NOTE:
This data sheet is only intended to provide specifications, graphs, and a general functional description of the LT1268B/LT1268. Application circuits are included to show the capability of the LT1268B/LT1268. Acompletedesign manual (AN19) should beobtainedto assist indeveloping new designs. This manual contains a comprehensive discussion of both the LT1070 and the external components used with it, as well as complete formulas for calculating the values of these components. The manual can also be used for the LT1268B/LT1268 factoring in the higher switch current rating and higher operating frequency.

DESCRIPTIO

The LT1268B and LT1268 are monolithic high power switching regulators. Identical to the popular LT1070, except for switching frequency (150 kHz) and higher switch current, they can be operated in all standard switching configurations including buck, boost, flyback, and inverting. A high current, high efficiency switch is included on the die along with all oscillator, control, and protection circuitry. Integration of all functions allows theLT1268to be built in standard 5-pin power packages. This makes it extremely easy to use and provides "bust proof" operations similar to that obtained with 3-pin linear regulators.

The LT1268 operate with supply voltages from 3.5 V to 30 V and draw only 7 mA quiescent current. By utilizing current modeswitching techniques, it provides excellent AC and DCload and line regulation.

TheLT1268 usean adaptive anti-sat switch driveto allow very wideranging load currents with no loss in efficiency. An externally activated shutdown mode reduces total supply current to $100 \mu \mathrm{~A}$ typical for standby operation.

TYPICAL APPLICATI On

Boost Regulator with $5.3 \mathrm{~V} \pm 1 \%$ Output

Efficiency of 5.3V Boost Converter

LT1268•TA02

ABSO LUTE MAXIMUM RATING S

Supply Voltage 30 V
Switch Output Voltage ... 60V
Feedback Pin Voltage (Transient, 1ms) $\pm 15 \mathrm{~V}$
Operating Junction Temperature Range
Operating.. $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Short-Circuit ... $0^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

PACKAG E/O RDER INFORMATIO \cap

Consult factory for Industrial and Military parts

ELECTRICAL CHARACTERISTICS $V_{I N}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}$, switch pin open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {REF }}$	Reference Voltage Measured at Feedback Pin (Note 4)	LT1268B	\bullet	$\begin{aligned} & 1.235 \\ & 1.224 \end{aligned}$	$\begin{aligned} & 1.244 \\ & 1.244 \end{aligned}$	$\begin{aligned} & 1.253 \\ & 1.264 \end{aligned}$	V
	Reference Voltage	LT1268	\bullet	$\begin{aligned} & 1.224 \\ & 1.214 \end{aligned}$	$\begin{aligned} & 1.244 \\ & 1.244 \end{aligned}$	$\begin{aligned} & 1.264 \\ & 1.274 \end{aligned}$	V
I_{B}	Feedback Input Ourrent	$\mathrm{V}_{\text {® }}=\mathrm{V}_{\text {REF }}$	\bullet		350	$\begin{gathered} \hline 750 \\ 1100 \end{gathered}$	nA
g_{m}	Eror Amplifier Transconductance	$\Delta \mathrm{l}_{\mathrm{C}}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{aligned} & 3000 \\ & 2400 \end{aligned}$	4400	$\begin{aligned} & 6000 \\ & 7000 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
	Eror Amplifier Source or Sink Current	$\mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	$\begin{aligned} & 150 \\ & 120 \end{aligned}$	200	$\begin{aligned} & 350 \\ & 400 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Eror Amplifier Camp Voltage	Hi Clamp, $\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$ Lo Clamp, $\mathrm{V}_{\text {B }}=1.5 \mathrm{~V}$		$\begin{aligned} & 1.80 \\ & 0.25 \end{aligned}$	0.38	$\begin{aligned} & 2.30 \\ & 0.52 \end{aligned}$	V
	Reference Voltage Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet			0.03	\%/V
A_{V}	Error Amplifier Voltage Gain	$0.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 1.4 \mathrm{~V}$		500	800		V/V
	Minimum Input Voltage		\bullet		2.8	3.0	V
$\underline{\mathrm{I}_{Q}}$	Supply Ourrent	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{V}_{\mathrm{C}}=0.6 \mathrm{~V}$			7	10	mA
	Control Pin Threshold	Duty Oycle $=0$	\bullet	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	0.9	$\begin{aligned} & 1.08 \\ & 1.25 \end{aligned}$	V
BV	Output Switch Breakdown Voltage	$3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{I}_{\text {SW }}=1.5 \mathrm{~mA}}$	\bullet	60	75		V
$\mathrm{V}_{\text {SAT }}$	Output Switch-ON Resistance (Note 1, 3)	$\begin{aligned} & \mathrm{T}_{J} \leq 100^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			0.12	$\begin{aligned} & 0.18 \\ & 0.22 \end{aligned}$	ת
	Control Voltage to Switch Ourrent Transconductance				12		A/V
ILIM	Switch Ourrent Limit (Note 3, 6)	$\begin{aligned} & \text { Duty Oycle }=50 \%, \mathrm{~T}_{J} \leq 100^{\circ} \mathrm{C} \\ & \text { Duty Oycle }=65 \%, \mathrm{~T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & \hline 7.50 \\ & 6.50 \end{aligned}$		$\begin{aligned} & 15 \\ & 14 \end{aligned}$	A

ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}$, switch pin open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\frac{\Delta l_{\mathrm{IN}}}{\Delta \mathrm{l}_{\mathrm{SW}}}$	Supply Ourrent Increase During Switch-ON Time				25	45	mA/A
f	Switching Frequency		\bullet	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	150	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	kHz kHz
DGMAX	Maximum Switch Duty Oycle			65	85	92	\%
	Shutdown Mode Supply Ourrent	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{V}_{\mathrm{C}}=0.05 \mathrm{~V}$			100	500	$\mu \mathrm{A}$
	Shutdown Mode Threshold Voltage	$3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {MAX }}$	\bullet	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	150	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

The denotes specifications which apply over the full operating temperature range.
Note 1: Measured with V_{C} in hi clamp, $\mathrm{V}_{\text {円 }}=0.8 \mathrm{~V}$.
Note 2: For duty cycles (DC) between 50% and 65%, minimum guaranteed switch current is given by LIM $^{\text {L }}=6.25$ ($1.7-$ DC).
Note 3: Minimum current limit is reduced by 0.5 A at $125^{\circ} \mathrm{C} .100^{\circ} \mathrm{C}$ test limits are guaranteed by correlation to $125^{\circ} \mathrm{C}$ tests.
Note 4: LT1268B reference voltage is specified at $\pm 9 \mathrm{mV}$ to guarantee $\pm 1 \%$ output voltage accuracy when 0.1% external resistors are used to set output voltage. To maintain output accuracy under load, load current should be taken from the case and the ground pin should be connected separately to output ground. See AN19 for details.
Note 5: The Qpackage is intended for surface mount without a separate heat sink. See graph for thermal resistance as a function of the mounting area. This curve assumes no other heat dissipators adjacent to package.
Note 6: Maximum switch current may be limited by package power dissipation, especially for the surface mount (Q) package. This package
has a thermal resistance of $20^{\circ} \mathrm{C} W$ to $50^{\circ} \mathrm{C} / \mathrm{W}$ (see graph). The following formula will allow an estimate of maximum continuous switch current as a function of power loss and duty cycle. See AN19 for more details.

$$
I_{\operatorname{MAX}}=\sqrt{\frac{P}{R_{S W} \times D C}}
$$

$\mathrm{P}=$ Power dissipation due to switch current
$R_{\text {SW }}=$ Switch-ON resistance $\approx 0.15 \Omega$
DC= Switch duty cycle
In a typical application where thermal resistance is $30^{\circ} \mathrm{C} \mathrm{W}$, maximum power might be limited to 2 W and power allocated to switch loss is 1.5 W . For a duty cycle of 40%, this yields

$$
\mathrm{I}_{\operatorname{MAX}}=\sqrt{\frac{1.5}{0.15 \times 0.4}}=5 \mathrm{~A}
$$

Obviously, a combination of high thermal resistance and high duty cycle may restrict switch current to a value well below the 7.5A electrical limit.

TYPICAL PERFO RMAnCE CHARACTERISTICS

LT1268•TP001

LT1268•TP002

LT1268•603

TYPICAL APPLICATI On

Boost Converter（5V TO 12V）

PACKAGEDESCRIPTO 1 Dimensions in inches（millimeters）unless otherwise noted．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

