feATURES

- Up to 220mA Output Current at 5V from 2V Supply
- Supply Voltage as Low as 1.8 V
- Up to 88% Efficiency
- Small Inductor $-10 \mu \mathrm{H}$
- $120 \mu \mathrm{~A}$ Quiescent Current
- Shutdown to $10 \mu \mathrm{~A}$
- Programmable 3.3 V or 5 V Output
- Ilim Pin Programs Peak Switch Current
- Low $V_{\text {CESAT }}$ Switch: 170 mV at 1 A Typical
- Uses Inexpensive Surface Mount Inductors
- 8 -Lead DIP or SOIC Package

APPLICATIONS

- Palmtop Computers
- Portable Instruments
- Bar-Code Scanners
- DC/DC Converter Module Replacements
- Battery Backup Supplies
- Personal Digital Assistants
- PCMCIA Cards

DESCRIPTIOn

The LT1300 is a micropower step-up DC/DC converter that utilizes Burst Mode ${ }^{\text {TM }}$ operation. The device can deliver 5V or 3.3 V from a two-cell battery input. It features programmable 5 V or 3.3 V output via a logic-controlled input, noload quiescent current of $120 \mu \mathrm{~A}$ and a shutdown pin which reduces supply currentto $10 \mu \mathrm{~A}$. The on-chip power switch has a low 170 mV saturation voltage at a switch current of 1A, a four-fold reduction over prior designs. A 155 kHz internal oscillator allows the use of extremely small surface mount inductors and capacitors. Operation is guaranteed at 1.8 V input. This allows more energy to be extracted from the battery increasing operating life. The LIIM $^{\text {pin }}$ can be used to program peak switch current with a single resistor allowing the use of less expensive and smaller inductors and capacitors in lighter load applications. The LT1300 is available in an 8 -lead SOIC package, minimizing board space requirements. For a $5 \mathrm{~V} / 12 \mathrm{~V}$ Selectable Output Converter see the LT1301. For increased output current see the LT1302.

Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATIONS

Two-Cell to 3.3V/5V Step-Up Converter

5V Output Efficiency

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

$\xrightarrow{\text { TOP VIEW }}$	ORDER PART NUMBER
SEL 2 - 7 SW	LT1300CN8
SHDN 3 - $6 \mathrm{~V}^{3}$	LT1300CS8
SENSE 4 4 5 LIM	
$\begin{array}{cc}\text { N8 PACKAGE } & \text { S8 PACKAGE } \\ \text { 8-LEAD PLASTIC DIP } & \text { 8-LEAD PLASTIC SOIC }\end{array}$	S8 PART MARKING
$\mathrm{T}_{\text {JmaX }}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$	1300

Consult factory for Industrial grade parts.

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{IN}}=2 \mathrm{~V}$ unless otherwise noted.

The denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Note 1: Hysteresis specified is DC. Output ripple may be higher if output capacitance is insufficient or capacitor ESR is excessive. See applications section.

TYPICAL PERFORMANCE CHARACTERISTICS

LT1300 64

LT1300 G5
Transient Response
$V_{I N}=2 V, V_{\text {OUT }}=5 V$

Total Quiescent Current in Shutdown

LT1300 G3
Maximum Output Current vs Input Voltage

LT1300 G6

Startup Response

$R_{\text {LOAD }}=20 \Omega$

PIn functions

GND (Pin 1): Signal Ground.
Sel (Pin 2): Output Select. When tied to $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ converter regulates at 5 V . When grounded converter regulates at 3.3 V .
SHDN (Pin 3): Shutdown. Pull high to effectshutdown. Tie to ground for normal operation.
Sense (Pin 4): "Output" Pin.
LIIM (Pin 5): Float for 1A switch current limit. Tie to ground for approximately 400 mA . A resistor between ILIM and ground sets peak current to some intermediate value (see Figure 5).
$\mathbf{V}_{\mathbb{I N}}$ (Pin 6): Supply Pin. Must be bypassed with a large value electrolytic to ground. A $0.1 \mu \mathrm{~F}$ ceramic capacitor close to the pin may be needed in some cases.
SW (Pin 7): Switch Pin. Connect inductor and diode here. Keep layout short and direct to minimize electronic radiation.
PGND (Pin 8): Power Ground. Tie to signal ground (pin 1) under the package. Bypass capacitor from $\mathrm{V}_{\text {IN }}$ should be tied directly to the pin.

BLOCK DIAGRAM

Figure 1.

OPERATION

Operation of the LT1300 is best understood by referring to the Block Diagram in Figure 1. When A1's negative input, related to the Sense pin voltage by the appropriate resis-tor-divider ratio, is higher that the 1.25 V reference voltage, A1's output is low. A2, A3 and the oscillator are turned off, drawing no current. Only the reference and A1 consume current, typically $120 \mu \mathrm{~A}$. When the voltage at A1's negative input decreases below 1.25 V , overcoming A1's 6 mV hysteresis, A1's output goes high, enabling the oscillator, current comparator A2, and driver A3. Quiescent current increases to 2 mA as the device prepares for high current switching. Q1 then turns on in a controlled saturation for (nominally) $5.3 \mu \mathrm{~s}$ or until current comparator A2 trips, whichever comes first. After a fixed off-time of (nominally) $1.2 \mu \mathrm{~s}$, Q1 turns on again. The LT1300's switching causes current to alternately build up in L1 and dump into capacitor C2 via D1, increasing the output voltage. When the output is high enough to cause A1's output to go to low, switching action ceases. C2 is left to supply current to the load until $V_{\text {OUT }}$ decreases enough to force A1's output high, and the entire cycle repeats.

If switch current reaches 1A, causing A2 to trip, switch ontime is reduced and off-time increases slightly. This allows continuous mode operation during bursts. Current comparator A2 monitors the voltage across 3Ω resistor R1 which is directly related to inductor L1's current. Q2's collector current is set by the emitter-area ratio to 0.6% of Q1's collector current. When R1's voltage drop exceeds 18 mV , corresponding to 1 A inductor current, A2's output goes high, truncating the on-time portion of the oscillator cycle and increasing off-time to about 2μ s as shown in Figure 2, trace A. This programmed peak current can be

Figure 2. Switch Pin Current With I Lim Floating or Grounded
reduced by tying the $\mathrm{I}_{\text {LIM }}$ pin to ground, causing $15 \mu \mathrm{~A}$ to flow through R2 into Q3's collector. Q3's current causes a 10.4 mV drop in R2 so that only an additional 7.6 mV is required across R1 to turn off the switch. This corresponds to a 400 mA switch current as shown in Figure 2, trace B. The reduced peak switch current reduces $I^{2} R$ loses in Q1, L1, C1 and D1. Efficiency can be increased by doing this provided that the accompanying reduction in full load output current is acceptable. Lower peak currents also extend alkaline battery life due to the alkaline cell's high internal impedance. Typical operating waveforms are shown in Figure 3.

Figure 3. Burst Mode Operation in Action

APPLLCATIONS Information

Output Voltage Selection

The LT1300 can be selected to 3.3 V or 5 V under logic control or fixed at either by tying SELECT to ground or $V_{\text {IN }}$ respectively. It is permissible to tie SELECT to a voltage higher than $\mathrm{V}_{\text {IN }}$ as long as it does not exceed 10 V . Efficiency in 3.3 V mode will be slightly less that in 5 V mode due to the fact that the diode drop is a greater percentage of 3.3 V than 5 V . Since the bipolar switch in the LT1300 gets its base drive from V_{IN}, no reduction in switch efficiency occurs when in 3.3 V mode. When $\mathrm{V}_{\text {IN }}$ exceeds the programmed output voltage the output will follow the input. This is characteristic of the simple step-up or "boost" converter topology. A circuit example that provides a regulated output with an input voltage above or below the output (called a buck-boost or SEPIC) is shown in the Typical Applications section.

Shutdown

The converter can be turned off by pulling SHDN (pin 3) high. Quiescent current drops to $10 \mu \mathrm{~A}$ in this condition. Bias current of $3 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$ flows into the pin (at 2.5 V input). It is recommended that SHDN not be left floating. Tie the pin to ground if the feature is not used.

ILIM Function

The LT1300's current limit (lıIM) pin can be used for soft start. Upon start-up, switching regulators require maximum current from the supply. The high currents flowing can create IR drops along supply and ground lines and are especially demanding on alkaline batteries. By installing an R1 and C3 as shown in Figure 4, the switch current in the LT1300 is limited to 400 mA until the $15 \mu \mathrm{~A}$ flowing out of the $\mathrm{I}_{\text {LIM }}$ pin charges up the $0.1 \mu \mathrm{~F}$ capacitor. Input current is held to under 500 mA while the output voltage ramps up to 5 V as shown in Figure 5. The 1 Meg resistor provides a discharge path for the capacitor withoutappreciably decreasing peak switch current. When the full capability of the LT1300 is not required, peak current can be reduced by changing the value of R3 as shown in Figure 6. With R3 $=0$, switch current is limited to approximately 400 mA .

Figure 4. Addition of R1 and C3 Limit Input Current at Startup

Figure 5. Startup Waveforms using Soft-Start Circuitry $I_{\text {LOAD }}=100 \mathrm{~mA}, V_{\text {OUT }}=5 \mathrm{~V}$

Figure 6. Peak Switch Current vs. RLIM

APPLICATIONS INFORMATION

Table 1. Recommended Inductors

PART NUMBER	VENDOR	$\mathrm{L}(\mu \mathrm{H})$	DCR (Ω)	ILIM PIN	EFFICIENCY $2.5 \mathrm{~V}_{\text {IN }}, 5 \mathrm{~V}_{\text {OUT }}$		COMPONENT HEIGHT (mm)	PHONE NUMBER
					50mA LOAD	200mA LOAD		
D01608-103	Coilcraft	10	0.11	Float	83	83	3.5	(708) 639-6400
D03316-223	Coilcraft	22	0.050	Float	85	85	5.5	
D01608-223	Coilcraft	22	0.31	Ground	85	-	3.5	
CTX10-1	Coiltronics	10	0.038	Float	85	85	4.2	(407) 241-7876
CTX20-1	Coiltronics	20	0.175	Ground	86	-	4.2	
LQH3C2204K0M00	Murata-Frie	22	0.7	Ground	81	-	2.0	(404) 436-1300
CD54-100M	Sumida	10	0.11	Float	85	85	4.5	(708) 956-0666
CDRH62-220M	Sumida	22	0.38	Ground	84	-	3.0	
CDRH62-100M	Sumida	10	0.17	Float	81	82	3.0	
GA10-102K	Gowanda	10	0.038	Float	85	86	6.6 Through-Hole	(716) 532-2234

Inductor Selection

For full output power, the inductor should have a saturation current rating of 1.25A for worst-case current limit, although it is acceptable to bias an inductor 20% or more into saturation. Smaller inductors can be used in conjunction with the l LIM pin. Efficiency is significantly affected by inductor DCR. For best efficiency limit the DCR to 0.03Ω or less. Toroidal types are preferred in some cases due to their closed design and inherent EMI/RFI superiority. Recommended inductors are listed in Table 1.

Capacitor Selection

Low ESR capacitors are required for both input and output of the LT1300. ESR directly affects ripple voltage and efficiency. For surface mount applications AVX TPS series tantalum capacitors are recommended. These have been specially designed for SMPS and have low ESR along with high surge current ratings. For through-hole application Sanyo OS-CON capacitors offer extremely low ESR in a small size. Again, if peak switch current is reduced using the $\mathrm{I}_{\text {LIM }}$ pin, capacitor requirements can be relaxed and smaller, higher ESR units can be used. Low frequency output ripple can be reduced by adding multiple output capacitors. If capacitance is reduced, output ripple will increase. Suggested capacitor sources are listed in Table 2.

Table 2. Recommended Capacitors

VENDOR	SERIES	TYPE	PHONE\#
AVX	TPS	Surface Mount	$(803) 448-9411$
Sanyo	OS-CON	Through-Hole	$(619) 661-6835$
Panasonic	HFQ	Through-Hole	$(201) 348-5200$

Diode Selection

Best performance is obtained with a Schottky rectifier diode such as the 1N5817. Phillips Components makes this in surface mount as the PRLL5817. Motorola makes the MBRS130LT3 which is slightly better and also in surface mount. For lower output power a 1N4148 can be used although efficiency will suffer substantially.

Layout Considerations

The LT1300 is a high speed, high current device. The input capacitor must be no more than 0.2 from $\mathrm{V}_{\text {IN }}(\operatorname{pin} 6)$ and ground. Connect the PGND and GND (pins 8 and 1) together under the package. Place the inductor adjacent to SW (pin 7) and make the switch pin trace as short as possible. This keeps radiated noise to a minimum.

TYPICAL APPLICATIONS

Four-Cell to 5V/3.3V Up-Down Converter

Step-Up Converter with Automatic Output Disconnect

LCD Contrast Supply
(6050)

PACKACE DESCRIPTO日 Dimensions in inches (millimeters) unless otherwise noted.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

