Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory

feATURES

- 12 V at 120 mA from 5 V or 3.3 V Supply
- Supply Voltage as Low as 1.8 V
- Better High Current Efficiency Than CMOS
- Up to 89% Efficiency
- $120 \mu \mathrm{~A}$ Quiescent Current
- Shutdown to $10 \mu \mathrm{~A}$
- Programmable 5V or 12V Output
- Low V ${ }_{\text {CESAT }}$ Switch: 170 mV at 1A Typical
- Lum Pin Programs Peak Switch Current
- Uses Inexpensive Surface Mount Inductors
- 8-Lead DIP or SOIC Package

APPLICATIONS

- Flash Memory Vpp Generator
- Palmtop Computers
- Portable Instruments
- Bar-Code Scanners
- Personal Digital Assistants
- PCMCIA Cards

DESCRIPTION

The LT1301 is a micropower step-up DC/DC converter that utilizes Burst Mode ${ }^{\text {TM }}$ operation. The device can deliver 5V or 12 V from a two-cell battery input. It features programmable 5 V or 12 V output via a logic-controlled input, noload quiescent current of $120 \mu \mathrm{~A}$ and a shutdown pin which reduces supply current to 10 $\mu \mathrm{A}$. The on-chip power switch has a low 170 mV saturation voltage at a switch current of 1 A , a four-fold reduction over prior designs. A 155 kHz internal oscillator allows the use of extremely small surface mount inductors and capacitors. Operation is guaranteed at 1.8 V input. This allows more energy to be extracted from the battery, increasing operating life. The I LIM pin can be used for soft start or to program peak switch current with a single resistor allowing the use of even smaller inductors in lighter load applications. The LT1301 is available in an 8-lead SOIC package, minimizing board space requirements. For a selectable $3.3 \mathrm{~V} / 5 \mathrm{~V}$ step-up converter, please see the LT1300. For higher output power, see the LT1302.

Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATIONS

Efficiency

Figure 1. 3.3V/5V to 12V Step-Up Converter

ABSOLUTE MAXIMUM RATINGS

VIN Voltage 10V
SW1 Voltage 20V
Sense Voltage 20V
Shutdown Voltage 10V
Select Voltage 10V
LIM Voltage 0.5 V
Maximum Power Dissipation 500 mW
Operating Temperature Range
LT1301C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1301I $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
GND 1	LT1301CN8
SEL 2	
SHon 3 6 $\mathrm{V}_{\text {IN }}$	LT1301CS8
Sense 4 5 LIm	LT1301IS8
$\underset{\substack{\text { N8 PACKAGE } \\ \text { 8-EAD PLASTIC } \\ \text { DIP }}}{\text { S8 PACKAGE }}$	S8 PART MARKING
$\mathrm{T}_{\text {max }}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$	1301
	13011

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }_{Q}$	Quiescent Current	$\begin{aligned} & V_{\text {SHDN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=5 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }}=1.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 120 \\ 7 \end{gathered}$	$\begin{gathered} 200 \\ 15 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{V_{\text {IN }}}$	Input Voltage Range		\bullet	$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$			V
$\overline{V_{\text {OUT }}}$	Output Sense Voltage	$\begin{aligned} & V_{\text {SEL }}=5 \mathrm{~V} \\ & V_{\text {SEL }}=0 \mathrm{~V} \end{aligned}$	\bullet	$\begin{array}{r} 11.52 \\ 4.75 \end{array}$	$\begin{array}{r} 12.00 \\ 5.00 \\ \hline \end{array}$	$\begin{array}{r} 12.48 \\ 5.25 \end{array}$	V
	Output Referred Comparator Hysteresis	$\begin{aligned} & V_{\text {SEL }}=5 \mathrm{~V} \text { (Note 1) } \\ & V_{S E L}=0 \mathrm{~V} \text { (Note 1) } \end{aligned}$	\bullet		$\begin{aligned} & 50 \\ & 22 \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	mV mV
	Oscillator Frequency	Current Limit not Asserted.		120	155	185	kHz
	Oscillator TC				0.2		\%/ ${ }^{\circ} \mathrm{C}$
DC	Maximum Duty Cycle			75	86	95	\%
ton	Switch On-Time	Current Limit not Asserted.			5.6		$\mu \mathrm{S}$
	Output Line Regulation	$1.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$	\bullet		0.06	0.15	\%/V
$\mathrm{V}_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=700 \mathrm{~mA}$	\bullet		130	200	mV
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$, Switch Off	\bullet		0.1	10	$\mu \mathrm{A}$
	Peak Switch Current (Internal Trip Point)	ILIM Floating (See Typical Application) LIIM Grounded		0.75	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	1.25	A A
$V_{\text {SHDNH }}$	Shutdown Pin High		\bullet	1.8			V
$\mathrm{V}_{\text {SHDNL }}$	Shutdown Pin Low					0.5	V
$\mathrm{V}_{\text {SELH }}$	Select Pin High		\bullet	1.5			V
$\mathrm{V}_{\text {SELL }}$	Select Pin Low		\bullet			0.8	V
ISHDN	Shutdown Pin Bias Current	$\begin{aligned} & V_{\text {SHDN }}=5 \mathrm{~V} \\ & V_{\text {SHDN }}=2 \mathrm{~V} \\ & V_{\text {SHDN }}=0 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 8 \\ 3 \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 1 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {SEL }}$	Select Pin Bias Current	$0 \mathrm{~V}<\mathrm{V}_{\text {SEL }}<5 \mathrm{~V}$	\bullet		1	3	$\mu \mathrm{A}$

The denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Note 1: Hysteresis specified is DC. Output ripple may be higher if output capacitance is insufficient or capacitor ESR is excessive. See operation section.

TYPICAL PERFORMANCE CHARACTERISTICS

Saturation Voltage vs Switch Current

Load Transient Response of
Figure 1 Circuit

Total Quiescent Current in Shutdown

LT1301 G2

No-Load Input Current

LT1301 G5

Select Pin Transient Response

Shutdown Pin Bias Current

Load Transient Response of Figure 1 Circuit

Select Pin Transient Response

$C_{\text {OUT }}=100 \mu F, V_{I N}=3.3 \mathrm{~V}$
100Ω LOAD

PIn functions

GND (Pin 1): Signal Ground. Tie to PGND under the package.

Sel (Pin 2): Output Select. When tied to $\mathrm{V}_{\text {IN }}$ converter regulates at 12 V . When grounded or floating converter regulates at 5V. May be driven under logic control.
SHDN (Pin 3): Shutdown. Pull high to shut down the LT1301. Ground for normal operation.

Sense (Pin 4): "Output" Pin. Goes to internal resistive divider. If operating at 5 V output, a $0.1 \mu \mathrm{~F}$ ceramic capacitor is required from Sense to Ground.
$I_{\text {LIM }}$ (Pin 5): Float for 1 A switch current limit. Tie to ground
for approximately 400 mA . A resistor between $\mathrm{I}_{\text {LIM }}$ and ground sets peak current to some intermediate value .
$\mathbf{V}_{\text {IN }}$ (Pin 6): Supply Pin. Must be bypassed with a large value electrolytic to ground. Keep bypass within 0.2 " of the device.

SW (Pin 7): Switch Pin. Connect inductor and diode here. Keep layout short and direct to minimize radio frequency interference.

PGND (Pin 8): Power Ground. Tie to signal ground (pin 1) under the package. Bypass capacitor from $V_{\text {IN }}$ should be tied directly to PGND within 0.2 " of the device.

BLOCK DIAGRAM

Figure 2.

TEST CIRCUIT

OPERATION

Operation of the LT1301 is best understood by referring to the Block Diagram in Figure 2. When A1's negative input, related to the Sense pin voltage by the appropriate resis-tor-divider ratio is higher that the 1.25 V reference voltage, A1's output is low. A2, A3 and the oscillator are turned off, drawing no current. Only the reference and A1 consume current, typically $120 \mu \mathrm{~A}$. When A1's negative input drops below 1.25 V , overcoming A1's 6 mV hysteresis, A1's output goes high enabling the oscillator, current comparator A2, and driver A3. Quiescent current increases to 2 mA as the device prepares for high current switching. Q1 then turns on in controlled saturation for (nominally) $5.3 \mu \mathrm{~s}$ or until comparator A2 trips, whichever comes first. After a fixed off-time of (nominally) $1.2 \mu \mathrm{~s}$, Q1 turns on again. The LT1301's switching causes current to alternately build up in L1 and dump into output capacitor C2 via D1, increasing the output voltage. When the output is high enough to cause A1's output to go to low, switching action ceases. C 2 is left to supply current to the load until $\mathrm{V}_{\text {OUT }}$ decreases enough to force A1's output high, and the entire cycle repeats. Figure 4 details relevant waveforms. A1's cycling causes low-to-mid-frequency ripple voltage on the output. Ripple can be reduced by making the output capacitor large. The $33 \mu \mathrm{~F}$ unit specified results in ripple of 100 mV to 200 mV on the 12 V output. A $100 \mu \mathrm{~F}$ capacitor will decrease ripple to 50 mV . If operating at 5 V ouput a $0.1 \mu \mathrm{~F}$ ceramic capacitor is required at the Sense pin in addition to the electrolytic.
If switch current reaches 1 A , causing A2 to trip, switch ontime is reduced and off-time increases slightly. This allows continuous mode operation during bursts. A2 monitors
the voltage across 3Ω resistor R1 which is directly related to the switch current. Q2's collector current is set by the emitter-area ratio to 0.6% of Q1's collector current. When R1's voltage drop exceeds 18 mV , corresponding to 1 A switch current, A2's output goes high, truncating the ontime portion of the oscillator cycle and increasing off-time to about $2 \mu \mathrm{~s}$ as shown in Figure 3, trace A. This programmed peak current can be reduced by tying the $\mathrm{I}_{\text {LIM }}$ pin to ground, causing $15 \mu \mathrm{~A}$ to flow through R2 into Q3's collector. Q3's current causes a 10.4 mV drop in R2 so that only an additional 7.6 mV is required across R 1 to turn off the switch. This corresponds to a 400 mA switch current as shown in Figure 3, trace B. The reduced peak switch current reduces I^{2} R loses in Q1, L1, C1 and D1. Efficiency can be increased by doing this provided that the accompanying reduction in full load current is acceptable. Lower peak currents also extend alkaline battery life due to the alkaline cell's high internal impedance.

Figure 3. Switch Pin Current With ILIm Floating or Grounded

APPLICATIONS InFORMATION

$$
\begin{aligned}
& V_{\text {IN }}=5 \mathrm{~V}, V_{\text {OUT }}=12 \mathrm{~V}, \mathrm{~L}=33 \mu \mathrm{H} \\
& C_{\text {OUT }}=33 \mu \mathrm{~F}, \mathrm{I}_{\text {LOAD }}=90 \mathrm{~mA}
\end{aligned}
$$

Figure 4. Burst Mode Operation in Action

Output Voltage Selection

The LT1301 can be selected to 5 V or 12 V under logic control or fixed at either by tying Select to ground or V_{IN} respectively. It is permissible to tie Select to a voltage higher than $\mathrm{V}_{\text {IN }}$ as long as it does not exceed 10 V . Efficiency in 5 V mode will be slightly less that in 12 V mode due to the fact that the diode drop is a greater percentage of 5 V than 12V. Since the bipolar switch in the LT1301 gets its base drive from V_{IN}, no reduction in switch efficiency occurs when in 5 V mode. When $\mathrm{V}_{\text {IN }}$ exceeds the programmed output voltage the output will follow the input. This is characteristic of the simple step-up or "boost" converter topology. A circuit example that provides a regulated output with an input voltage above or below the output (known as a buck-boost or SEPIC) is shown in the Typical Applications section.

Shutdown

The converter can be turned off by pulling SHDN (pin 3) high. Quiescent current drops to $10 \mu \mathrm{~A}$ in this condition. Bias current of $8 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$ flows into the pin (at 5 V input). It is recommended that SHDN not be left floating. Tie the pin to ground if the feature is not used. SHDN can be driven high even if $\mathrm{V}_{\text {IN }}$ is floating.

ILIM Function

The LT1301's current limit (lim) pin can be used for soft start. Upon start-up, the LT1301 will draw maximum current from the supply (about 1A) from the supply to charge the output capacitor. Figure 5 shows $\mathrm{V}_{\text {OUT }}$ and I_{IN} waveforms as the device is turned on. The high current flow can create IR drops along supply and ground lines or cause the input supply to drop out momentarily. By

Figure 5. Start-Up Response

Figure 6.

Figure 7. Startup Response Soft-Start Circuitry Added
adding R1 and C3 as shown in Figure 6, the switch current in the LT1301 is initially limited to 400 mA until the $15 \mu \mathrm{~A}$ flowing out of the $\mathrm{I}_{\text {LIM }}$ pin charges up C3. Input current is held to under 500 mA while the output voltage ramps up to 12 V as shown in Figure 7. R1 provides a discharge path for the capacitor without appreciably decreasing peak switch current. When using the $\mathrm{l}_{\text {LIM }}$ pin softstart mode a minimum load of a few hundred microamperes is recommended to prevent C3 from discharging, as no current flows out of llim when the LT1301 is not

APPLLCATIONS INFORMATION

Table 1. Recommended Inductors

PART NUMBER	VENDOR	$\mathrm{L}(\mu \mathrm{H})$	DCR (Ω)	$\mathrm{V}_{1 \mathrm{~N}}(\mathrm{~V})$	ILIM PIN	EFFICIENCY (\%)			COMPONENT HEIGHT (mm)	PHONE NUMBER
						30mA	60 mA	120 mA		
D03316-333	Coilcraft	33	0.088	3.3	Open	84	84	85	5.5	(708) 639-6400
				5	Open	89	89	90		
D01608-223	Coilcraft	22	. 31	3.3	Open	82	82	-	3.5	
				3.3	Ground	85	-	-		
				5	10k	86	87	-		
				5	Ground	88	-	-		
D01608-103	Coilcraft	10	. 11	2	Open	78	-	-	3.5	
CTX20-1	Coiltronics	20	. 175	3.3	Open	84	84	-	4.2	(407) 241-7876
				5	Open	88	88	89		
GA10-332	Gowanda	33	. 077	3.3	Open	86	86	87	Through-Hole	(716) 532-2234
				5	Open	89	89	90		
LQH3G22OK04M00	Murata-Erie	22	0.7	3.3	Ground	81	-	-	2.0	(404) 436-1300
				5	Ground	85	-	-		
CD73-330KC	Sumida	33	0.131	3.3	Open	84	85	86	3.5	(708) 956-0666
				5	Open	88	88	89		
CDRH62-330MC	Sumida	33	0.48	3.3	Open	80	80	81	3.0	
					Ground	85	-	-		
				5	Open	84	84	85		
					Ground	83	-	-		

switching. Zero load current causes the LT1301 to switch so infrequently that C3 can completely discharge reducing subsequent peak switch current to 400 mA . If a load is suddenly applied, output voltage will sag until C3 can be recharged and peak switch current returns to 1 A .
If the full capacity of the LT1301 is not required peak current can be reduced by changing the value of R3 as shown in Figure 8 . With R3 $=0$ switch current is limited to approximately 400 mA . Smaller, less expensive inductors with lower saturation ratings can then be used.

Inductor Selection

For full output power, the inductor should have a saturation current rating of 1.25A for worst-case current limit, although it is acceptable to bias an inductor 20% or more into saturation. Smaller inductors can be used in conjunction with the $\mathrm{I}_{\text {LIM }}$ pin. Efficiency is significantly affected by inductor DCR. For best efficiency limit the DCR to 0.03Ω or less. Toroidal types are preferred in some cases due to their inherent flux containment and EMI/RFI superiority. Recommended inductors are listed in Table 1.

Table 2. Recommended Capacitors

VENDOR	SERIES	TYPE	PHONE\#
AVX	TPS	Surface Mount	$(803) 448-9411$
Sanyo	OS-CON	Through-Hole	$(619) 661-6835$
Panasonic	HFQ	Through-Hole	$(201) 348-5200$

Figure 8. Peak Switch Current vs. Current Limit Set Resistor

APPLICATIONS INFORMATION

Capacitor Selection

Low ESR capacitors are required for both input and output of the LT1301. ESR directly affects ripple voltage and efficiency. For surface mount applications AVX TPS series tantalum capacitors are recommended. These have been specially designed for SMPS and have low ESR along with high surge current ratings. For through-hole applications Sanyo OS-CON capacitors offer extremely low ESR in a small size. Again, if peak switch current is reduced using the LIIM $^{\text {pin, capacitor requirements can be relaxed and }}$ smaller, higher ESR units can be used. Suggested capacitor sources are listed in Table 2.

Diode Selection

Best performance is obtained with a Schottky rectifier diode such as the 1N5817. Phillips Components makes this in surface mount as the PRLL5817. Motorola makes the MBRS130LT3 which is slightly better and also in surface mount. For lower output power a 1N4148 can be used although efficiency will suffer substantially.

Layout Considerations

The LT1301 is a high speed, high current device. The input capacitor must be no more than $0.2^{\prime \prime}$ from $\mathrm{V}_{\mathrm{IN}}(\operatorname{pin} 6)$ and ground. Connect the PGND and GND (pins 8 and 1) together under the package. Place the inductor adjacent to SW (pin 7) and make the switch pin trace as short as possible. This keeps radiated noise to a minimum.

TYPICAL APPLICATIONS

Step-Up Converter with Automatic Output Disconnect

TYPICAL APPLICATIONS

LCD Contrast Supply

Low-Voltage CCFL Power Supply

9

LT1301
TYPICAL APPLICATIONS

5V to - 5 V Converter

PACKAGE DESCRIPTION Dimensions in inchese (millimeters) unless oltemivise noted.

N8 Package 8-Lead Plastic DIP

S8 Package 8-Lead Plastic SOIC

NORTHEAST REGION

Linear Technology Corporation
One Oxford Valley
2300 E. Lincoln Hwy.,Suite 306
Langhorne, PA 19047
Phone: (215) 757-8578
FAX: (215) 757-5631
Linear Technology Corporation
266 Lowell St., Suite B-8
Wilmington, MA 01887
Phone: (508) 658-3881
FAX: (508) 658-2701

U.S. Area Sales Offices

SOUTHEAST REGION

Linear Technology Corporation
17060 Dallas Parkway
Suite 208
Dallas, TX 75248
Phone: (214) 733-3071
FAX: (214) 380-5138
CENTRAL REGION
Linear Technology Corporation
Chesapeake Square
229 Mitchell Court, Suite A-25
Addison, IL 60101
Phone: (708) 620-6910
FAX: (708) 620-6977

International Sales Offices

FRANCE

Linear Technology S.A.R.L.
Immeuble "Le Quartz"
58 Chemin de la Justice
92290 Chatenay Malabry
France
Phone: 33-1-41079555
FAX: 33-1-46314613
GERMANY
Linear Techonolgy GmbH
Untere Hauptstr. 9
D-85386 Eching
Germany
Phone: 49-89-3197410
FAX: 49-89-3194821

JAPAN

Linear Technology KK
5F YZ Bldg.
4-4-12 lidabashi, Chiyoda-Ku
Tokyo, 102 Japan
Phone: 81-3-3237-7891
FAX: 81-3-3237-8010

KOREA

Linear Technology Korea Branch
Namsong Building, \#505
Itaewon-Dong 260-199
Yongsan-Ku, Seoul
Korea
Phone: 82-2-792-1617
FAX: 82-2-792-1619
SINGAPORE
Linear Technology Pte. Ltd.
101 Boon Keng Road
\#02-15 Kallang Ind. Estates
Singapore 1233
Phone: 65-293-5322
FAX: 65-292-0398

SOUTHWEST REGION

Linear Technology Corporation 22141 Ventura Blvd.
Suite 206
Woodland Hills, CA 91364
Phone: (818) 703-0835
FAX: (818) 703-0517
NORTHWEST REGION
Linear Technology Corporation
782 Sycamore Dr.
Milpitas, CA 95035
Phone: (408) 428-2050
FAX: (408) 432-6331

TAIWAN

Linear Technology Corporation
Rm. 801, No. 46, Sec. 2
Chung Shan N. Rd.
Taipei, Taiwan, R.O.C.
Phone: 886-2-521-7575
FAX: 886-2-562-2285
UNITED KINGDOM
Linear Technology (UK) Ltd.
The Coliseum, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone: 44-276-677676
FAX: 44-276-64851

World Headquarters

Linear Technology Corporation
1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Phone: (408) 432-1900
FAX: (408) 434-0507

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+

