feATURES

- 5 V at 400 mA from 2 V Input
- Supply Voltage As Low As 1.8 V
- $120 \mu \mathrm{~A}$ Quiescent Current
- Low-Battery Detector
- Low V Cesat Switch: 310mV at 2A Typ
- Uses Inexpensive Surface Mount Inductors
- 8-Lead SO Package

APPLICATIONS

- 2-Cell and 3-Cell to 5 V Conversion
- EL Panel Drivers
- Portable Instruments

DESCRIPTION

The LT ${ }^{\circledR} 1305$ is a micropower step-up DC/DC converter that uses Burst Mode ${ }^{\text {TTM }}$ operation. Similar to the LT1303, the LT1305 features a 2 A internal low-loss switch and can deliver up to four times the output power of the LT1303.
Quiescent current is only $120 \mu \mathrm{~A}$ and the Shutdown pin further reduces current to $10 \mu \mathrm{~A}$. A low-battery detector provides an open-collector output that goes low when the input voltage drops below a preset level. The LT1305 is available in an 8 -pin SO , easing board space requirements.
$\overline{\mathbf{B} \boldsymbol{\gamma}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$ Burst Mode is a trademark of Linear Technology Corporation

TYPICAL APPLICATION

2-Cell and 3-Cell to 5V/400mA DC/DC Converter with Low-Battery Detect

Efficiency

absolute maximum ratings

VIN Voltage 10 V
SW1 Voltage 25 V
FB Voltage 10 V
Shutdown Voltage 10 V
LBO Voltage 10 V
LBI Voltage 10 V
Maximum Power Dissipation 500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)
$\qquad$$300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathbb{W}}=2.0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{Q}	Quiescent Current	$\begin{aligned} & V_{S H D N}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }}=1.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 120 \\ 7 \end{gathered}$	$\begin{gathered} 200 \\ 15 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {IN }}$	Input Voltage Range		\bullet	$\begin{aligned} & \hline 1.8 \\ & 2.0 \end{aligned}$	1.55		V
	Feedback Voltage		\bullet	1.22	1.24	1.26	V
	Comparator Hysteresis		\bullet		6	12.5	mV
	Feedback Pin Bias Current	$V_{\text {FB }}=1 \mathrm{~V}$	\bullet		7	20	nA
	Oscillator Frequency	Current Limit Not Asserted		120	155	185	kHz
	Oscillator TC				0.2		$\% /{ }^{\circ} \mathrm{C}$
DC	Maximum Duty Cycle		\bullet	75	86	95	\%
t_{ON}	Switch On Time	Current Limit Not Asserted			5.6		$\mu \mathrm{S}$
	Output Line Regulation	$1.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$	\bullet		0.06	0.15	\%/V
$V_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$	\bullet		140	280	mV
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$, Switch Off	\bullet		0.1	10	$\mu \mathrm{A}$
	Peak Switch Current	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$	\bullet	$\begin{aligned} & 1.35 \\ & 1.20 \end{aligned}$	2	$\begin{aligned} & 2.35 \\ & 2.50 \end{aligned}$	A
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		1.15		2.15	A
	LBI Trip Voltage	(Note 2)	\bullet	1.21	1.24	1.27	V
	LBI Input Bias Current	$\mathrm{V}_{\mathrm{LBI}}=1 \mathrm{~V}$	\bullet		7	20	nA
	LBO Output Low	$\mathrm{I}_{\text {LOAD }}=100 \mu \mathrm{~A}$	\bullet		0.11	0.4	V
	LBO Leakage Current	$\mathrm{V}_{\mathrm{LBI}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LB} 0}=5 \mathrm{~V}$	\bullet		0.1	5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SHDNH }}$	Shutdown Pin High		\bullet	1.8			V
$\mathrm{V}_{\text {SHDNL }}$	Shutdown Pin Low					0.5	V
ISHDN	Shutdown Pin Bias Current	$\begin{aligned} & V_{\text {SHDN }}=5 \mathrm{~V} \\ & V_{\text {SHDN }}=2 \mathrm{~V} \\ & V_{\text {SHDN }}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 8.0 \\ & 3.0 \\ & 0.1 \\ & \hline \end{aligned}$	20 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

The denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range.
Note 1: Hysteresis specified is DC. Output ripple may be higher if output capacitance is insufficient or capacitor ESR is excessive.

Note 2: Low-battery detector comparator is inoperative when device is in shutdown

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1305•G01

LBI Pin Bias Current

LT1305•G02
Quiescent Current

FB Pin Bias Current

Maximum Duty Cycle

LT1305•G03
Current Limit

FB Voltage

TYPICAL PERFORMAOCE CHARACTERISTICS

PIn functions

GND (Pin 1): Signal Ground. Tie to PGND under the package.
LBO (Pin 2): Open-Collector Output of Comparator C3. Can sink $100 \mu \mathrm{~A}$. High impedance when device is in shutdown.
SHDN (Pin 3): Shutdown. Pull high to shut down the LT1305. Ground for normal operation.
FB (Pin 4): Feedback Input. Connects to main comparator C1 input.

LBI (Pin 5): Low-Battery Comparator Input. When voltage on this pin is below 1.24 V , LBO is low.
V_{IN} (Pin 6): Supply Pin. Must be bypassed with a large value capacitor to gound. Keep bypass within 0.2 " of the device.
SW (Pin 7): Switch Pin. Connect inductor and diode here. Keep layout short and direct to minimize radio frequency interference.
PGND (Pin 8): Power Ground. Tie to signal ground (pin 1) under the package. Bypass capacitor from $\mathrm{V}_{\text {IN }}$ should be tied directly to PGND within 0.2 " of the device.

BLOCK DIAGRAM

Figure 1. LT1305 Block Diagram

OPERATION

Operation of the LT1305 is best understood by referring to the Block Diagram in Figure 1. When C1's negative input, related to the output voltage by the appropriate resistordivider ratio, is higher than the 1.24 V reference voltage, C1's output is low. C2, A3 and the oscillator are turned off, drawing no current. Only the reference and C1 consume current, typically $120 \mu \mathrm{~A}$. When C1's negative input drops below 1.24 V and overcomes C1's 6 mV hysteresis, C1's output goes high, enabling the oscillator, current comparator C2 and driver A3. Quiescent current increases to 2 mA as the device goes into active switching mode. Q1 then turns on in controlled saturation for nominally $6 \mu \mathrm{~s}$ or until current comparator C2 trips, whichever comes first. The switch thenturns off for approximately $1.5 \mu \mathrm{~s}$, thenturns on again. The LT1305's switching causes current to alternately build up in L1 and dump into output capacitor C4 via D1, increasing the output voltage. When the output is high enough to cause C1's output to go high, switching action ceases. Capacitor C4 is left to supply current to the load
until $V_{\text {OUT }}$ decreases enough to force C1's output high, and the entire cycle repeats. Figure 2 details relevant waveforms. C1's cycling causes low-to-mid-frequency ripple voltage on the output. Ripple can be reduced by making the output capacitor large. The $220 \mu \mathrm{~F}$ unit specified results in ripple of 50 mV to 100 mV on the 5 V output. Paralleling two capacitors will decrease ripple by approximately 50%.

Figure 2. Burst Mode Operation

OPERATION

If switch current reaches 2 A , causing C 2 to trip, switch on time is reduced and off time increases slightly. This allows continuous operation during bursts. C2 monitors the voltage across 3Ω resistor R1 which is directly related to the switch current. Q2's collector current is set by the emitter-area ratio to 0.6% of Q1's collector current. When R1's voltage drop exceeds 36 mV , corresponding to 2 A switch current, C2's output goes high, truncating the on time portion of the oscillator cycle and increasing off time to about $2 \mu \mathrm{~s}$. Response time of C 2 , which determines minimum on time, is approximately 300 ns .

Low-Battery Detector

The low-battery detector is enabled when SHDN is low and disabled when SHDN is high. The comparator has no hysteresis built in, but hysteresis can be added by connecting a high-value resistor from LBI to LBO as shown in Figure 3. The internal reference can be accessed via the comparator as shown in Figure 4.

R1 $=\left(V_{\text {TRIP }}-1.24 \mathrm{~V}\right)(43.5 \mathrm{k})$ HYSTERESIS $\approx 30 \mathrm{mV}$

Figure 3. R3 Adds Hysteresis to Low-Battery Detector

$V_{\text {REF }}=1.24 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$
$V_{\text {IN }} \geq V_{\text {REF }}+200 \mathrm{mV}$
$R 1+\mathrm{R} 2 \approx 33 \mathrm{k}$
LT1305•F04

Inductor Selection

Inductors used with the LT1305 must fulfill two requirements. First, the inductor must be able to handle current of 2 A to 2.5 A without runaway saturation. Rod or drum core units usually saturate gradually and it is acceptable to exceed manufacturer's published saturation current by 20% or so. Second, the unit must have low DCR, under 0.05Ω so that copper loss is kept low and excess heating is avoided. Inductance value is not critical. Generally, for low voltage inputs below 3 V a $10 \mu \mathrm{H}$ inductor is recommended (such as Coilcraft D03316-103). For inputs above 4 V to 5 V use a $22 \mu \mathrm{H}$ unit (such as Coilcraft D03316-223). Switching frequency can reach up to 300 kHz so the core material should be able to operate at high frequency without excessive core loss. Ferrite or molypermalloy cores are a better choice than powdered iron. If EMI is a concern, a toroidal inductor is suggested, such as Coiltronics CTX20-4.

Capacitor Selection

Output and input capacitors should have low ESR for best performance. Inexpensive aluminum electrolytics sometimes have ESR above 1Ω, even for relatively large values such as $100 \mu \mathrm{~F}, 16 \mathrm{~V}$ units. Since the LT1305 has a 2 A current limit, 2 V of ripple voltage would result with such a capacitor at the output. Keep ESR below 0.05Ω to 0.1Ω for reasonable ripple voltage. Tantalum capacitors such as AVX TPS series or Sprague 593D have low ESR and are surface mount components. For lowest ESR, use Sanyo OS-CON units (OS-CON is also available from Vishay). These capacitors have superior ESR, small size and perform well at cold temperatures.

Diode Selection

A 2A Schottky diode such as Motorola MBRS130LT3 is a good choice for the rectifier diode. A 1N5821 or MBRS130T3 are suitable as well. Do not use "general purpose" diodes such as 1N4001. They are much too slow for use in switching regulator applications.

Figure 4. Accessing Internal Reference

TYPICAL APPLICATIONS

Setting Output Voltage

4-Cell-to-5V Converter

5V Step-Up Converter with Reference Output

EL Panel Driver

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

> S8 Package 8-Lead Plastic SOIC

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15 mm)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1129	Micropower Low Dropout Regulator	700mA Output Current in S0-8 Package
LT1182/83/84	LCD and CCFL Backlight Controller	High Efficiency and Excellent Backlight Control Range
LT1301	5V to 12V/200mA Step-Up DC/DC Converter	$120 \mu \mathrm{~A}$ Quiescent Current
LT1302	2-Cell to 5V/600mA Step-Up DC/DC Converter	$200 \mu \mathrm{~A}$ Quiescent Current
LT1303	Micropower DC/DC Converter with Low-Battery Detect	2 V to 5V at 200mA
LT1372	500kHz Step-Up PWM, 1.5A Switch	Low Noise, Fixed Frequency Operation
LTC1472	PCMCIA Host Switch with Protection	Includes Current Limit and Thermal Shutdown

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+

