$250 \mu \mathrm{~A}, 3 \mathrm{MHz}, 200 \mathrm{~V} / \mu \mathrm{s}$ Operational Amplifier

features

- 3MHz Gain Bandwidth
- 200V/us Slew Rate
- $250 \mu \mathrm{~A}$ Supply Current
- Available in Tiny MSOP Package
- C-Load ${ }^{\text {TM }}$ Op Amp Drives All Capacitive Loads
- Unity-Gain Stable
- Power Saving Shutdown Feature
- Maximum Input Offset Voltage: $600 \mu \mathrm{~V}$
- Maximum Input Bias Current: 50nA
- Maximum Input Offset Current: 15nA
- Minimum DC Gain, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}: 30 \mathrm{~V} / \mathrm{mV}$
- Input Noise Voltage: $14 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Settling Time to $0.1 \%, 10 \mathrm{~V}$ Step: 700 ns
- Settling Time to $0.01 \%, 10 \mathrm{~V}$ Step: $1.25 \mu \mathrm{~s}$
- Minimum Output Swing into $1 \mathrm{k}: \pm 13 \mathrm{~V}$
- Minimum Output Swing into 500Ω : $\pm 3.4 \mathrm{~V}$
- Specified at $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$

APPLICATIONS

- Battery-Powered Systems
- Wideband Amplifiers
- Buffers
- Active Filters
- Data Acquisition Systems
- Photodiode Amplifiers

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1351$ is a low power, high speed, high slew rate operational amplifier with outstanding AC and DC performance. The LT1351 features lower supply current, lower input offset voltage, lower input bias current and higher DC gain than devices with comparable bandwidth. The circuit combines the slewing performance of a current feedback amplifier in a true operational amplifier with matched high impedance inputs. The high slew rate ensures that the large-signal bandwidth is not degraded. The amplifier is a single gain stage with outstanding settling characteristics which make the circuit an ideal choice for data acquisition systems. The output drives a $1 \mathrm{k} \Omega$ load to $\pm 13 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and a 500Ω load to $\pm 3.4 \mathrm{~V}$ on $\pm 5 \mathrm{~V}$ supplies. The amplifier is also stable with any capacitive load which makes it useful in buffer or cable driver applications.
The LT1351 is a member of a family of fast, high performance amplifiers using this unique topology and employing Linear Technology Corporation's advanced complementary bipolar processing. For dual and quad amplifier versions of the LT1351 see the LT1352/LT1353 data sheet. For higher bandwidth devices with higher supply current see the LT1354 through LT1365 data sheets. Singles, duals and quads of each amplifier are available.

[^0]TYPICAL APPLICATION

Instrumentation Amplifier

GAIN $=[R 4 / R 3][1+(1 / 2)(R 2 / R 1+R 3 / R 4)+(R 2+R 3) / R 5]=102$
TRIM R5 FOR GAIN
TRIM R1 FOR COMMON MODE REJECTION
$B W=30 \mathrm{kHz}$

Large-Signal Response

$A_{V}=-1$

ABSOLUTE MAXImUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) 36 V
Differential Input Voltage (Transient Only, Note 1) ... $\pm 10 \mathrm{~V}$ Input Voltage \qquad $\ldots V_{S}$ Output Short-Circuit Duration (Note 2) Indefinite Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Specified Temperature Range (Note 6) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature (See Below) Plastic Package \qquad $150^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad
\qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & 0.6 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
$\underline{10 S}$	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		5	15	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		20	50	nA
e_{n}	Input Noise Voltage	$f=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		14		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$V_{C M}= \pm 12 \mathrm{~V}$ Differential	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	300	$\begin{gathered} 600 \\ 20 \end{gathered}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\pm 15 \mathrm{~V}$		3		pF
	Positive Input Voltage Range		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	12.0 2.5 0.5	$\begin{array}{r} \hline 13.5 \\ 3.5 \\ 1.0 \end{array}$		V
	Negative Input Voltage Range		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{array}{r} -13.5 \\ -3.5 \\ -1.0 \\ \hline \end{array}$	$\begin{array}{r} \hline-12.0 \\ -2.5 \\ -0.5 \\ \hline \end{array}$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \\ \hline \end{gathered}$	80 78 68	$\begin{aligned} & \hline 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		90	106		dB

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ},, v_{c m}=0$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 40 \\ & 30 \\ & 20 \\ & 30 \\ & 25 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 60 \\ & 40 \\ & 60 \\ & 50 \\ & 30 \\ & 40 \end{aligned}$		V / mV V / mV
$V_{\text {OUT }}$	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 13.5 \\ 13.4 \\ 13.0 \\ 3.5 \\ 3.4 \\ 1.3 \\ \hline \end{gathered}$	$\begin{gathered} 14.0 \\ 13.8 \\ 13.4 \\ 4.0 \\ 3.8 \\ 1.7 \\ \hline \end{gathered}$		$\begin{aligned} & \pm V \\ & \pm V \end{aligned}$
IOUT	Output Current	$\begin{aligned} & V_{\text {OUT }}= \pm 13 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 3.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 13.0 \\ 6.8 \end{array}$	$\begin{array}{r} 13.4 \\ 7.6 \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	30	45		mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 k($ Note 3)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 120 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} \hline 200 \\ 50 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
	Full-Power Bandwidth	10V Peak (Note 4) 3V Peak (Note 4)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 3.2 \\ & 2.6 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.7 \\ & 2.5 \\ & \hline \end{aligned}$		MHz MHz MHz
t_{r}, t_{f}	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, 0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 46 \\ & 53 \end{aligned}$		ns
	Overshoot	$A_{V}=1,0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 13 \\ & 16 \end{aligned}$		\%
	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}, 0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 41 \\ & 52 \end{aligned}$		ns
$\mathrm{t}_{\text {s }}$	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & 10 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{array}{r} 700 \\ 1250 \\ 950 \\ 1400 \end{array}$		ns ns ns ns
$\underline{\mathrm{R}_{0}}$	Output Resistance	$A_{V}=1, \mathrm{f}=20 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		1.5		Ω
ISHDN	Shutdown Input Current	$\begin{aligned} & \text { SHDN }=V_{E E}+0.1 \mathrm{~V} \\ & S H D N=V_{C C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline-10 \\ 0.1 \end{gathered}$	2	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Is	Supply Current	SHDN $=\mathrm{V}_{\mathrm{EE}}+0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{gathered} 250 \\ 220 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 330 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX
$V_{\text {OS }}$	Input Offset Voltage		$\pm 15 \mathrm{~V}$		0.8	mV V
			$\pm 5 \mathrm{~V}$		0.8	mV
			$\pm 2.5 \mathrm{~V}$		1.0	mV
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 5)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	3	8	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$I_{\text {OS }}$	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	nA		
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		20	nA

ELECTRICRL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 78 \\ & 77 \\ & 67 \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		89			dB
Avol	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 25 \\ & 20 \\ & 20 \\ & 15 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$			V / mV V / mV
$V_{\text {OUT }}$	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=5 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} \hline 13.4 \\ 13.3 \\ 12.0 \\ 3.4 \\ 3.3 \\ 1.2 \end{array}$			$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
$\mathrm{I}_{\text {OUt }}$	Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 3.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 12.0 \\ 6.6 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\underline{\text { ISC }}$	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	24			mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 k($ Note 3)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 100 \\ 21 \end{array}$			$\mathrm{V} / \mu \mathrm{S}$ $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.6 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
ISHDN	Shutdown Input Current	$\begin{aligned} & \mathrm{SHDN}=\mathrm{V}_{\mathrm{EE}}+0.1 \mathrm{~V} \\ & \mathrm{SHDN}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		-20	3	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Is	Supply Current	SHDN $=\mathrm{V}_{\text {EE }}+0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		20	$\begin{aligned} & 380 \\ & 355 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted (Note 6).

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage					1.0	mV
			$\pm 5 \mathrm{~V}$			1.0	mV
			$\pm 2.5 \mathrm{~V}$			1.2	mV
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 5)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		3	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			30	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			100	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 76 \\ & 76 \\ & 66 \\ & \hline \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		87			dB
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 20 \\ 15 \\ 15 \\ 10 \\ 8 \\ 10 \end{array}$			V / mV V/mV

$\boldsymbol{\in L E C T R I C A L ~ C H A R A C T E R I S T I C S ~}-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cm}}=0 \mathrm{O}$ unless otherwise noted (Note 6).

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OUT }}$	Output Swing		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} \hline 13.3 \\ 13.2 \\ 10.0 \\ 3.3 \\ 3.2 \\ 1.1 \end{array}$			$\begin{aligned} & \pm V \\ & \pm V \end{aligned}$
IOUT	Output Current	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 3.2 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 10.0 \\ 6.4 \end{array}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	20			mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 k($ Note 3)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 50 \\ & 15 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
ISHDN	Shutdown Input Current	$\begin{aligned} & \mathrm{SHDN}=\mathrm{V}_{\mathrm{EE}}+0.1 \mathrm{~V} \\ & \mathrm{SHDN}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		-30	5	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Is	Supply Current	SHDN $=\mathrm{V}_{\text {EE }}+0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		30	$\begin{aligned} & 390 \\ & 380 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Differential inputs of $\pm 10 \mathrm{~V}$ are appropriate for transient operation only, such as during slewing. Large, sustained differential inputs will cause excessive power dissipation and may damage the part. See Input Considerations in the Applications Information section of this data sheet for more details.
Note 2: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 3: Slew rate is measured between $\pm 8 \mathrm{~V}$ on the output with $\pm 12 \mathrm{~V}$ input for $\pm 15 \mathrm{~V}$ supplies and $\pm 2 \mathrm{~V}$ on the output with $\pm 3 \mathrm{~V}$ input for $\pm 5 \mathrm{~V}$ supplies.

Note 4: Full-power bandwidth is calculated from the slew rate measurement: FPBW = $($ Slew Rate $) / 2 \pi V_{p}$.
Note 5: This parameter is not 100% tested.
Note 6: The LT1351 is designed, characterized and expected to meet these extended temperature limits, but is not tested at $-40^{\circ} \mathrm{C}$ and at $85^{\circ} \mathrm{C}$. Guaranteed I grade parts are available; consult factory.

TYPICAL PGRFORMANCE CHARACTERISTICS

Supply Current vs Supply Voltage and Temperature

1351 G01

1351 G02

Input Bias Current vs Input Common Mode Voltage

1351 G03

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMAOCE CHARACTERISTICS

Gain Bandwidth and Phase Margin vs Temperature

1351 G16
Gain Bandwidth and Phase Margin vs Supply Voltage

1351 G19

Output Impedance vs Frequency

Frequency Response vs Supply Voltage ($A_{V}=1$)

1351 G17

Power Supply Rejection Ratio vs Frequency

1351 G20

Frequency Response vs Capacitive Load

Frequency Response
vs Supply Voltage ($A_{V}=-1$)

1351 G18

Common Mode Rejection Ratio vs Frequency

1351 G21

TYPICAL PGRFORMANCG CHARACTERISTICS

2nd and 3rd Harmonic Distortion vs Frequency

1351 G23

Undistorted Output Swing

 vs Frequency ($\pm 15 \mathrm{~V}$)

1351 G26

Slew Rate vs Input Level

Shutdown Supply Current

vs Temperature

1351 G29

1351 G24

Undistorted Output Swing vs Frequency ($\pm 5 \mathrm{~V}$)

1351 G27

TYPICAL PERFORMAOCG CHARACTERISTICS

Small-Signal Transient
($A_{V}=-1$)

Large-Signal Transient
($A_{V}=-1$)

Small-Signal Transient
($A_{V}=-1, C_{L}=1000 \mathrm{pF}$)

Large-Signal Transient
($A_{V}=1, C_{L}=10,000 \mathrm{pF}$)

APPLICATIONS INFORMATION

The LT1351 may be inserted directly into many high speed amplifier applications improving both DC and AC performance, provided that the nulling circuitry is removed. The suggested nulling circuit for the LT1351 is shown in Figure 1.

Figure 1. Offset Nulling

Layout and Passive Components

The LT1351 amplifier is easy to apply and tolerant of less than ideal layouts. For maximum performance (for example fast settling time) use a ground plane, short lead lengths and RF-quality bypass capacitors ($0.01 \mu \mathrm{Fto} 0.1 \mu \mathrm{~F}$). For high drive current applications use low ESR bypass capacitors ($1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum). For details see Design Note 50.

The parallel combination of the feedback resistor and gain setting resistor on the inverting input can combine with the input capacitance to form a pole which can cause peaking or even oscillations. For feedback resistors greater than 10k, a parallel capacitor of value, $\mathrm{C}_{\mathrm{F}}>\left(\mathrm{R}_{\mathrm{G}}\right)\left(\mathrm{C}_{\mathrm{IN}} / \mathrm{R}_{\mathrm{F}}\right)$ should be used to cancel the input pole and optimize dynamic performance. For applications where the DC

APPLICATIONS InFORMATION

noise gain is one and a large feedback resistor is used, C_{F} should be greater than or equal to C_{IN}. An example would be an I-to-V converter as shown in the Typical Applications section.

Capacitive Loading

The LT1351 is stable with any capacitive load. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the frequency domain and in the transient response. Graphs of Frequency Response vs Capacitive Load, Capacitive Load Handling and the transient response photos clearly show these effects.

Input Considerations

Each of the LT1351 inputs is the base of an NPN and a PNP transistor whose base currents are of opposite polarity and provide first-order bias current cancellation. Because of variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current does not depend on NPN/PNP beta matching and is well controlled. The use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized.

The inputs can withstand transient differential input voltages up to 10 V without damage and need no clamping or source resistance for protection. Differential inputs, however, generate large supply currents (tens of mA) as required for high slew rates. If the device is used with sustained differential inputs, the average supply current will increase, excessive power dissipation will result and the part may be damaged. The part should not be used as a comparator, peak detector or other open-loop application with large, sustained differential inputs. Under normal, closed-loop operation, an increase of power dissipation is only noticeable in applications with large slewing outputs and is proportional to the magnitude of the differential input voltage and the percent of the time that the inputs are apart. Measure the average supply current for the application in order to calculate the power dissipation.

Shutdown

The LT1351 has a Shutdown pin for conserving power. When this pin is open or 2 V above the negative supply the part operates normally. When pulled down to V^{-}the supply current will drop to about $10 \mu \mathrm{~A}$. The current out of the Shutdown pin is also typically $10 \mu \mathrm{~A}$. In shutdown the amplifier output is not isolated from the inputs so the LT1351 cannot be used in multiplexing applications using the shutdown feature.

A level shift application is shown in the Typical Applications section so that a ground-referenced logic signal can control the Shutdown pin.

Circuit Operation

The LT1351 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the simplified schematic.

The inputs are buffered by complementary NPN and PNP emitter followers which drive R1, a 1 k resistor. The input voltage appears across the resistor generating currents which are mirrored into the high impedance node and compensation capacitor C_{T}. Complementary followers form an output stage which buffers the gain node from the load. The output devices Q19 and Q22 are connected to form a composite PNP and composite NPN.

The bandwidth is set by the input resistor and the capacitance on the high impedance node. The slew rate is determined by the current available to charge the capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 10 V output step in a gain of 10 has only a 1 V input step whereas the same output step in unity gain has a 10 times greater inputstep. The curve of Slew Rate vs Input Level illustrates this relationship.
Capacitive load compensation is provided by the $\mathrm{R}_{\mathrm{C}}, \mathrm{C}_{\mathrm{C}}$ network which is bootstrapped across the output stage. When the amplifier is driving a light load the network has no effect. When driving a capacitive load (or a low value

APPLICATIONS INFORMATION

resistive load) the network is incompletely bootstrapped and adds to the compensation at the high impedance node. The added capacitance slows down the amplifier and a zero is created by the RC combination, both of
which improve the phase margin. The design ensures that even for very large load capacitances the total phase lag can never exceed 180 degrees (zero phase margin) and the amplifier remains stable.

SIMPLIFIED SCHEMATIC

TYPICAL APPLICATIONS

20kHz, 4th Order Butterworth Filter

TYPICAL APPLICATIONS

Shutdown Circuit

DAC I-to-V Converter

PACKAG \in DESCRIPTION Dimensions in incheses mililimeters unness oliemisise noled.

MS8 Package
8-Lead Plastic MSOP
(LTC DWG \# 05-08-1660)

PACKAGE DESCRIPTIOी Dimensions in inches (millimeters) unless otherwise noted.

THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

5080996

TYPICAL APPLICATION

Low Power Sample-and-Hold

DROOP: $20 \mathrm{nA} / 2000 \mathrm{pF}=10 \mathrm{mV} / \mathrm{ms}$
ACQUISITION TIME: 10V, $0.1 \%=2 \mu \mathrm{~S}$
CHARGE INJECTION ERROR: $8 \mathrm{pC} / 2000 \mathrm{pF}=4 \mathrm{mV}$
1351 TA06

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1352/LT1353	Dual/Quad $250 \mu \mathrm{~A}, 3 \mathrm{MHz}, 200 \mathrm{~V} / \mu \mathrm{s}$ Op Amp	Good DC Precision, Stable with All Capacitive Loads
LT1354	$1 \mathrm{~mA}, 12 \mathrm{MHz}, 400 \mathrm{~V} / \mu \mathrm{s}$ Op Amp	Good DC Precision, Stable with All Capacitive Loads

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR

[^0]: $\mathbf{\boxed { 1 7 }}$, LTC and LT are registered trademarks of Linear Technology Corporation. C-Load is a trademark of Linear Technology Corporation.

