features

- Integrated Schottky Rectifier

- Fixed Frequency 1.2MHz/2.7MHz Operation
- Very Low Noise: 1mVP-p Output Ripple
- Low $V_{\text {CESAT }}$ Switch: 270 mV at 250 mA
- -5 V at 100 mA from 5 V Input
- -12 V at 30 mA from 3.3 V Input
- Low Input Bias Current GND Based FB Input
- Low Impedance (40) 1.265V Reference Output
- High Output Voltage: Up to -38V
- Wide Input Range: 2.5 V to 16 V
- Uses Tiny Surface Mount Components
- Low Shutdown Current: <10 1 A
- Low Profile (1mm) SOT-23 (ThinSOTTM) Package
- 8-Lead DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.75 \mathrm{~mm}$) Package, LT3462A Only

APPLICATIONS

- CCD Bias
- LCD Bias
- GaAs FET Bias
- General Purpose Negative Voltage Supply

Inverting $1.2 \mathrm{MHz} / 2.7 \mathrm{MHz}$ DC/DC Converters with Integrated Schottky DESCRIPTIOn

The $\mathrm{LT}^{\circledR 3462 / L T 3462 A}$ are general purpose fixed frequency current mode inverting DC/DC converters. Both devices feature an integrated Schottky and a low VCESAT switch allowing a small converter footprint and lower parts cost. The LT3462 switches at 1.2 MHz while the LT3462A switches at 2.7 MHz . These high speeds enable the use of tiny, low cost and low height capacitors and inductors.

The LT3462/LT3462A operate in a dual inductor inverting topology that filters both the input and output currents. Very low output voltage ripple approaching $1 \mathrm{mV} \mathrm{P}_{\text {-p }}$ can be achieved when ceramic capacitors are used. Fixed frequency switching ensures a clean output free from low frequency noise typically present with charge pump solutions. The 40 V switch allows a $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ differential of up to 38 V for dual inductor topologies.

Both devices provide a low impedance 1.265 V reference output to supply the feedback resistor network. A ground referenced, high impedance FB input allows high feedback resistor values without compromising output accuracy.

All registered trademarks and trademarks are the property of their respective owners.

TYPICAL APPLICATION

5 V to $\mathbf{- 5 V}$, 100mA Inverting DC/DC Converter

Efficiency

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Input Voltage (VIN)... 16 V	Maximum Junction Temperature $125^{\circ} \mathrm{C}$
SW Voltage ..40V	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
D Voltage .. 40 V	Lead Temperature (Soldering, 10sec)
SDREF, FB Voltage ..2.5V	(TSOT-23 Package Only).............................. $300^{\circ} \mathrm{C}$

Operating Ambient

Temperature Range (Note 3)
\qquad
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

PIn COnfiGURATIOn

ORDER INFORMATION

http://www.linear.com/product/LT3462\#orderinfo

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT3462ES6\#PBF	LT3462ES6\#TRPBF	LTBBV	6 -Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3462AES6\#PBF	LT3462AES6\#TRPBF	LTBGB	6 -Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3462AEDC\#PBF	LT3462AEDC\#TRPBF	LHGH	8 -Lead $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult ADI Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.

LT3462/LT3462A

ELECTRICAL CHARACTERISTICS The odenotes the speciications which apply vere the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=3 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage			2.5			V
Maximum Operating Voltage					16	V
SDREF Voltage	$10 \mu \mathrm{~A}>\mathrm{I}_{\text {SDREF }} \geq-80 \mu \mathrm{~A}$	\bullet	1.245	1.265	1.285	V
FB Pin Bias Current (Note 2)				15	50	nA
SDREF Minus FB Voltage	$10 \mu \mathrm{~A}>\mathrm{I}_{\text {SDREF }} \geq-80 \mu \mathrm{~A}$	\bullet	1.235	1.263	1.285	V
Error Amp Offset Voltage			-12		12	mV
SDREF Reference Source Current	SDREF $>1.2 \mathrm{~V}$	-	120	180		$\mu \mathrm{A}$
Supply Current	$\begin{aligned} & \mathrm{FB}=-0.05 \mathrm{~V}, \text { Not Switching } \\ & \text { SDREF }=0 \mathrm{~V}, \mathrm{FB}=\text { Open, } \mathrm{V} \text { IN }=5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 2.9 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 10 \end{aligned}$	mA $\mu \mathrm{A}$
SDREF Line Regulation				0.007		\%/V
Switching Frequency (LT3462)		\bullet	0.8	1.2	1.6	MHz
Switching Frequency (LT3462A)		\bullet	2.0	2.7	3.5	MHz
Maximum Duty Cycle (LT3462)		\bullet	90			\%
Maximum Duty Cycle (LT3462A)		\bullet	77			\%
Switch Current Limit			300	420		mA
Switch V ${ }_{\text {CESAT }}$	$\mathrm{I}_{\text {SW }}=250 \mathrm{~mA}$			270	350	mV
Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
Rectifier Leakage Current	$\mathrm{V}_{\mathrm{D}}=-40 \mathrm{~V}$			0.03	4	$\mu \mathrm{A}$
Rectifier Forward Drop	$\mathrm{ISCHOTKY}=250 \mathrm{~mA}$			800	1100	mV
SDREF Voltage Low		-			0.20	V
SDREF Off-State Pull-Up Current			1	2	3	$\mu \mathrm{A}$
SDREF Turn-Off Current			-300	-200		$\mu \mathrm{A}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Current flows out of the pin.

Note 3: The LT3462E is guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

LT3462/LT3462A

TYPICAL PERFORMANCE CHARACTERISTICS

PIn functions

(TSOT-23/DFN)

SW (Pin 1/Pin 4): Switch Pin. Connect to external inductor L1 and positive terminal of transfer cap.
GND (Pin 2/Pins 2, 3): Ground. Tie directly to local ground plane.

FB (Pin 3/Pin 1): Feedback Pin. Connect resistive divider tap here. Set R1 according to R1 $=\mathrm{R} 2 \cdot\left(\mathrm{~V}_{0 \mathrm{UT}} / 1.265 \mathrm{~V}\right)$. In shutdown, a proprietary shutdown bias current cancellation circuit allows the internal $3 \mu \mathrm{~A}$ source to pull up the SDREF pin, even with residual negative voltage on $\mathrm{V}_{\text {OUT }}$.

SDREF (Pin 4/Pin 8): Dual Function Shutdown and 1.265V Reference Output Pin. Pull to GND with external N-FET to turn regulator off. Turn-off pull-down and a $2 \mu \mathrm{~A}$ internal source will pull SDREF up to turn-on the
regulator. At turn-on, a $180 \mu \mathrm{~A}$ internal source pulls the pin to the regulation voltage. The SDREF pin can supply up to $80 \mu \mathrm{~A}$ at 1.265 V to bias the feedback resistor divider. An optional soft-start circuit capacitor connects from this pin to - $\mathrm{V}_{\text {OUT }}$.
D (Pin 5/Pin 7): Anode Terminal of Integrated Schottky Diode. Connect to negative terminal of transfer cap and external inductor L2.
$\mathbf{V}_{\text {IN }}$ (Pin 6/Pin 5): Input Supply Pin. Must be locally bypassed.

Exposed Pad (NA/Pin 9): GND. The exposed pad should be soldered to the PCB ground to achieve the rated thermal performance.

BLOCK DIAGRAM

Figure 1. Block Diagram

OPERATION

The LT3462 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the Block Diagram in Figure 1. At the start of each oscillator cycle, the SR latch is set, turning on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator. When this voltage exceeds the voltage at the output of the EAMP, the SR latch is reset, turning off the power switch. The level at the output of the EAMP is simply an amplified version of the difference between the feedback voltage and GND. In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is taken from the output; if it decreases, less current is taken. One function not shown in Figure 1 is the current limit. The switch current is constantly monitored and not allowed to exceed the nominal value of 400 mA . If the switch current reaches 400 mA , the SR latch is reset regardless of the output state
of the PWM comparator. This current limit cell protects the power switch as well as various external components connected to the LT3462.

SDREF is a dual function input pin. When driven low it shuts the part down, reducing quiescent supply current to less than $10 \mu \mathrm{~A}$. When not driven low, the SDREF pin has an internal pull-up current that turns the regulator on. Once the part is enabled, the SDREF pin sources up to $180 \mu \mathrm{~A}$ nominally at a fixed voltage of 1.265 V through external resistor R 2 to FB . If there is no fault condition present, FB will regulate to OV , and $\mathrm{V}_{\text {Out }}$ will regulate to $1.265 \mathrm{~V} \cdot(-\mathrm{R} 1 / \mathrm{R} 2)$. An optional soft-start circuit uses the fixed SDREF pull-up current and a capacitor from SDREF to $\mathrm{V}_{\text {Out }}$ to set the $\mathrm{dV} / \mathrm{dt}$ on $\mathrm{V}_{\text {Out }}$. In shutdown, an FB bias current cancellation circuit supplies up to $150 \mu \mathrm{~A}$ biasing current to external resistor R1 while $\mathrm{V}_{\text {OUT }}$ is lower than FB. This function eliminates R2 loading of SDREF during shutdown. As a result, supply current in shutdown may exceed $10 \mu \mathrm{~A}$ by the amount of current flowing in R1.

APPLICATIONS InFORMATION

Inrush Current

The LT3462 has a built-in Schottky diode. When supply voltage is applied to the $\mathrm{V}_{\text {IN }}$ pin, the voltage difference between V_{IN} and V_{D} generates inrush current flowing from input through the inductor and the Schottky diode to charge the flying capacitor to V_{IN}. The maximum nonrepetitive surge current the Schottky diode in the LT3462 can sustain is 1.5 A . The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1.5A. The peak inrush current can be calculated as follows:

$$
I_{P}=\frac{V_{I N}-0.6}{\sqrt{\frac{L}{C}-1}} \exp \left(-\frac{\pi}{2 \sqrt{\frac{L}{C}-1}}\right)
$$

where L is the inductance between supply and $S W$, and C is the capacitance between SW and D.

Table 3 gives inrush peak currents for some component selections.

Table 3. Inrush Peak Current

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathbf{L}(\boldsymbol{\mu} \mathbf{H})$	$\mathbf{C}(\boldsymbol{\mu F})$	$\mathbf{I}_{\mathbf{P}}(\mathbf{A})$
5	22	1	0.70
5	33	1	0.60
12	47	1	1.40

Inductor Selection

Each of the two inductors used with LT3462 should have a saturation current rating (where inductance is approximately 70% of zero current inductance) of approximately 0.25 A or greater. If the device is used in the charge pump mode, where there is only one inductor, then its rating should be 0.35 A or greater. DCR of the inductors should be less than 1Ω. For LT3462, a value of $22 \mu \mathrm{H}$ is suitable if using a coupled inductor such as Sumida CLS62-220. If using two separate inductors, increasing the value to $47 \mu \mathrm{H}$ will result in the same ripple current. For LT3462A, a value of $10 \mu \mathrm{H}$ for the coupled inductor and $22 \mu \mathrm{H}$ for two inductors will be acceptable for most applications.

Capacitor Selection

Ceramic capacitors are recommended. An X7R or X5R dielectric should be used to avoid capacitance decreasing severely with applied voltage and at temperature limits. The "flying" capacitor between the SW and D pins should be a ceramic type of value $1 \mu \mathrm{~F}$ or more. When used in the dual inductor or coupled inductor topologies the flying capacitor should have a voltage rating that is more than the difference between the input and output voltages. For the charge pump inverter topology, the voltage rating should be more than the output voltage. The output capacitor should be a ceramic type. Acceptable output capacitance varies from $1 \mu \mathrm{~F}$ for high $\mathrm{V}_{\text {OUT }}(-36 \mathrm{~V})$, to $10 \mu \mathrm{~F}$ for low $\mathrm{V}_{\text {OUT }}(-5 \mathrm{~V})$. The input capacitor should be a $1 \mu \mathrm{~F}$ ceramic type and be placed as close as possible to the LT3462/LT3462A.

Layout Hints

The high speed operation of the LT3462 demands careful attention to board layout. You will not get advertised performance with careless layout. Figure 2 shows the recommended component placement. A ceramic capacitor of $1 \mu \mathrm{~F}$ or more must be placed close to the IC for input supply bypassing.

Figure 2. Suggested Layout

TYPICAL APPLICATIONS

$V_{\text {Out }}$ Reaches -12 V in $750 \mu \mathrm{~s}$; Input Current Peaks at 300 mA without $\mathrm{C}_{\mathrm{S} 1}$

Li' to -8V Supply

-12V Efficiency

$V_{\text {OUT }}$ Reaches -12 V in 7.5 ms ; Input Current Peaks at 125 mA with $\mathrm{C}_{\mathrm{S} 1}=100 \mathrm{nF}$

-8V Efficiency

LT3462/LT3462A

TYPICAL APPLICATIONS

5 V to 0 -5V Supply (LT3462A)

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LT3462\#packaging for the most recent package drawings.

DC8 Package
8-Lead Plastic DFN ($2 \mathrm{~mm} \times \mathbf{2 m m}$)
(Reference LTC DWG \# 05-08-1719 Rev A)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

LT3462/LT3462A

PACKAGE DESCRIPTION
Please refer to http://www.linear.com/product/LT3462\#packaging for the most recent package drawings.

S6 Package

6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$05 / 18$	Add $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ 8-lead DFN package information (A-grade version only) to data sheet	$1,2,4,9$

LT3462/LT3462A

TYPICAL APPLICATION

12V to -36V DC/DC Converter

-36V Efficiency

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1617/LT1617-1	$350 \mathrm{~mA} / 100 \mathrm{~mA}$ (Isw) High Efficiency Micropower Inverting DC/DC Converter	$\mathrm{V}_{\text {IN }}$: 1.2 V to 15V, $\mathrm{V}_{\text {OUT(MAX) }}=-34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$ ThinSOT Package
LT1931/LT1931A	1A (Isw), 1.2MHz/2.2MHz, High Efficiency Micropower Inverting DC/DC Converter	$\mathrm{V}_{\text {IN: }} 2.6 \mathrm{~V}$ to 16V, $\mathrm{V}_{\text {OUT(MAX }}=-34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=5.8 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$ ThinSOT Package
LT1945	Dual Output, Boost/Inverter, 350 mA (I $\mathrm{I}_{\text {SW }}$), Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN: }}$: 1.2 V to $15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}, \mathrm{MS} 10$ Package
LT1946/LT1946A	1.5A (Isw), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}: 2.45 \mathrm{~V}$ to 16V, $\mathrm{V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3.2 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A} \mathrm{MS8} \mathrm{Package}$
LT3463	Dual Output, Boost/Inverter, 250 mA (Isw), Constant Off-Time, High Efficiency Step-Up DC/DC Converter with Integrated Schottky Diodes	$\mathrm{V}_{\text {IN: }}: 2.3 \mathrm{~V}$ to 15V, $\mathrm{V}_{\text {OUT(MAX }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\text {Q }}=40 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$ DFN Package
LT3464	85mA (Isw), High Efficiency Step-Up DC/DC Converter with Integrated Schottky and PNP Disconnect	$\mathrm{V}_{\text {IN }}: 2.3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=25 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$ ThinSOT Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+

