LT3483/LT3483A

feATURES

- Internal 4OV Schottky Diode
- One Resistor Feedback (Other Resistor Inside)
- Internal $\mathbf{4 0 V}, \mathbf{2 0 0 m A} / 400 \mathrm{~mA}$ Power Switch
- Generates Regulated Negative Outputs to -38V
- Low Quiescent Current: $40 \mu \mathrm{~A}$ in Active Mode $<1 \mu \mathrm{~A}$ in Shutdown Mode
- Low $V_{\text {CESAT }}$ Switch: 200 mV at 150 mA
- Wide Input Range: 2.5 V to 16 V
- Uses Small Surface Mount Components
- Output Short-Circuit Protected
- Available in a 6-Lead SOT-23 (LT3483 Only) and Low Profile 8 -Lead DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.75 \mathrm{~mm}$) Packages

APPLICATIONS

- LCD Bias
- Handheld Computers
- Battery Backup
- Digital Cameras
- OLED Bias

DESCRIPTIOn

The LT $\circledast 3483 /$ LT3483A are micropower inverting DC/DC converters with integrated Schottky and one resistor feedback. The small package size, high level of integration and use of tiny surface mount components yield a solution size as small as $40 \mathrm{~mm}^{2}$. The devices feature a quiescent current of only $40 \mu \mathrm{~A}$ at no load, which further reduces to $0.1 \mu \mathrm{~A}$ in shutdown. A current limited, fixed off-time control scheme conserves operating current, resulting in high efficiency over a broad range of load current. A precisely trimmed $10 \mu \mathrm{~A}$ feedback current enables one resistor feedback and virtually eliminates feedback loading of the output. The 40 V switch enables voltage outputs up to -38 V to be generated without the use of costly transformers. The LT3483/LT3483A's low 300ns off-time permits the use of tiny low profile inductors and capacitors to minimize footprint and cost in space-conscious portable applications.

[^0]
TYPICAL APPLICATION

Efficiency and Power Loss

ABSOLUTG MAXIMUM RATINGS
(Note 1)
VIN Voltage 16 V
SW Voltage 40V
D Voltage 40V
FB Voltage 2.5V
$\overline{\text { SHDN }}$ Voltage 16 V
Operating Ambient Temperature Range (Note 2)LT3483E/LT3483AE $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$LT3483I/LT3483AI............................. $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature $125^{\circ} \mathrm{C}$
Storage Temperature Range

\qquadLead Temperature (Soldering, 10 sec)(TSOT-23 Package Only)$300^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT3483EDC\#PBF	LT3483EDC\#TRPBF	LCYT	8 -Lead (2mm 2mm) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3483ES6\#PBF	LT3483ES6\#TRPBF	LTBKX	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3483AEDC\#PBF	LT3483AEDC\#TRPBF	LFXD	8 -Lead (2mm 2mm) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3483IDC\#PBF	LT3483IDC\#TRPBF	LCYT	8 -Lead (2mm 2mm) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT3483IS6\#PBF	LT3483IS6\#TRPBF	LTBKX	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT3483AIDC\#PBF	LT3483AIDC\#TRPBF	LFXD	8 -Lead (2mm 2mm) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LEAD BASED FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT3483EDC	LT3483EDC\#TR	LCYT	8 -Lead (2mm 2mm) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT3483ES6	LT3483ES6\#TR	LTBKX	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LT3483/LT3483A

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=3.6 \mathrm{~V}$ unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {IN }}$ Operating Range			2.5		16	V
$V_{\text {IN }}$ Undervoltage Lockout				2	2.4	V
FB Comparator Trip Voltage to GND (VFB)	FB Falling	\bullet	0	5	12	mV
FB Output Current (Note 3)	$F B=V_{F B}-5 m V$	\bullet	-10.2	-10	-9.7	$\mu \mathrm{A}$
FB Comparator Hysteresis	FB Rising			10		mV
Quiescent Current in Shutdown	$V_{\text {SHDN }}=$ GND				1	$\mu \mathrm{A}$
Quiescent Current (Not Switching)	$\mathrm{FB}=-0.05 \mathrm{~V}$			40	50	$\mu \mathrm{A}$
$I_{\text {FB }}$ Line Regulation	$2.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}$				0.07	\%/V
Switch Off-Time				300		ns
Switch Current Limit	$\begin{array}{\|l\|} \hline \text { LT3483 } \\ \text { LT3483A } \end{array}$		$\begin{aligned} & 170 \\ & 340 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 230 \\ & 460 \end{aligned}$	mA
Switch V ${ }_{\text {CESAT }}$	$\mathrm{I}_{\text {SW }}=150 \mathrm{~mA}$ to GND			200		mV
Switch Leakage Current	SW $=40 \mathrm{~V}$				1	$\mu \mathrm{A}$
D Pin Current Limit				350		mA
Rectifier Leakage Current	$D=-40 \mathrm{~V}$				4	$\mu \mathrm{A}$
Rectifier Forward Drop	$\mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$ to GND			0.64		V
SHDN Input Low Voltage					0.4	V
SHDN Input High Voltage			1.5			V
SHDN Pin Current				6	10	$\mu \mathrm{A}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LT3483E/LT3483AE are guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls. The LT3483//LT3483Al are guaranteed to meet specifications over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating temperature range.
Note 3: Currentflows out of the pin.

LT3483/LT3483A

TYPICAL PERFORMANCE CHARACTERISTICS

3483 G04

Quiescent Current

$\overline{\text { SHDN }}$ Pin Bias Current

LT3483/LT3483A

PIN FUNCTIONS (Den/soot-23)

FB (Pin 1/Pin 3): Feedback. Place resistor to negative output here. Set resistor value R1 $=\mathrm{V}_{\text {OUT }} / 10 \mu \mathrm{~A}$.
GND (Pins 2, 3/Pin 2): Ground. For DFN package, tie both pin 2 and pin 3 together to ground.
SW (Pin 4/Pin 1): Switch. Connect to external inductor L1 and positive terminal of transfer capacitor.
$V_{\text {IN }}$ (Pin 5/Pin 6): Input Supply. Must be locally bypassed with $1 \mu \mathrm{~F}$ or greater.

NC (Pin 6/NA): No Internal Connection.

D (Pin 7/Pin 5): Anode Terminal of Integrated Schottky Diode. Connect to negative terminal of transfer capacitor and external inductor L2 (flyback configuration) or to cathode of external Schottky diode (inverting charge pump configuration).
SHDN (Pin 8/Pin 4): Shutdown. Connect to GND to turn device off. Connect to supply to turn device on.

Exposed Pad (Pin 9/NA): GND. The exposed pad should be soldered to the PCB ground to achieve the rated thermal performance.

BLOCK DIAGRAM

LT3483/LT3483A

operation

The LT3483/LT3483A use a constant off-time control scheme to provide high efficiency over a wide range of output currents. Operation can be best understood by referring to the Block Diagram. When the voltage at the FB pin is approximately 0 V , comparator A3 disables most of the internal circuitry. Output current is then provided by external capacitor $\mathrm{C}_{0 U}$, which slowly discharges until the voltage at the FB pin goes above the hysteresis point of A3. Typical hysteresis at the FB pin is 10 mV . A3 then enables the internal circuitry, turns on power switch Q1, and the currents in external inductors L1A and L1B begin to ramp up. Once the switch current reaches 200 mA
(LT3483) or 400mA (LT3483A), comparator A1 resets the latch, which turns off Q1 after about 80ns. Inductor current flows through the internal Schottky D1 to GND, charging the flying capacitor. Once the 300ns off-time has elapsed, and internal diode current drops below 250 mA (as detected by comparator A2), Q1 turns on again and ramps up to the switch current limit. This switching action continues until the output capacitor charge is replenished (until the FB pin decreases to OV), then A 3 turns off the internal circuitry and the cycle repeats. The inverting charge pump topology replaces L1B with the series combination D2 and R2.

APPLICATIONS Information

CHOOSING A REGULATOR TOPOLOGY

Inverting Charge Pump

The inverting charge pump regulator combines an induc-tor-based step-up with an inverting charge pump. This configuration usually provides the best size, efficiency and output ripple and is applicable where the magnitude of $\mathrm{V}_{\text {OUT }}$ is greater than $\mathrm{V}_{\text {IN }}$. Negative outputs to -38 V can be produced with the LT3483/LT3483A in this configuration. For cases where the magnitude of $\mathrm{V}_{\text {OUT }}$ is less than or equal to $\mathrm{V}_{{ }_{I N}}$, use a2-inductor or transformer configuration such as the inverting flyback.

In the inverting charge pump configuration, a resistor is added in series with the Schottky diode between the negative output and the D pin of the LT3483/LT3483A. The purpose of this resistor is to smooth/reduce the current spike in the flying capacitor when the switch turns on. A 10Ω resistor works well for a Li+ to -8 V application, and the impact to converter efficiency is less than 3%. The resistor values recommended in the applications circuits also limit the switch current during a short-circuit condition at the output.

Inverting Flyback

The inverting flyback regulator, shown inthe-5V application circuit, uses a coupled inductor and is an excellent choice where the magnitude of the output is less than or equal
to the supply voltage. The inverting flyback also performs well in a step-up/invert application, but it occupies more board space compared with the inverting charge pump. Also, the maximum $\left|\mathrm{V}_{\text {OUT }}\right|$ using the flyback is less than can be obtained with the charge pump-it is reduced from 38 V by the magnitudes of $\mathrm{V}_{\text {IN }}$ and ringing at the switch node. Under a short-circuit condition at the output, a proprietary technique limits the switch current and prevents damage to the LT3483/LT3483A even with supply voltage as high as 16 V . As an option, a $0.47 \mu \mathrm{~F}$ capacitor may be added between terminals D and SW of LT3483/LT3483A to suppress ringing at SW.

Inductor Selection

Several recommended inductors that work well with the LT3483/LT3483A are listed in Table 1, although there are many other manufacturers and devices that can be used. Consult each manufacturer for more detailed information and for their entire selection of related parts. Many different sizes and shapes are available. For inverting charge pump regulators with input and output voltages below 7 V , a $4.7 \mu \mathrm{H}$ or $6.8 \mu \mathrm{H}$ inductor is usually the best choice. For flyback regulators or for inverting charge pump regulators where the input or output voltage is greater than 7 V , a $10 \mu \mathrm{H}$ inductor is usually the best choice. A larger value inductor can be used to slightly increase the available output current, but limit it to around twice the

APPLICATIONS INFORMATION

value recommended, as too large of an inductance will increase the output voltage ripple without providing much additional output current.

Table 1. Recommended Inductors

PART	$\underset{(\mu \mathrm{H})}{\mathrm{L}}$	$\begin{gathered} \text { MAX } \\ \mathrm{I}_{\mathrm{DC}} \\ (\mathrm{~mA}) \end{gathered}$	DCR (Ω)	$\begin{gathered} \text { HEIGHT } \\ (\mathrm{mm}) \end{gathered}$	MANUFACTURER
LQH2MCN4R7M02L	4.7	300	0.84	0.95	Murata www.murata.com
LQH2MCN6R8M02L	6.8	255	1.0		
LQH2MCN100M02L	10	225	1.2		
SDQ12	4.7	1.45	0.40	1.2	Cooper Electronics Tech www.cooperet.com
Coupled	10	980	0.72		
Inductor	15	780	1.15		
LPD3015	4.7	860	0.52	1.4	Coilcraft www.coilcraft.com
Coupled Inductor	10	580	1.0		

Capacitor Selection

The small size and low ESR of ceramic capacitors make them ideal for LT3483/LT3483A applications. Use of X5R and $X 7 R$ types is recommended because they retain their capacitance over wider voltage and temperature ranges than other dielectric types. Always verify the proper voltage rating. Table 2 shows a list of several ceramic capacitor manufacturers. Consult the manufacturers for more detailed information on their entire selection of ceramic capacitors.
A 4.7 F F ceramic bypass capacitor on the $\mathrm{V}_{\text {IN }}$ pin is recommended where the distance to the power supply or battery could be more than a couple inches. Otherwise, a $1 \mu \mathrm{~F}$ is adequate.
A capacitor in parallel with feedback resistor R1 is recommended to reduce the output voltage ripple. Use a 5 pF capacitor for the inverting charge pump, and a 22 pF value for the inverting flyback or other dual inductor configurations. Output voltage ripple can be reduced to 20 mV in some cases using this capacitor in combination with an appropriately selected output capacitor.
The output capacitor is selected based on desired output voltage ripple. For low output voltage ripple in the inverting flyback configuration, use a $4.7 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor. The inverting charge pump utilizes values ranging from $0.22 \mu \mathrm{~F}$
to 4.7μ F. The following formula is useful to estimate the output capacitor value needed:

$$
C_{\text {OUT }}=\frac{\left.L \cdot\right|_{\text {SW }}{ }^{2}}{-V_{\text {OUT }} \cdot \Delta V_{\text {OUT }}}
$$

where $\mathrm{I}_{\mathrm{SW}}=0.25 \mathrm{~A}$ (LT3483) or $\mathrm{I}_{\mathrm{SW}}=0.5 \mathrm{~A}$ (LT3483A) and $\Delta \mathrm{V}_{\text {OUT }}=30 \mathrm{mV}$. The flying capacitor in the inverting charge pump configuration ranges from $0.1 \mu \mathrm{~F}$ to 0.47μ. Multiply the value predicted by the above equation for Cout by $1 / 10$ to determine the value needed for the flying capacitor.

Table 2. Recommended Ceramic Capacitor Manufacturers

MANUFACTURER	URL
AVX	www.avxcorp.com
Kemet	www.kemet.com
Murata	www.murata.com
Taiyo Yuden	www.tyuden.com

Setting the Output Voltage

The output voltage is programmed using one feedback resistor according to the following formula:

$$
R 1=-\frac{V_{\text {OUT }}}{10 \mu \mathrm{~A}}
$$

Inrush Current

When $\mathrm{V}_{\text {IN }}$ is increased from ground to operating voltage, an inrush current will flow through the input inductor and integrated Schottky diode to charge the flying capacitor. Conditions that increase inrush current include a larger, more abrupt voltage step at $\mathrm{V}_{\mathbb{I N}}$, a larger flying capacitor, and an inductor with a low saturation current.
While the internal diode is designed to handle such events, the inrush current should not be allowed to exceed 1.5A. For circuits that use flying capacitors within the recommended range and have input voltages less than $5 V$, inrush current remains low, posing no hazard to the device. In cases where there are large steps at $V_{\mathbb{I N}}$, inrush current should be measured to ensure operation within the limits of the device.

LT3483/LT3483A

APPLICATIONS INFORMATION

Board Layout Considerations

As with all switching regulators, careful attention must be given to the PCB board layout and component placement. Proper layout of the high frequency switching path is essential. The voltage signals of the SW and D pins have sharp rising and falling edges. Minimize the length

and area of all traces connected to the SW and D pins. In particular, it is desirable to minimize the trace length to and from the flying capacitor, since current in this capacitor switches directions within a cycle. Always use a ground plane under the switching regulator to minimize interplane coupling.

Suggested Layout (SOT-23)
for Inverting Charge Pump

TYPICAL APPLICATIONS

3.6V to -22V DC/DC Converter

3.6V to -22V Converter Efficiency and Power Loss

TYPICAL APPLICATIONS

3.6 V to -8V DC/DC Converter Low Profile, Small Footprint

C2: TAIYO YUDEN LMK107BJ224
C3: MURATA GRM219R61C225KA88B
D1: PHILIPS PMEG2005EB
L1: MURATA LQH2MCN100K02L

Switching Waveform

PACKAGE DESCRIPTION

DC Package
8-Lead Plastic DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1719 Rev A)
 NOTE:

1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

TOP AND BOTTOM OF PACKAGE

LT3483/LT3483A

PACKAGE DESCRIPTION

S6 Package
 6-Lead Plastic TSOT-23

(Reference LTC DWG \# 05-08-1636 Rev B)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

REVISIO HISTORY (Revision history begins at Rev C)

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: | :---: |
| C | $09 / 10$ | Revised entire data sheet to add LTC3483A | $1-12$ |

LT3483/LT3483A

TYPICAL APPLICATION

-5V Step-Up/Step-Down Converter

Efficiency and Power Loss vs Load Current

Switching Waveforms

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1617/LT1617-1	$350 \mathrm{~mA} / 100 \mathrm{~mA}$ (Isw) High Efficiency Micropower Inverting DC/DC Converter	$\mathrm{V}_{\text {IN: }} 1.2 \mathrm{~V} \text { to } 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=-34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$ ThinSOT Package
LT1931/LT1931A	1A (Isw), 1.2MHz/2.2MHz, High Efficiency Micropower Inverting DC/DC Converter	$\mathrm{V}_{\text {IN }}: 2.6 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=-34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=5.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$ ThinSOT Package
LT1945	Dual Output, Boost/Inverter, 350 mA (I ${ }_{\text {sw }}$), Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}: 1.2 \mathrm{~V} \text { to } 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}= \pm 34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ MS10 Package
LT3463	Dual Output, Boost/Inverter, 250 mA (I ${ }_{\text {SW }}$), Constant Off-Time, High Efficiency Step-Up DC/DC Converter with Integrated Schottky Diodes	$\mathrm{V}_{\text {IN: }}: 2.3 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$ DFN Package
LT3464	85mA (Isw), High Efficiency Step-Up DC/DC Converter with Integrated Schottky and PNP Disconnect	$\begin{aligned} & \mathrm{V}_{\text {IN: }} 2.3 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }(\mathrm{MAX})}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=25 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \\ & \text { ThinSOT Package } \end{aligned}$
LT3472	Boost (350 mA) and Inverting (400 mA) DC/DC Converter for CCD Bias with Integrated Schottkys	$\mathrm{V}_{\text {IN: }}: 2.3 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.8 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$ DFN Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

[^0]: $\boldsymbol{\mathcal { Y }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents, including 7710700.

