TECHNOLOGY 3.3A Boost/Inverting DC/DC Converter with Fault Protection

feftures

- 3.3A, 42V Combined Power Switch

- Master/Slave (1.9A/1.4A) Switch Design
- Output Short Circuit Protection
- Wide Input Range: 2.5V to 22V Operating, 40V Maximum Transient
- Switching Frequency Up to 2.5 MHz
- Easily Configurable as a Boost, SEPIC, Inverting or Flyback Converter
- User Configurable Undervoltage Lockout
- Low $\mathrm{V}_{\text {CESAT }}$ Switch: 250 mV at 2.75 A (Typical)
- Can be Synchronized to External Clock
- Can Be Synchronized to other Switching Regulators
- High Gain SHDN Pin Accepts Slowly Varying Input Signals
- 14-Pin $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN and 16-Lead MSE Packages

APPLICATIONS

- Local Power Supply
- Vacuum Fluorescent Display (VFD) Bias Supplies
- TFT-LCD Bias Supplies
- Automotive Engine Control Unit (ECU) Power
$\mathbf{\Omega T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents, including 7579816.

DESCRIPTIOn

The LT ${ }^{\circledR 3581}$ is a PWM DC/DC converter with built-in fault protection features to aid in protecting against output shorts, input/output overvoltages, and overtemperature conditions. The part consists of a 42V master switch, and a 42 V slave switch that can be tied together for a total current limit of 3.3A.

The LT3581 is ideal for many local power supply designs. It can be easily configured in Boost, SEPIC, Inverting or Flyback configurations, and is capable of generating 12 V at 830 mA , or-12V at 625 mA from a 5 V input. In addition, the LT3581's slave switch allows the part to be configured in high voltage, high power charge pump topologies that are very efficient and require fewer components than traditional circuits.

The LT3581's switching frequency range can be set between 200 kHz and 2.5 MHz . The part may be clocked internally at a frequency set by the resistor from the RT pin to ground, or it may be synchronized to an external clock. A buffered version of the clock signal is driven out of the CLKOUT pin, and may be used to synchronize other compatible switching regulator ICs to the LT3581.
The LT3581 also features innovative $\overline{\text { SHDN }}$ pin circuitry that allows for slowly varying input signals and an adjustable undervoltage lockout function. Additional features such as frequency foldback and soft-start are integrated. The LT3581 is available in 14 -Pin $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN and 16Lead MSE packages.

TYPICAL APPLICATION

Output Short Protected, 5V to 12V Boost Converter Operating at 2MHz

Efficiency and Power Loss vs Load Current

ABSOLUTE MAXIMUM RATIOGS

(Note 1)

$V_{\text {IN }}$ Voltage... -0.3 V to 40V	FAULT Current.. $\pm 500 \mu \mathrm{~A}$
SW1/SW2 Voltage-0.4V to 42V	CLKOUT Voltage 0.3 V to 3V
RT Voltage .. 0.3 V to 5V	CLKOUT Current..1mA
SS, FB Voltage-0.3V to 2.5V	Operating Junction Temperature Range
V_{C} Voltage... 0.3 V to 2V	LT3581E (Notes 2, 4) $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SHDN Voltage-0.3V to 40V	LT3581I (Notes 2, 4) $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SYNC Voltage......................................-0.3V to 5.5V	LT3581H (Notes 2, 4)...................... $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
GATE Voltage-0.3V to 80V	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
FAULT Voltage-0.3V to 40V	

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT3581EDE\#PBF	LT3581EDE\#TRPBF	3581	$14-$ Lead $(4 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT3581IDE\#PBF	LT3581IDE\#TRPBF	3581	$14-$ Lead $(4 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT3581HDE\#PBF	LT3581HDE\#TRPBF	3581	$14-$ Lead ($4 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT3581EMSE\#PBF	LT3581EMSE\#TRPBF	3581	16 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT3581IMSE\#PBF	LT3581IMSE\#TRPBF	3581	$16-$ Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the speciications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SHON }}=\mathrm{V}_{I N}, V_{\text {FAULT }}=V_{I N}$, unless otherwise noted. (Note 2).

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Input Voltage		\bullet		2.3	2.5	V
$\mathrm{V}_{\text {IN }}$ Overvoltage Lockout			22.1	23.5	25	V
Positive Feedback Voltage		\bullet	1.195	1.215	1.230	V
Negative Feedback Voltage		\bullet	3	9	16	mV
Positive FB Pin Bias Current	$\mathrm{V}_{\text {FB }}=$ Positive Feedback Voltage, Current into Pin	\bullet	81	83.3	85	$\mu \mathrm{A}$
Negative FB Pin Bias Current	$\mathrm{V}_{\text {FB }}=$ Negative Feedback Voltage, Current out of Pin	\bullet	81	83.3	85.5	$\mu \mathrm{A}$
Error Amp Transconductance	$\Delta I=10 \mu \mathrm{~A}$			270		$\mu \mathrm{mhos}$
Error Amp Voltage Gain				70		V/V
Quiescent Current	Not Switching			1.9	2.3	mA
Quiescent Current in Shutdown	$V_{\text {SHDN }}=0 \mathrm{~V}$			0	1	$\mu \mathrm{A}$
Reference Line Regulation	$2.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 20 \mathrm{~V}$			0.01	0.05	\%/V
Switching Frequency, fosc	$\mathrm{R}_{\mathrm{T}}=34 \mathrm{k}$	\bullet	2.25	2.5	2.75	MHz
	$\mathrm{R}_{\mathrm{T}}=432 \mathrm{k}$	\bullet	180	200	220	kHz
Switching Frequency in Foldback	Compared to Normal fosc		1/6			ratio
Switching Frequency Range	Free-Running or Synchronizing	\bullet	200		2500	kHz
SYNC High Level for Synchronization		\bullet	1.3			V
SYNC Low Level for Synchronization		\bullet			0.4	V
SYNC Clock Pulse Duty Cycle	$\mathrm{V}_{\text {SYNC }}=0 \mathrm{~V}$ to 2 2 V		20		80	\%
Recommended Minimum SYNC Ratio $\mathrm{f}_{\mathrm{SYNC}} / \mathrm{f}_{\mathrm{OSC}}$				3/4		
Minimum Off-Time				45		ns
Minimum On-Time				55		ns
SW1 Current Limit	At All Duty Cycles	\bullet	1.9	2.4	3	A
Current Sharing (SW2/SW1)				78		\%
SW1 + SW2 Current Limit	At All Duty Cycles, SW2/SW1 = 78\% (Note 3)	\bullet	3.3	4.3	5.4	A
Switch $\mathrm{V}_{\text {CESAT }}$	SW1 \& SW2 Tied Together, $\mathrm{I}_{\text {SW1 }}+\mathrm{I}_{\text {SW2 }}=2.75 \mathrm{~A}$			250		mV
SW1 Leakage Current	$\mathrm{V}_{\text {SW } 1}=5 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
SW2 Leakage Current	$\mathrm{V}_{\text {SW } 2}=5 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The o denotes the speciications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=\mathrm{V}_{I N}, V_{\text {FAULT }}=V_{I N}$, unless otherwise noted. (Note 2).

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Soft-Start Charge Current	$\mathrm{V}_{\text {SS }}=30 \mathrm{mV}$, Current Flows Out of SS pin	\bullet	5.7	8.7	11.3	$\mu \mathrm{A}$
Soft-Start Discharge Current	Part in FAULT, V $\mathrm{V}_{\text {SS }}=2.1 \mathrm{~V}$, Current Flows into SS Pin	\bullet	5.7	8.7	11.3	$\mu \mathrm{A}$
Soft-Start High Detection Voltage	Part in FAULT	\bullet	1.65	1.8	1.95	V
Soft-Start Low Detection Voltage	Part Exiting FAULT	\bullet	30	50	85	mV
$\overline{\text { SHDN }}$ Minimum Input Voltage High	Active Mode, SHDN Rising (LT3581E, LT3581I) Active Mode, SHDN Rising (LT3581H) Active Mode, SHDN Falling (LT3581E, LT3581I, LT3581H)	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 1.27 \\ & 1.27 \\ & 1.24 \end{aligned}$	$\begin{gathered} 1.33 \\ 1.33 \\ 1.3 \end{gathered}$	$\begin{aligned} & 1.41 \\ & 1.44 \\ & 1.38 \end{aligned}$	V
$\overline{\text { SHDN }}$ Input Voltage Low	Shutdown Mode	\bullet			0.3	V
$\overline{\text { SHDN }}$ Pin Bias Current	$\begin{aligned} & V_{\overline{S H D N}}=3 \mathrm{~V} \\ & V \overline{S H D N}=1.3 \mathrm{~V} \\ & V_{\overline{S H D N}}=0 \mathrm{~V} \end{aligned}$		9.7	$\begin{gathered} 40 \\ 11.4 \\ 0 \end{gathered}$	$\begin{gathered} 60 \\ 13.4 \\ 0.1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
CLKOUT Output Voltage High	$\mathrm{C}_{\text {CLKOUT }}=50 \mathrm{pF}$		1.9	2.1	2.3	V
CLKOUT Output Voltage Low	$\mathrm{C}_{\text {CLKOUT }}=50 \mathrm{pF}$			5	200	mV
CLKOUT Duty Cycle	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			42		\%
CLKOUT Rise Time	$\mathrm{C}_{\text {CLKOUT }}=50 \mathrm{pF}$			12		ns
CLKOUT Fall Time	$\mathrm{C}_{\text {CLKOUT }}=50 \mathrm{pF}$			8		ns
GATE Pull Down Current	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { V } \\ \text { GATE } \end{array}\right. \\ & V_{\text {GATE }}=3 V(\text { LT3581E, LT3581I) } \\ & V_{\text {GATE }}=80 \mathrm{~V}(\text { LT35851H }) \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 800 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 933 \\ & 900 \\ & 933 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1100 \\ & 1100 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
GATE Leakage Current	$\mathrm{V}_{\text {GATE }}=50 \mathrm{~V}$, GATE 0ff			0.01	1	$\mu \mathrm{A}$
FAULT Output Voltage Low	$50 \mu \mathrm{~A}$ into $\overline{\text { FAULT }}$ Pin (LT3581E, LT3581I) $50 \mu \mathrm{~A}$ into $\overline{\text { FAULT }}$ Pin (LT3581H)	\bullet		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	mV mV
$\overline{\text { FAULT Leakage Current }}$	$\mathrm{V}_{\text {FAULT }}=40 \mathrm{~V}$, FAULT 0 ff			0.01	1	$\mu \mathrm{A}$
FAULT Input Voltage Low		\bullet	700	750	800	mV
FAULT Input Voltage High		\bullet	950	1000	1050	mV

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LT3581E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature range are assured by design, characterization and correlation with statistical process controls. The LT3581I is guaranteed over the full $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range. The LT3581H is
guaranteed over the full $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating junction temperature range. Operating lifetime is derated at junction temperatures greater than $125^{\circ} \mathrm{C}$.
Note 3: Current limit guaranteed by design and/or correlation to static test.
Note 4: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed $150^{\circ} \mathrm{C}$ when overtemperature protection is active. Continuous operation over the specified maximum operating junction temperature may impair device reliability.

TYPICAL PGRFORMAOCE CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Switch Saturation Voltage with SW1 and SW2 Tied Together

Positive Feedback Voltage vs Temperature

Current Sharing Between SW1 and SW2 When Tied Together

3581 G03

CLKOUT Duty Cycle vs Temperature

Frequency Foldback

Gate Current vs Gate Voltage

TYPICAL PERFORMANC CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, unless dherwise noled.

FAULT Input Voltage Threshold with Hysteresis

SHDN Voltage Threshold with Hysteresis

3581 G12

PIn FUnCTIOnS (dFN/MSOP)

FB (Pin 1/Pin 1): Positive and Negative Feedback Pin. For a Boost or Inverting Converter, tie a resistor from the FB pin to $V_{\text {OUT }}$ according to the following equations:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{FB}}=\left(\frac{\mathrm{V}_{\text {OUT }}-1.215 \mathrm{~V}}{83.3 \cdot 10^{-6}}\right) ; \text { Boost or SEPIC Converter } \\
& \mathrm{R}_{\mathrm{FB}}=\left(\frac{\left|\mathrm{V}_{\text {OUT }}\right|+9 \mathrm{mV}}{83.3 \cdot 10^{-6}}\right) ; \text { Inverting Converter }
\end{aligned}
$$

$\mathbf{V}_{\text {C }}$ (Pin 2/Pin 2): Error Amplifier Output Pin. Tie external compensation network to this pin.

GATE (Pin 3/Pin 3): PMOS Gate Drive Pin. The GATE pin is a pull-down current source, used to drive the gate of an external PMOS for output short circuit protection or output disconnect. The GATE pin current increases linearly with the SS pin's voltage, with a maximum pull-down current of $933 \mu \mathrm{~A}$ at SS voltages exceeding 500 mV . Note that if the SS voltage is greater than 500 mV and the GATE pin voltage is less than 2 V , then the GATE pin looks like a $2 k \Omega$ impedance to ground. See the Appendix for more information.
FAULT (Pin 4/Pin 4): Fault Indication Pin. This active low, bidirectional pin can either be pulled low (below 750 mV) by an external source, or internally by the chip to indicate a fault. When pulled low, this pin causes the power switches to turn off, the GATE pin to become high impedance, the CLKOUT pin to become disabled, and the SS pin to go through a charge/discharge sequence. The end/absence of a fault is indicated when the voltage on this pin exceeds 1 V . A pull-up resistor or current source is needed on this pin to pull it above 1 V in the absence of a fault.
$\mathrm{V}_{\text {IN }}$ (Pin 5/Pin 5): Input Supply Pin. Must be locally bypassed.
SW1 (Pins 6, 7/Pins 6,7, 8): Master Switch Pin. This is the collector of the internal master NPN power switch. Minimize the metal trace area connected to this pin to minimize EMI.
SW2 (Pins 8, 9/Pins 9, 10, 11): Slave Switch Pin. This is the collector of the internal slave NPN power switch. Minimize the metal trace area connected to this pin to minimize EMI.

CLKOUT (Pin 10/Pin 12): Clock Output Pin. Use this pin to synchronize one or more other compatible switching regulator ICs to the LT3581. The clock that this pin outputs runs at the same frequency as the internal oscillator of the part or as the SYNC pin. CLKOUT may also be used as a temperature monitor since the CLKOUT pin's duty cycle varies linearly with the part's junction temperature. Note that the CLKOUT pin is only meant to drive capacitive loads up to 50pF.
SHDN (Pin 11/Pin 13): Shutdown Pin. In conjunction with the UVLO (undervoltage lockout) circuit, this pin is used to enable/disable the chip and restart the soft-start sequence. Drive below 300 mV to disable the chip. Drive above 1.33 V (typical) to activate the chip and restart the soft-start sequence. Do not float this pin.
RT (Pin 12/Pin 14): Timing Resistor Pin. Adjusts the LT3581's switching frequency. Place a resistor from this pin to ground to set the frequency to a fixed free running level. Do not float this pin.
SS (Pin 13/Pin 15): Soft-Start Pin. Place a soft-start capacitor here. Upon start-up, the SS pin will be charged by a (nominally) 250 k resistor to about 2.1 V . During a fault, the SS pin will be slowly charged up and eventually discharged as part of a timeout sequence (see the State Diagram for more information on the SS pin's role during a fault event).
SYNC (Pin 14/Pin 16): To synchronize the switching frequency to an outside clock, simply drive this pin with a clock. The high voltage level of the clock must exceed 1.3 V , and the low level must be less than 0.4 V . Drive this pin to less than 0.4 V to revert to the internal free running clock. See the Applications Information section for more information.

GND (Exposed Pad Pin 15/Exposed Pad Pin 17): Ground. Exposed pad must be soldered directly to local ground plane.

LT3581

BLOCK DIAGRAM

**SW OVERVOLTAGE PROTECTION IS NOT GUARANTEED TO PROTECT THE LT3581 DURING SW OVERVOLTAGE EVENTS
Figure 1. Block Diagram

STATE DIAGRAM

FAULT1 = OVER VOLTAGE PROTECTION ON VIN $\left(\mathrm{V}_{\text {IN }}>22 \mathrm{~V}\right.$ MIN $)$
OVER TEMPERATURE (TJUNCTION $>165^{\circ} \mathrm{C}$)
OVER CURRENT ON SW1 (IsW1 > 1.9A MIN)
OVER VOLTAGE PROTECTION ON SW1 (V ${ }_{\text {SW } 1}>42 \mathrm{~V}$ MIN)
OVER VOLTAGE PROTECTION ON SW2 (VSW2 > 42V MIN)

```
FAULT2 = FAULT PULLED LOW EXTERNALLY (FAULT < 0.75V)
```

Figure 2. State Diagram

OPERATION

OPERATION - OVERVIEW

The LT3581 uses a constant-frequency, current modecontrol scheme to provide excellent line and load regulation. The part's undervoltage lockout (UVLO) function, together with soft-start and frequency foldback, offers a controlled means of starting up. Fault features are incorporated in the LT3581 to aid in the detection of output shorts, over-voltage, and overtemperature conditions. Refer to the Block Diagram (Figure 1) and the State Diagram (Figure 2) for the following description of the part's operation.

OPERATION - START-UP

Several functions are provided to enable a very clean start-up for the LT3581:

Precise Turn-On Voltage

The $\overline{\text { SHDN }}$ pin is compared to an internal voltage reference to give a precise turn on voltage level. Taking the $\overline{\text { SHDN }}$ pin above 1.33 V (typical) enables the part. Taking the SHDN pin below 300 mV shuts down the chip, resulting in extremely low quiescent current. The $\overline{S H D N}$ pin has 30 mV of hysteresis to protect against glitches and slow ramping.

Undervoltage Lockout (UVLO)

The $\overline{\text { SHDN }}$ pin can also be used to create a configurable UVLO. The UVLO function sets the turn on/off of the LT3581 at a desired input voltage ($V_{\text {INUVLO }}$). Figure 3 shows how a resistor divider (or single resistor) from $V_{\text {IN }}$ to the $\overline{\text { SHDN }}$ pin can be used to set $\mathrm{V}_{\text {INUVLO }}$. RUVLO2 is optional. It may be left out, in which case set it to infinite in the equation below. For increased accuracy, set $R_{\text {UVL02 }} \leq 10 \mathrm{k}$. Pick RuvL01 as follows:

$$
\mathrm{R}_{\mathrm{UVLO}}=\frac{\mathrm{V}_{\text {INUVLO }}-1.33 \mathrm{~V}}{\left(\frac{1.33 \mathrm{~V}}{R_{\mathrm{UVLO2}}}\right)+11.6 \mu \mathrm{~A}}
$$

Figure 3. Configurable UVLO
The LT3581 also has internal UVLO circuitry that disables the chip when $\mathrm{V}_{\text {IN }}<2.3 \mathrm{~V}$ (typical).

Soft-Start of Switch Current

The soft-start circuitry provides for a gradual ramp-up of the switch current (refer to Commanded Current Limit vs SS Voltage in Typical Performance Characteristics). When the part is brought out of shutdown, the external SS capacitor is first discharged which resets the states of the logic circuits in the chip. Then an integrated 250k resistor pulls the SS pin to $\sim 1.8 \mathrm{~V}$. The ramp rate of the SS pin voltage is set by this 250 k resistor and the external capacitor connected to this pin. Once SS gets to 1.8 V , the CLKOUT pin is enabled, and an internal regulator pulls the pin up quickly to $\sim 2.1 \mathrm{~V}$. Typical values for the external soft-start capacitor range from 100 nF to $1 \mu \mathrm{~F}$.

Soft-Start of External PMOS (if used)

The soft-start circuitry also gradually ramps up the GATE pin pull-down current which allows an external PMOS to slowly turn on (M1 in Block Diagram). The GATE pin current increases linearly with the SS voltage, with a maximum current of $933 \mu \mathrm{~A}$ when the SS voltage gets above 500 mV . Note that if the GATE pin voltage is less than 2V for SS voltages exceeding 500 mV , then the GATE pin impedance to ground is $2 \mathrm{k} \Omega$. The soft turn on of the external PMOS helps limit inrush current at start-up, making hot-plugs of LT3581s feasible and safe.

OPERATION

Sample Mode

Sample Mode is the mechanism used by the LT3581 to aid in the detection of output shorts. It refers to a state of the LT3581 where the master and slave power switches (Q1 and Q2) are turned on for a minimum period of time every clock cycle (or every few clock cycles in frequency foldback) in order to "sample" the inductor current. If the sampled currentthrough Q1 exceeds the master switch current limit of 1.9A (min), the LT3581 triggers an overcurrent fault internally (see Operation-Fault section for details). Sample Mode is active when FB is out of regulation by more than approximately 3.7% (45 mV < FB < 1.17V).

Frequency Foldback

The frequency foldback circuit reduces the switching frequency when 350 mV < FB < 900mV (typical). This feature lowers the minimum duty cycle that the part can achieve, thus allowing better control of the inductor current during start-up. When the FB voltage is pulled outside of this range, the switching frequency returns to normal.
Note that the peak inductor current at start-up is a function of many variables including load profile, output capacitance, target $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {IN }}$, switching frequency, etc. Test each and every application's performance at start-up to ensure that the peak inductor current does not exceed the minimum fault current limit.

OPERATION - REGULATION

The following description of the LT3581's operation assumes that the FB voltage is close enough to its regulation target so that the part is not in sample mode. Use the Block Diagram as a reference when stepping through the following description of the LT3581 operating in regulation. At the start of each oscillator cycle, the SR latch (SR1) is set, which turns on the power switches Q1 and Q2. The collector current through the master switch, Q1, is ~1.3 times the collector current through the slave switch, Q2, when the collectors of the two switches are tied together.

Q1's emitter current flows through a current sense resistor $\left(R_{S}\right)$ generating a voltage proportional to the total switch current. This voltage (amplified by A4) is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A3. When the voltage on the positive input of $A 3$ exceeds the voltage on the negative input, the SR latch is reset, turning off the master and slave power switches. The voltage on the negative input of A3 (V_{C} pin) is set by A 1 (or A2), which is simply an amplified difference between the FB pin voltage and the reference voltage (1.215 V if the LT3581 is configured as a boost converter, or 9 mV if configured as an inverting converter). In this manner, the error amplifier sets the correct peak current level to maintain output regulation.

As long as the part is not in fault (see Operation - Fault section) and the SS pin exceeds 1.8 V , the LT3581 drives its CLKOUT pin at the frequency set by the RT pin or the SYNC pin. The CLKOUT pin can be used to synchronize other compatible switching regulator ICs (including additional LT3581s) with the LT3581. Additionally, CLKOUT's duty cycle varies linearly with the part's junction temperature, and may be used as a temperature monitor.

OPERATION - FAULT

The LT3581's $\overline{\text { FAULT }}$ pin is an active low, bidirectional pin that is pulled low to indicate a fault. Each of the following events can trigger a fault in the LT3581:
A. FAULT1 events:

1. SW Overcurrent:
a. $I_{\text {SW1 }}>1.9 \mathrm{~A}$ (minimum)
b. $\left(I_{\text {SW } 1}+I_{\text {SW } 2}\right)>3.3 \mathrm{~A}$ (minimum)
2. $\mathrm{V}_{\text {IN }}$ Voltage $>22 \mathrm{~V}$ (minimum)
3. SW1 Voltage and/or SW2 Voltage > 42V (minimum)
4. Die Temperature $>165^{\circ} \mathrm{C}$
B. FAULT2 events: 1. Pulling the $\overline{\text { FAULT }}$ pin low externally

LT358 1

OPERATION

Refer to the State Diagram (Figure 2) for the following description of the LT3581's operation during a fault event. When a fault is detected, in addition to the FAULT pin being pulled low internally, the LT3581 also disables its CLKOUT pin, turns offits power switches, and the GATE pin becomes high impedance. The external PMOS, M1, turns off when the gate of M 1 is pulled up to its source by the external $\mathrm{R}_{\text {GATE }}$ resistor (see Block Diagram). With the external PMOS turned off, the power path from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ is cut off, protecting power components downstream.
At the same time, a timeout sequence commences where the SS pin is charged up to 1.8 V (the SS pin will continue charging up to 2.1 V and be held there in the case of a FAULT1 event that has still not ended), and then discharged to 50 mV . This timeout period relieves the part, the PMOS, and other downstream power components from electrical
and thermal stress for a minimum amount of time as set by the voltage ramp rate on the SS pin.
In the absence of faults, the $\overline{\text { FAULT }}$ pin is pulled high by the external R$_{\text {FAULT }}$ resistor (typically 100k). Figure 4 shows the events that accompany the detection of an output short on the LT3581.

Figure 4. Output Short Circuit Protection of the LT3581

APPLICATIONS InFORMATION

bOOST CONVERTER COMPONENT SELECTION

Figure 5. Boost Converter - The Component Values and Voltages Given Are Typical Values for a 2MHz, 5V to 12V Boost

The LT3581 can be configured as a Boost converter as in Figure 5 . This topology allows for positive output voltages that are higher than the input voltage. An external PMOS (optional) driven by the GATE pin of the LT3581 can achieve input or output disconnect during a fault event. A single feedback resistor sets the output voltage. For output voltages higher than 40V, see the Charge Pump Aided Regulators section.
Table 1 is a step-by-step set of equations to calculate component values for the LT3581 when operating as a boost converter. Input parameters are input and output voltage, and switching frequency ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ and $\mathrm{f}_{\text {Osc }}$ respectively). Refer to the Appendix for further information on the design equations presented in Table 1.

Variable Definitions:

$\mathrm{V}_{\text {IN }}=$ Input Voltage
$V_{\text {Out }}=$ Output Voltage
DC = Power Switch Duty Cycle
$\mathrm{f}_{\text {Osc }}=$ Switching Frequency
Iout $=$ Maximum Average Output Current
$I_{\text {RIPPLE }}=$ Inductor Ripple Current
$R_{\text {DSON_PMOS }}=$ RDSON of $^{\text {oxternal PMOS (set to } 0 \text { if not }}$ using PMOS)

Table 1. Boost Design Equations

	PARAMETERS/EQUATIONS
Step 1: Inputs	Pick $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, and $\mathrm{f}_{\text {OSC }}$ to calculate equations below.
Step 2: DC	$\mathrm{DC} \cong \frac{\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}+0.5 \mathrm{~V}}{\mathrm{~V}_{\text {OUT }}+0.5 \mathrm{~V}-0.3 \mathrm{~V}}$
	$\mathrm{~L}_{\text {TYP }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{\text {OSC }} \bullet 1 \mathrm{~A}}$
Step 3: L1	$\mathrm{L}_{\text {MIN }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet(2 \bullet \mathrm{DC}-1)}{2.2 A \bullet f_{O S C} \bullet(1-\mathrm{DC})}$
	$\mathrm{L}_{\text {MAX }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{O S C} \bullet 0.35 \mathrm{~A}}$

- Pick L1 out of a range of inductor values where the minimum value of the range is set by $L_{T Y P}$ or $L_{\text {MIN }}$, whichever is higher. The maximum value of the range is set by $L_{\text {max }}$. See appendix on how to choose current rating for inductor value chosen.

Step 4: IRIPPLE	$I_{\text {RIPPLE }}=\frac{\left(V_{\text {IN }}-0.3 V\right) \bullet D C}{f_{\text {OSC }} \bullet L_{1}}$
Step 5: IOUT	$\mathrm{I}_{\text {OUT }}=\left(3.3 \mathrm{~A}-\frac{\mathrm{I}_{\text {RIPPLE }}}{2}\right) \cdot(1-\mathrm{DC})$
Step 6: D1	$\mathrm{V}_{\mathrm{R}}>\mathrm{V}_{\text {OUT }} ; \mathrm{I}_{\text {AVG }}>\mathrm{I}_{\text {OUT }}$
Step 7: Cout1, $\mathrm{C}_{\text {OUT2 }}$	$\begin{aligned} & \mathrm{C}_{\text {OUT } 1}=\mathrm{C}_{\text {OUT } 2} \geq \\ & \frac{\mathrm{I}_{\text {OUT }} \cdot \mathrm{DC}}{\mathrm{f}_{\text {OSC }}\left[0.01 \cdot \mathrm{~V}_{\text {OUT }}-0.50 \cdot \mathrm{I}_{\text {OUT }} \cdot \mathrm{R}_{\text {DSON_PMOS }}\right]} \end{aligned}$ - If PMOS is not used, then use just one capacitor where $\mathrm{C}_{\text {OUt }}=\mathrm{C}_{\text {OUT1 }}+\mathrm{C}_{\text {OUT2 }}$.
Step 8: C_{IN}	$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \geq \mathrm{C}_{\mathrm{VIN}}+\mathrm{C}_{\text {PWR }} \geq \\ & \frac{3.3 \mathrm{~A} \bullet \mathrm{DC}}{} \\ & 45 \bullet \mathrm{f}_{\mathrm{OSC}} \bullet 0.005 \bullet \mathrm{~V}_{\text {IN }} \end{aligned}+\frac{\mathrm{I}_{\mathrm{RIPPLE}}}{8 \cdot \mathrm{f}_{0 S C} \cdot 0.005 \cdot \mathrm{~V}_{\text {IN }}}$ - Refer to Input Capacitor Selection in Appendix for definition of $\mathrm{C}_{\text {VIN }}$ and $\mathrm{C}_{\text {PWr }}$.
Step 9: R_{FB}	$\mathrm{R}_{\mathrm{FB}}=\frac{\mathrm{V}_{\text {OUT }}-1.215 \mathrm{~V}}{83.3 \mu \mathrm{~A}}$
Step 10: R_{T}	$R_{T}=\frac{87.6}{f_{\text {OSC }}}-1 ; \mathrm{f}_{\mathrm{OSC}}$ in $M H z$ and R_{T} in $k \Omega$
Step 11: PMOS	Only needed for input or output disconnect. See PMOS Selection in the Appendix for information on sizing the PMOS, $\mathrm{R}_{\text {GATE }}$ and picking appropriae UVLO components.

Note 1: The maximum design target for peak switch current is 3.3A and is used in this table.
Note 2: The final values for $\mathrm{C}_{\text {OUt1 }}, \mathrm{C}_{\text {OUT2 }}$ and $\mathrm{C}_{\text {In }}$ may deviate from the above equations in order to obtain desired load transient performance.

APPLICATIONS INFORMATION

SEPIC CONVERTER COMPONENT SELECTION (COUPLED OR UN-COUPLED INDUCTORS)

Figure 6. SEPIC Converter - The Component Values and Voltages Given Are Typical Values for a 700kHz, Wide Input Range (3V to 16V) SEPIC Converter with 5V Out

The LT3581 can also be configured as a SEPIC as shown in Figure 6. This topology allows for positive output voltages that are lower, equal, or higher than the input voltage. Output disconnect is inherently built into the SEPIC topology, meaning no DC path exists between the input and output due to capacitor C1. This implies that a PMOS controlled by the GATE pin is not required in the power path.

Table 2 is a step-by-step set of equations to calculate component values for the LT3581 when operating as a SEPIC converter. Input parameters are input and output voltage, and switching frequency ($\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}$ and $\mathrm{f}_{\text {OSc }}$ respectively). Refer to the Appendix for further information on the design equations presented in Table 2.

Variable Definitions:

$\mathrm{V}_{\text {IN }}=$ Input Voltage
Vout $=$ Output Voltage
DC = Power Switch Duty Cycle
$f_{\text {OSC }}=$ Switching Frequency
IOUT = Maximum Average Output Current
$I_{\text {RIPPLE }}=$ Inductor Ripple Current

Table 2. SEPIC Design Equations

	PARAMETERS/EQUATIONS
Step 1: Inputs	Pick $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, and $\mathrm{f}_{\text {OSC }}$ to calculate equations below.
Step 2: DC	$\mathrm{DC} \cong \frac{\mathrm{V}_{\text {OUT }}+0.5 \mathrm{~V}}{\mathrm{~V}_{\text {IN }}+\mathrm{V}_{\text {OUT }}+0.5 \mathrm{~V}-0.3 \mathrm{~V}}$
	$\mathrm{~L}_{\text {TYP }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{0 S C} \bullet 1 \mathrm{~A}}$
	$\mathrm{~L}_{\mathrm{MIN}}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet(2 \bullet \mathrm{DC}-1)}{2.2 \mathrm{~A} \bullet \mathrm{f}_{\mathrm{OSC}} \bullet(1-\mathrm{DC})}$
Step 3:	$\mathrm{L}_{\mathrm{MAX}}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{\mathrm{OSC}} \bullet 0.35 \mathrm{~A}}$

- Pick L out of a range of inductor values where the minimum value of the range is set by $L_{T Y P}$ or $L_{\text {MIN }}$, whichever is higher. The maximum value of the range is set by $L_{\text {max }}$. See Appendix on how to choose current rating for inductor value chosen.
- Pick L1 = L2 = L for coupled inductors.
- Pick L1 ||L2 = L for un-coupled inductors.

$$
\mathrm{I}_{\text {RIPPLE }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{0 S C} \cdot \mathrm{~L}}
$$

Step 4: $I_{\text {RIPPLE }}$	- $\mathrm{L}=\mathrm{L} 1=\mathrm{L} 2$ for coupled inductors. - $\mathrm{L}=\mathrm{L} 1\| \| \mathrm{L} 2$ for un-coupled inductors.
Step 5: IOUT	$\mathrm{I}_{\text {OUT }}=\left(3.3 \mathrm{~A}-\frac{\mathrm{I}_{\text {RIPPLE }}}{2}\right) \bullet(1-\mathrm{DC})$
Step 6: D1	$V_{R}>V_{\text {IN }}+V_{\text {OUT }} ; I_{\text {AVG }}>I_{\text {OUT }}$
Step 7: C1	$\mathrm{C} 1 \geq 1 \mu \mathrm{~F} ; \mathrm{V}_{\text {RATING }} \geq \mathrm{V}_{\text {IN }}$
Step 8: Cout	$\mathrm{C}_{\text {OUT }} \geq \frac{\mathrm{I}_{\text {OUT }} \bullet \mathrm{DC}}{\mathrm{f}_{\text {OSC }} \bullet 0.005 \bullet \mathrm{~V}_{\text {OUT }}}$
Step 9: $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & \mathrm{C}_{\text {IN }} \geq \mathrm{C}_{\text {VIN }}+\mathrm{C}_{\text {PWR }} \geq \\ & \frac{3.3 \mathrm{~A} \bullet \mathrm{DC}}{} \\ & 45 \bullet \mathrm{f}_{\mathrm{OSC}} \bullet 0.005 \bullet \mathrm{~V}_{\text {IN }} \end{aligned}+\frac{\mathrm{I}_{\text {RIPPLE }}}{8 \cdot \oplus_{O S C} \bullet 0.005 \bullet \mathrm{~V}_{\text {IN }}}$ - Refer to Input Capacitor Selection in Appendix for definition of $\mathrm{C}_{\text {VIN }}$ and $\mathrm{C}_{\text {PWr }}$.
Step 10: R_{FB}	$R_{F B}=\frac{V_{O U T}-1.215 \mathrm{~V}}{83.3 \mu \mathrm{~A}}$
Step 11: R_{T}	$\mathrm{R}_{\mathrm{T}}=\frac{87.6}{\mathrm{f}_{\text {OSC }}}-1 ; \mathrm{f}_{\text {OSC }}$ in MHz and R_{T} in $\mathrm{k} \Omega$

Note 1: The maximum design target for peak switch current is 3.3 A and is used in this table.

Note 2: The final values for $\mathrm{C}_{\text {OUt }}, \mathrm{C}_{\text {IN }}$ and $\mathrm{C1}$ may deviate from the above equations in order to obtain desired load transient performance.

APPLICATIONS INFORMATION

DUAL INDUCTOR INVERTING CONVERTER COMPONENT SELECTION (COUPLED OR UN-COUPLED INDUCTORS)

Figure 7. Dual Inductor Inverting Converter - The Component Values and Voltages Given Are Typical Values for a $2 \mathrm{MHz}, 5 \mathrm{~V}$ to -12V Inverting Topology Using Coupled Inductors

Due to its unique FB pin, the LT3581 can work in a Dual Inductor Inverting configuration as in Figure 7. Changing the connections of L 2 and the Schottky diode in the SEPIC topology results in generating negative output voltages. This solution results in very low output voltage ripple due to inductor L 2 being in series with the output. Output disconnect is inherently built into this topology due to the capacitor C1.

Table 3 is a step-by-step set of equations to calculate component values for the LT3581 when operating as a dual inductor inverting converter. Input parameters are input and output voltage, and switching frequency ($\mathrm{V}_{\text {IN }}$, $V_{\text {OUT }}$ and $f_{\text {OSC }}$ respectively). Refer to the Appendix for further information on the design equations presented in Table 3.

Variable Definitions:

$\mathrm{V}_{\text {IN }}=$ Input Voltage
$V_{\text {OUT }}=$ Output Voltage
DC = Power Switch Duty Cycle
$\mathrm{f}_{\mathrm{OSC}}=$ Switching Frequency
IOUT $=$ Maximum Average Output Current
$I_{\text {RIPPLE }}=$ Inductor Ripple Current

Table 3. Dual Inductor Inverting Design Equations

	PARAMETERS/EQUATIONS
Step 1: Inputs	Pick $V_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, and $f_{\text {OSc }}$ to calculate equations below.
Step 2: DC	$\mathrm{DC} \cong \frac{\left\|\mathrm{~V}_{\text {OUT }}\right\|+0.5 \mathrm{~V}}{\mathrm{~V}_{\text {IN }}+\left\|\mathrm{V}_{\text {OUT }}\right\|+0.5 \mathrm{~V}-0.3 \mathrm{~V}}$
Step 3: L	$\begin{align*} & \mathrm{L}_{\text {TYP }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{\mathrm{OSC}} \bullet \mathrm{~A}} \tag{1}\\ & \mathrm{~L}_{\text {MIN }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet(2 \bullet \mathrm{DC}-1)}{2.2 \mathrm{~A} \cdot \mathrm{f}_{\mathrm{OSC}} \bullet(1-\mathrm{DC})} \tag{2}\\ & \mathrm{L}_{\text {MAX }}=\frac{\left(\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{\text {OSC }} \cdot 0.35 \mathrm{~A}} \tag{3} \end{align*}$ - Pick L out of a range of inductor values where the minimum value of the range is set by $\mathrm{L}_{\text {typ }}$ or $\mathrm{L}_{\text {min }}$, whichever is higher. The maximum value of the range is set by Lmax. See Appendix on how to choose current rating for inductor value chosen. - Pick $\mathrm{L} 1=\mathrm{L} 2=\mathrm{L}$ for coupled inductors. - Pick L1 \| \mid L2 $=\mathrm{L}$ for un-coupled inductors.
Step 4: IRIPPLE	$\begin{gathered} \mathrm{I}_{\text {RIPPLE }}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-0.3 \mathrm{~V}\right) \bullet \mathrm{DC}}{\mathrm{f}_{\text {OSC }} \bullet \mathrm{L}} \\ \bullet \mathrm{~L}=\mathrm{L1}=\mathrm{L} 2 \text { for coupled inductors. } \\ \bullet \mathrm{L}=\mathrm{L1} \mid \mathrm{L2} \text { for un-coupled inductors. } \end{gathered}$
Step 5: Iout	$\mathrm{I}_{\text {OUT }}=\left(3.3 \mathrm{~A}-\frac{\mathrm{I}_{\text {RIPPLE }}}{2}\right) \cdot(1-D C)$
Step 6: D1	$V_{R}>V_{\text {IN }}+\left\|V_{\text {OUT }}\right\| ; I_{\text {AVG }}>I_{\text {OUT }}$
Step 7: C1	$C 1 \geq 1 \mu F ; V_{\text {RATING }} \geq \mathrm{V}_{\text {IN }}+\left\|\mathrm{V}_{\text {OUT }}\right\|$
Step 8: $\mathrm{C}_{\text {Out }}$	$C_{\text {OUT }} \geq \frac{I_{\text {RIPPLE }}}{8 \bullet \mathrm{f}_{\text {OSC }}\left(0.005 \bullet\left\|V_{\text {OUT }}\right\|\right)}$
Step 9: $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & \mathrm{C}_{\text {IN }} \geq \mathrm{C}_{\mathrm{VIN}}+\mathrm{C}_{\text {PWR }} \geq \\ & \frac{3.3 \mathrm{~A} \bullet \mathrm{DC}}{45 \bullet \mathrm{f}_{\mathrm{OSC}} \bullet 0.005 \bullet \mathrm{~V}_{\text {IN }}}+\frac{\mathrm{I}_{\text {RIPPLE }}}{8 \bullet \mathrm{o}_{\mathrm{SSC}} \bullet 0.005 \bullet \mathrm{~V}_{\text {IN }}} \end{aligned}$ - Refer to Input Capacitor Selection in Appendix for definition of $\mathrm{C}_{\text {vin }}$ and $\mathrm{C}_{\text {pwr }}$.
Step 10: $\mathrm{R}_{\text {Fb }}$	$R_{\text {FB }}=\frac{\left\|V_{\text {OUT }}\right\|+5 \mathrm{mV}}{83.3 \mu \mathrm{~A}}$
Step 11: $\mathrm{R}_{\mathbf{T}}$	$\mathrm{R}_{\mathrm{T}}=\frac{87.6}{\mathrm{f}_{\mathrm{osc}}}-1 ; \mathrm{f}_{\text {OSc }}$ in MHz and R_{T} in $\mathrm{k} \Omega$

Note 1: The maximum design target for peak switch current is 3.3 A and is used in this table.
Note 2: The final values for $\mathrm{C}_{0 U T}, \mathrm{C}_{\text {IN }}$ and C 1 may deviate from the above equations in order to obtain desired load transient performance.

APPLICATIONS INFORMATION

LAYOUT GUIDELINES FOR BOOST, SEPIC, AND DUAL INDUCTOR INVERTING TOPOLOGIES

General Layout Guidelines

- To optimize thermal performance, solder the exposed ground pad of the LT3581 to the ground plane, with multiple vias around the pad connecting to additional ground planes.
- Aground plane should be used underthe switchercircuitry to prevent interplane coupling and overall noise.
- High speed switching path (see specific topology for more information) must be kept as short as possible.
- The V_{C}, FB , and RT components should be placed as close to the LT3581 as possible, while being as far away as practically possible from the switch node. The ground for these components should be separated from the switch current path.
- Place the bypass capacitor for the $\mathrm{V}_{\text {IN }}$ pin as close as possible to the LT3581.
- Place the bypass capacitor for the inductor as close as possible to the inductor.
- The load should connect directly to the positive and negative terminals of the output capacitor for best load regulation.

A: RETURN $\mathrm{C}_{\text {IN }}$ GROUND DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT IS ADVISED TO NOT COMBINE CIN GROUND WITH GND EXCEPT AT THE EXPOSED PAD.
B: RETURN COUT AND COUT1 GROUND DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT IS ADVISED TO NOT COMBINE C COUT AND COUT1 GROUND WITH GND EXCEPT AT THE EXPOSED PAD.

Figure 8. Suggested Component Placement for Boost Topology (MSOP Shown, DFN Similar, Not to Scale.) Pin 15 on DFN or Pin 17 on MSOP Is the Exposed Pad Which Must Be Soldered Directly to the Local Ground Plane for Adequate Thermal Performance. Multiple Vias to Additional Ground Planes Will Improve Thermal Performance

Boost Topology Specific Layout Guidelines

- Keep length of loop (high speed switching path) governing switch, diode D1, output capacitor Cout1, and ground return as short as possible to minimize parasitic inductive spikes at the switch node during switching.

SEPIC Topology Specific Layout Guidelines

- Keep length of loop (high speed switching path) governing switch, flying capacitor C1, diode D1, output capacitor $\mathrm{C}_{\mathrm{OUT}}$, and ground return as short as possible to minimize parasitic inductive spikes at the switch node during switching.

Inverting Topology Specific Layout Guidelines

- Keep ground return path from the cathode of D1 (to chip) separated from output capacitor Cout's ground return path (to chip) in order to minimize switching noise coupling into the output.
- Keep length of loop (high speed switching path) governing switch, flying capacitor C1, diode D1, and ground return as short as possible to minimize parasitic inductive spikes at the switch node during switching.

A: RETURN $C_{\text {IN }}$ AND L2 GROUND DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT IS ADVISED TO NOT COMBINE C C_{N} AND L2 GROUND WITH GND EXCEPT AT THE EXPOSED PAD. TO RETURN COUT GROUNDS DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT IS ADVISE B: RETURN COUT GROUNDS DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT I I
TO NOT COMBINE COUT GROUND WITH GND EXCEPT AT THE EXPOSED PAD.
TO NOT COMBINE COUT GROUND WITH GND EXCEPT AT THE EXPOSED PAD.
L1, L2: MOST COUPLED INDUCTOR MANUFACTURERS USE CROSS PINOUT FOR IMPROVED PERFORMANCE.

Figure 9. Suggested Component Placement for SEPIC Topology (MSOP Shown, DFN Similar, Not to Scale.) Pin 15 on DFN or Pin 17 on MSOP Is the Exposed Pad Which Must Be Soldered Directly to the Local Ground Plane for Adequate Thermal Performance. Multiple Vias to Additional Ground Planes Will Improve Thermal Performance

APPLICATIONS INFORMATION

A: RETURN $\mathrm{C}_{1 \mathrm{I}}$ GROUND DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT IS ADVISED TO NOT COMBINE G C_{N} GROUND WITH GND EXCEPT AT THE EXPOSED PAD. B: RETURN COUT GROUND DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT IS ADVISED TO NOT COMBINE COUT GROUND WITH GND EXCEPT AT THE EXPOSED PAD. C: RETURN D1 GROUND DIRECTLY TO LT3581 EXPOSED PAD PIN 17. IT IS ADVISED TO NOT COMBINE D1 GROUND WITH GND EXCEPT AT THE EXPOSED PAD. LI, L2: MOST COUPLED INDUCTOR MANUFACTURERS USE CROSS PINOUT FOR IMPROVED PERFORMANCE.
Figure 10. Suggested Component Placement for Dual Inductor Inverting Topology (MSOP Shown, DFN Similar, Not to Scale.) Pin 15 on DFN or Pin 17 on MSOP Is the Exposed Pad Which Must Be Soldered Directly to the Local Ground Plane for Adequate Thermal Performance. Multiple Vias to Additional Ground Planes Will Improve Thermal Performance

THERMAL CONSIDERATIONS

Overview

For the LT3581 to deliver its full output power, it is imperative that a good thermal path be provided to dissipate
the heat generated within the package. This can be accomplished by taking advantage of the thermal pad on the underside of the IC. It is recommended that multiple vias in the printed circuit board be used to conduct heat away from the IC and into a copper plane with as much area as possible.

Power and Thermal Calculations

Power dissipation in the LT3581 chip comes from four primary sources: switch $I^{2} \mathrm{R}$ losses, switch dynamic losses, NPN base drive DC losses, and miscellaneous input current losses. These formulas assume continuous mode operation, so they should not be used for calculating thermal losses or efficiency in discontinuous mode or at light load currents.
The following example calculates the power dissipation in the LT3581 for a particular boost application $\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0.83 \mathrm{~A}, \mathrm{f}_{\text {OSC }}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0.45 \mathrm{~V}\right.$, $V_{\text {CESAT }}=0.21 \mathrm{~V}$).
To calculate die junction temperature, use the appropriate thermal resistance number and add in worst-case ambient temperature:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{JA}} \bullet \mathrm{P}_{\mathrm{TOTAL}}
$$

Table 4. Power Calculations Example for Boost Converter with $\mathrm{V}_{I N}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0.83 \mathrm{~A}, \mathrm{f}_{O S C}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0.45 \mathrm{~V}, \mathrm{~V}_{\text {CESAT }}=0.21 \mathrm{~V}$

DEFINITION OF VARIABLES	EQUATIONS	DESIGN EXAMPLE	VALUE
DC $=$ SWITCH DUTY CYCLE	$D C=\frac{V_{\text {OUT }}-V_{\text {IN }}+V_{D}}{V_{\text {OUT }}+V_{D}-V_{\text {CESAT }}}$	$\mathrm{DC}=\frac{12 \mathrm{~V}-5 \mathrm{~V}+0.45 \mathrm{~V}}{12 \mathrm{~V}+0.45 \mathrm{~V}-0.21 \mathrm{~V}}$	DC = 60.9\%
IN = Average Switch Current $\eta=$ Power Conversion Efficiency (typically 88\% at high currents)	$I_{\text {IN }}=\frac{V_{\text {OUT }} \bullet I_{\text {OUT }}}{V_{I_{N}} \bullet \eta}$	$\mathrm{I}_{\mathrm{N}}=\frac{12 \mathrm{~V} \cdot 0.83 \mathrm{~A}}{5 \mathrm{~V} \cdot 0.88}$	$\mathrm{I}_{\mathrm{IN}}=2.3 \mathrm{~A}$
$P_{\text {SwDC }}=$ Switch I ${ }^{2}$ R Loss (DC) $R_{\text {SW }}=$ Switch Resistance (typically $90 \mathrm{~m} \Omega$ combined SW1 and SW2)	$\mathrm{P}_{\text {SWDC }}=\left.\mathrm{DC} \bullet\right\|_{1 N}{ }^{2} \bullet \mathrm{R}_{\text {SW }}$	$\mathrm{P}_{\text {SWDC }}=0.609 \bullet(2.3 \mathrm{~A})^{2} \bullet 90 \mathrm{~m} \Omega$	$\mathrm{P}_{\text {Swdc }}=290 \mathrm{~mW}$
Pswac $=$ Switch Dynamic Loss (AC)	$\mathrm{P}_{\text {SWAC }}=13 \mathrm{nS} \bullet \mathrm{l}_{\text {IN }} \bullet \mathrm{V}_{\text {OUT }} \bullet \mathrm{f}_{\text {OSC }}$	$\mathrm{P}_{\text {SWAC }}=(13 \mathrm{~ns}) \bullet 2.3 \mathrm{~A} \bullet 12 \mathrm{~V} \bullet(2 \mathrm{MHz})$	$\mathrm{P}_{\text {SWAC }}=718 \mathrm{~mW}$
$\mathrm{P}_{\text {BDC }}=$ Base Drive Loss (DC)	$\mathrm{P}_{\text {BDC }}=\frac{\left.\mathrm{V}_{\text {IN }} \bullet\right\|_{\mid N} \bullet \text { DC }}{45}$	$\mathrm{P}_{\mathrm{BDC}}=\frac{5 \mathrm{~V} \cdot 2.3 \mathrm{~A} \bullet 0.609}{45}$	$\mathrm{P}_{\text {BDC }}=156 \mathrm{~mW}$
PINP $=$ Input Power Loss	$\mathrm{P}_{\text {INP }}=9 \mathrm{~mA} \bullet \mathrm{~V}_{\text {IN }}$	$\mathrm{P}_{\text {INP }}=9 \mathrm{~mA} \bullet 5 \mathrm{~V}$	$\mathrm{P}_{\text {IIPP }}=45 \mathrm{~mW}$
			$\mathrm{P}_{\text {TOTAL }}=1.209 \mathrm{~W}$

APPLICATIONS INFORMATION

where $T_{J}=$ Die Junction Temperature, $T_{A}=$ Ambient Temperature, $\mathrm{P}_{\text {TOTAL }}$ is the final result from the calculations shown in Table 4, and θ_{JA} is the thermal resistance from the silicon junction to the ambient air.

The published (http://www.linear.com/designtools/packaging/Linear_Technology_Thermal_Resistance_Table. pdf) θ_{JA} value is $43^{\circ} \mathrm{C} / \mathrm{W}$ for the $4 \mathrm{~mm} \times 3 \mathrm{~mm} 14$-pin DFN package and $45^{\circ} \mathrm{C} / \mathrm{W}$ for the 16 -lead MSOP package. In practice, lower θ_{JA} values are realizable if board layout is performed with appropriate grounding (accounting for heat sinking properties of the board) and other considerations listed in the Layout Guidelines section. For instance, a θ_{JA} value of $\sim 24^{\circ} \mathrm{C} / \mathrm{W}$ was consistently achieved for both MSE and DFN packages of the LT3581 (at $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ $12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0.83 \mathrm{~A}, \mathrm{f}_{\text {OSC }}=2 \mathrm{MHz}$) when board layout was optimized as per the suggestions in the Board Layout Guidelines section.

Junction Temperature Measurement

The duty cycle of the CLKOUT signal is linearly proportional to die junction temperature, T_{J}. To get a temperature reading, measure the duty cycle of the CLKOUT signal and use the following equation to approximate the junction temperature:

$$
\mathrm{T}_{J}=\frac{D C_{\text {CLKOUT }}-35 \%}{0.3 \%}
$$

where $\mathrm{DC}_{\text {CLKOUT }}$ is the CLKOUT duty cycle in \% and T_{J} is the die junction temperature in ${ }^{\circ} \mathrm{C}$. Although the actual die temperature can deviate from the above equation by $\pm 15^{\circ} \mathrm{C}$, the relationship between change in CLKOUT duty cycle and change in die temperature is well defined. Basically a 1% change in CLKOUT duty cycle corresponds to a $3.33^{\circ} \mathrm{C}$ change in die temperature. Note that the CLKOUT pin is only meant to drive capacitive loads up to 50 pF .

Thermal Lockout

A fault condition occurs when the die temperature exceeds $165^{\circ} \mathrm{C}$ (see Operation Section), and the part goes into thermal lockout. The fault condition ceases when the die temperature drops by $\sim 5^{\circ} \mathrm{C}$ (nominal).

SWITCHING FREQUENCY

There are several considerations in selecting the operating frequency of the converter. The first is staying clear of sensitive frequency bands, which cannot tolerate any spectral noise. For example, in products incorporating RF communications, the 455 kHz IF frequency is sensitive to any noise, therefore switching above 600 kHz is desired. Some communications have sensitivity to 1.1 MHz and in that case a 1.5 MHz switching converter frequency may be employed. The second consideration is the physical size of the converter. As the operating frequency goes up, the inductor and filter capacitors go down in value and size. The tradeoff is efficiency, since the losses due to switching dynamics (see Thermal Considerations), Schottky diode charge, and other capacitive loss terms increase proportionally with frequency.

Oscillator Timing Resistor (\mathbf{R}_{T})

The operating frequency of the LT3581 can be set by the internal free-running oscillator. When the SYNC pin is driven low ($<0.4 \mathrm{~V}$), the frequency of operation is set by a resistor from the R_{T} pin to ground. An internally trimmed timing capacitor resides inside the IC. The oscillator frequency is calculated using the following formula:

$$
\mathrm{f}_{\mathrm{OSC}}=\frac{87.6}{R_{T}+1}
$$

where $f_{\text {OSc }}$ is in $M H z$ and R_{T} is in k. Conversely, R_{T} (in k) can be calculated from the desired frequency (in MHz) using:

$$
\mathrm{R}_{\mathrm{T}}=\frac{87.6}{\mathrm{f}_{\mathrm{OSC}}}-1
$$

APPLICATIONS INFORMATION

Clock Synchronization

The operating frequency of the LT3581 can be set by an external source by simply providing a digital clock signal into the SYNC pin (R_{\top} resistor still required). The LT3581 will revert to its internal free-running oscillator clock (set by the R_{\top} resistor) when the SYNC pin is driven below 0.4 V for a few free-running clock periods.

Driving SYNC high for an extended period of time effectively stops the operating clock and prevents latch SR1 from becoming set (see Block Diagram). As a result, the switching operation of the LT3581 will stop and the CLKOUT pin will be held at ground.

The duty cycle of the SYNC signal must be between 20\% and 80% for proper operation. Also, the frequency of the SYNC signal must meet the following two criteria:
(1) SYNC may not toggle outside the frequency range of 200 kHz to 2.5 MHz unless it is stopped low (below 0.4 V) to enable the free-running oscillator.
(2) The SYNC frequency can always be higher than the free-running oscillator frequency (as set by the R_{T} resistor), $\mathrm{f}_{\text {OSC }}$, but should not be less than 25% below fosc.

CLOCK SYNCHRONIZATION OF ADDITIONAL REGULATORS

The CLKOUT pin of the LT3581 can be used to synchronize one or more other compatible switching regulator ICs as shown in Figure 11.
The frequency of the master LT3581 is set by the external R_{T} resistor. The SYNC pin of the slave LT3581 is driven by the CLKOUT pin of the master LT3581. Note that the RT pin of the slave LT3581 must have a resistor tied to ground. It takes a few clock cycles for the CLKOUT signal to begin oscillating, and it's preferable for all LT3581s to have the same internal free-running frequency. Therefore, in general, use the same value R_{T} resistor for all of the synchronized LT3581s.

Figure 11. A Single Inductor Inverting Topology Is Synchronized with a Boost Regulator to Generate -12 V and 12 V Outputs. The External PMOS Helps Disconnect the Input from the Power Paths During Fault Events

Also, the FAULT pins can be tied together so that a fault condition from one LT3581 causes all of the LT3581s to enter fault, until the fault condition disappears.

CHARGE PUMP AIDED REGULATORS

Designing charge pumps with the LT3581 can offer efficient solutions with fewer components than traditional circuits because of the master/slave switch configuration on the IC. Although the slave switch, SW2, operates in phase with the master switch, SW1, it is only the current through the master switch (SW1) that is sensed by the current comparator (A4 in Block Diagram) as part of the current feedback loop. This method of operation by the master/slave switches can offer the following benefits to charge pump designs:

APPLICATIONS INFORMATION

- The slave switch, by not performing a current sense operation like the master switch, can sustain fairly large current spikes when the flying capacitors charge up. Since this current spike flows through SW2, it does not affect the operation of the current comparator (A4 in Block Diagram).
- The master switch, immune from the capacitor current spike (seen only by the slave switch) can sense the inductor current more accurately.
- Since the slave switch can sustain large current spikes, the diodes that feed current into the flying capacitors do not need current limiting resistors, leading to efficiency and thermal improvements.

High Vout Charge Pump Topology

The LT3581 can be used in a charge-pump topology as shown in Figure 12, multiplying the output of an inductive boost converter. The master switch (SW1) can be used to drive the inductive boost converter (first stage of charge pump), while the slave switch (SW2) can be used to drive one or more other charge pump stages. This topology is useful for high voltage applications including VFD bias supplies.

Single Inductor Inverting Topology

If there is a need to use just one inductor to generate a negative output voltage whose magnitude is greater than $\mathrm{V}_{\text {IN }}$, the single inductor inverting topology (shown in Figure 13) can be used. Since the master and slave switches are isolated by a Schottky diode, the current spike through C1 will flow only through the slave switch, thereby preventing the current comparator, (A4 in the Block Diagram), from falsely tripping. Output disconnect is inherently built into the single inductor topology.

Figure 12. High Vout Charge Pump Topology Can Be Used to Build VFD Bias Supplies

Figure 13. Single Inductor Inverting Topology

APPLICATIONS INFORMATION

HOT-PLUG

The high inrush current associated with hot-plugging $\mathrm{V}_{\text {IN }}$ can be largely rejected with the use of an external PMOS. A simple hot-plug controller can be designed by connecting an external PMOS in series with V_{IN}, with the gate of the PMOS being driven by the GATE pin of the LT3581. Since the GATE pin pull-down current is linearly proportional to the SS voltage, and the SS charge up time is relatively slow, the GATE pin pull-down current will increase gradually, thereby turning on the external PMOS slowly. Controlled in this manner, the PMOS acts as an input current limiter when $V_{\text {IN }}$ hot-plugs or ramps up sharply.

Likewise, when the PMOS is connected in series with the output, inrush currents into the output capacitor can be limited during a hot-plug event. To illustrate this, the circuit in Figure 18 was re-configured by adding a large $1500 \mu \mathrm{~F}$
capacitor to the output. An 18Ω resistive load was used and a $2.2 \mu \mathrm{~F}$ capacitor was placed on SS. Figure 14 shows the results of hot-plugging this re-configured circuit. Notice how the inductor current is well behaved.

Figure 14. Inrush Current Is Well Controlled in Spite Of HotPlugging the Re-configured Boost Converter in Figure 18

APPERDIX

SETTING THE OUTPUT VOLTAGE

The output voltage is set by connecting a resistor (R_{FB}) from $V_{\text {OUT }}$ to the FB pin. R_{FB} is determined by using the following equation:

$$
R_{F B}=\frac{\left|V_{O U T}-V_{F B}\right|}{83.3 \mu \mathrm{~A}}
$$

where $\mathrm{V}_{\text {FB }}$ is 1.215 V (typical) for non-inverting topologies (i.e. boost and SEPIC regulators) and 5 mV (typical) for inverting topologies.

POWER SWITCH DUTY CYCLE

In order to maintain loop stability and deliver adequate current to the load, the power NPNs (Q1 and Q2 in the Block Diagram) cannot remain "on" for 100% of each clock cycle. The maximum allowable duty cycle is given by:

$$
D C_{M A X}=\frac{\left(T_{p}-\text { MinOffTime }\right)}{T_{p}} \cdot 100 \%
$$

where T_{p} is the clock period and MinOffTime (found in the Electrical Characteristics) is typically 60ns.
Conversely, the power NPNs (Q1 and Q2 in the Block Diagram) cannot remain "off" for 100% of each clock cycle, and will turn on for a minimum on time (MinOnTime) when in regulation. This MinOnTime governs the minimum allowable duty cycle given by:

$$
D C_{\text {MIN }}=\frac{(\text { MinOnTime })}{T_{\mathrm{P}}} \bullet 100 \%
$$

Where T_{P} is the clock period and MinOnTime (found in the Electrical Characteristics) is typically 100 ns .
The application should be designed such that the operating duty cycle is between $\mathrm{DC}_{\text {MIN }}$ and $\mathrm{DC}_{\text {MAX }}$.

Duty cycle equationsfor several commontopologies aregiven below where V_{D} is the diode forward voltage drop and $\mathrm{V}_{\text {CESA }}$ is the collector to emitter saturation voltage of the switch. $V_{\text {CESAT }}$, with SW1 and SW2 tied together, is typically 250 mV when the combined switch current $\left(I_{S W 1}+I_{S W 2}\right)$ is 2.75 A .

For the boost topology (see Figure 5):

$$
D C_{\text {BOOST }} \cong \frac{V_{\text {OUT }}-V_{\text {IN }}+V_{D}}{V_{\text {OUT }}+V_{D}-V_{\text {CESAT }}}
$$

For the SEPIC or Dual Inductor Inverting topology (see Figures 6 and 7):

$$
D C_{\text {SEPIC_\&_INVERT }} \cong \frac{V_{D}+\left|V_{O U T}\right|}{V_{I N}+\left|V_{O U T}\right|+V_{D}-V_{\text {CESAT }}}
$$

For the Single Inductor Inverting topology (see Figure 13):

$$
D C_{S I _I N V E R T}=\frac{\left|V_{\text {OUT }}\right|-V_{I N}+V_{\text {CESAT }}+3 \bullet V_{D}}{\left|V_{\text {OUT }}\right|+3 \bullet V_{D}}
$$

The LT3581 can be used in configurations where the duty cycle is higher than $\mathrm{DC}_{\mathrm{MAX}}$, but it must be operated in the discontinuous conduction mode so that the effective duty cycle is reduced.

INDUCTOR SELECTION

General Guidelines: The high frequency operation of the LT3581 allows for the use of small surface mount inductors. For high efficiency, choose inductors with high frequency core material, such as ferrite, to reduce core losses. Also to improve efficiency, choose inductors with more volume for a given inductance. The inductor should have low DCR (copper-wire resistance) to reduce $I^{2} \mathrm{R}$ losses, and must be able to handle the peak inductor current without saturating. Note that in some applications, the current handling requirements of the inductor can be lower, such as in the SEPIC topology where each inductor only carries one half of the total switch current. Molded chokes or chip inductors usually do not have enough core area to support peak inductor currents in the 2A to 6A range. To minimize radiated noise, use a toroidal or shielded inductor. See Table 5 for a list of inductor manufacturers.

Table 5. Inductor Manufacturers

Sumida	CDR6D28MN and CDR7D28MN Series	www.sumida.com
Coilcraft	MSD7342 Series	www.coilcraft.com
Vishay	IHLP-1616BZ-01, IHLP-2020BZ-01 and IHLP-2525CZ-01 Series	www.vishay.com
Taiyo Yuden	NR Series	www.t-yuden.com
Wurth	WE-PD Series	www.we-online.com
TDK	VLF, SLF and RLF Series	www.tdk.com

APPERDIX

Minimum Inductance

Although there can be a tradeoff with efficiency, it is often desirable to minimize board space by choosing smaller inductors. When choosing an inductor, there are three conditions that limit the minimum inductance: (1) providing adequate load current, (2) avoidance of subharmonic oscillations and (3) supplying a minimum ripple current to avoid false tripping of the current comparator.

Adequate Load Current

Small value inductors result in increased ripple currents and thus, due to the limited peak switch current, decrease the average current that can be provided to the load. In order to provide adequate load current, L should be at least:

where:

```
\(L_{\text {BOOST }}=L_{1}\) for Boost Topologies (see Figure 5)
\(L_{\text {DUAL }}=L_{1}=L_{2}\) for Coupled Dual Inductor
                Topologies (see Figures 6 and 7)
\(L_{\text {DUAL }}=L_{1}| | L_{2}\) for Uncoupled Dual Inductor
        Topologies (see Figures 6 and 7)
DC = Switch Duty Cycle (see Power Switch Duty
        Cycle section in Appendix)
    \(I_{P K}=\) Maximum Peak Switch Current; should not
        exceed 3.3A for a combined SW1 + SW2
        current, or 1.9A of SW1 current if SW1 is
        being used by itself.
    \(\eta \quad=\) Power Conversion Efficiency (typically 88\%
        for Boost and 75\% for Dual Inductor
        Topologies at High Currents)
    fosc \(=\) Switching Frequency
    IOUT = Maximum Output Current
```

Negative values of $L_{\text {BOOST }}$ or $L_{\text {DUAL }}$ indicate that the output load current, Iout, exceeds the switch current limit capability of the LT3581.

Avoiding Sub-Harmonic Oscillations

The LT3581's internal slope compensation circuit will prevent sub-harmonic oscillations that can occur when the duty cycle is greater than 50%, provided that the inductance exceeds a certain minimum value. In applications that operate with duty cycles greater than 50%, the inductance must be at least:

$$
\mathrm{L}_{\mathrm{MIN}}=\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{CESAT}}\right) \bullet(2 \bullet \mathrm{DC}-1)}{2.2 A \bullet \mathrm{f}_{\mathrm{OSC}} \bullet(1-\mathrm{DC})}
$$

where:

$$
\begin{aligned}
\mathrm{L}_{\text {MIN }}= & \mathrm{L}_{1} \text { for Boost Topologies (see Figure 5) } \\
\mathrm{L}_{\text {MIN }}= & \mathrm{L}_{1}=\mathrm{L}_{2} \text { for Coupled Dual Inductor } \\
& \text { Topologies (see Figures } 6 \text { and 7) } \\
& =\mathrm{L}_{1} \| \mathrm{L}_{2} \text { for Uncoupled Dual Inductor } \\
& \text { Topologies (see Figures } 6 \text { and } 7 \text {) }
\end{aligned}
$$

Maximum Inductance

Excessive inductance can reduce ripple current to levels thatare difficult for the current comparator (A4 in the Block Diagram) to cleanly discriminate, causing duty cycle jitter and/or poor regulation. The maximum inductance can be calculated by:

$$
L_{\text {MAX }}=\frac{V_{\text {IN }}-V_{\text {CESAT }}}{350 \mathrm{~mA}} \cdot \frac{D C}{f_{\text {OSC }}}
$$

where:

$$
\begin{aligned}
\mathrm{L}_{\text {MAX }}= & \mathrm{L}_{1} \text { for Boost Topologies (see Figure 5) } \\
\mathrm{L}_{\text {MAX }}= & \mathrm{L}_{1}=\mathrm{L}_{2} \text { for Coupled Dual Inductor } \\
& \text { Topologies (see Figures } 6 \text { and 7) } \\
\mathrm{L}_{\text {MAX }}= & \mathrm{L}_{1} \| \mathrm{L}_{2} \text { for Uncoupled Dual Inductor } \\
& \text { Topologies (see Figures } 6 \text { and 7) }
\end{aligned}
$$

APPERDIX

Inductor Current Rating

Inductors must have a rating greater than their peak operating current, or else they could saturate and hence contribute to losses in efficiency. The maximum inductor current (considering start-up and steady-state conditions) is given by:

$$
I_{L_{-} P E A K}=I_{\text {LIM }}+\frac{V_{I N} \bullet T_{\text {MIN_PROP }}}{L}
$$

where:
$I_{\text {L_PEAK }}=$ Peak Inductor Current in L_{1} for a Boost Topology, or the Peak of the sum of the Inductor Currents in L1 and L2 for Dual Inductor Topologies.
LIIM $^{* *}=3.3$ A with SW1 and SW2 Tied Together, or 1.9A with just SW1 (This assumes usage of an inductor whose core material soft-saturates such as powdered iron core).
$\mathrm{T}_{\text {MIN_PROP }}=100 \mathrm{~ns}$ (Propagation Delay through the Current Feedback Loop).
**If using an inductor whose core material saturates hard (e.g., ferrite), then pick I LIM to be 5.4A with SW1 and SW2 tied together, or 3A when just SW1 is used.

Note that these equations offer conservative results for the required inductor current ratings. The current ratings could be lower for applications with light loads, if the SS capacitor is sized appropriately to limit inductor currents at start-up.

DIODE SELECTION

Schottky diodes, with their low forward voltage drops and fast switching speeds, are recommended for use with the LT3581. Choose a Schottky diode with Iow parasitic capacitance to reduce reverse current spikes through the power switch of the LT3581. The Central Semiconductor Corp. CMMSH2-40 diode is a very good choice with a 40V reverse voltage rating and an average forward current of 2 A .

OUTPUT CAPACITOR SELECTION

Low ESR (equivalent series resistance) capacitors should be used at the output to minimize the output ripple voltage.

Multilayer ceramic capacitors are an excellent choice, as they have extremely low ESR and are available in very small packages. X5R or X7R dielectrics are preferred, as these materials retain their capacitance over wide voltage and temperature ranges. A $10 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ output capacitor is sufficient for most applications, but systems with very low output currents may need only $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$. Always use a capacitor with a sufficient voltage rating. Many ceramic capacitors, particularly 0805 or 0603 case sizes, have greatly reduced capacitance at the desired output voltage. Tantalum Polymer or OS-CON capacitors can be used, but it is likely that these capacitors will occupy more board area than a ceramic, and will have higher ESR with greater output ripple.

INPUT CAPACITOR SELECTION

Ceramic capacitors make a good choice for the input decoupling capacitor, and should be placed such that it is in close proximity to the $\mathrm{V}_{\text {IN }}$ of the chip as well as to the inductor connected to the input of the power path. If it is not possible to optimally place a single input capacitor, then use two separate capacitors-use one at the $\mathrm{V}_{\text {IN }}$ of the chip (see equation for $\mathrm{C}_{\text {VIN }}$ in Tables 1, 2 and 3) and one at the input to the power path (see equation for CPWR in Tables 1,2 and 3) A $4.7 \mu \mathrm{~F}$ to $20 \mu \mathrm{~F}$ input capacitor is sufficient for most applications.

Table 6 shows a list of several ceramic capacitor manufacturers. Consult the manufacturers for detailed information on their entire selection of ceramic parts.

Table 6: Ceramic Capacitor Manufacturers

AVX	www.avxcorp.com
Murata	www.murata.com
Taiyo Yuden	www.t-yuden.com

PMOS SELECTION

An external PMOS, controlled by the LT3581's GATE pin, can be used to facilitate input or output disconnect. The GATE pin turns on the PMOS gradually during start-up (see Soft-Start of External PMOS in the Operation section), and turns the PMOS off when the LT3581 is in shutdown or in fault.

APPERDIX

The use of the external PMOS, controlled by the GATE pin, is particularly beneficial when dealing with unintended output shorts in a boost regulator. In a conventional boost regulator, the inductor, Schottky diode, and power switches are susceptible to damage in the event of an output short to ground. Using an external PMOS in the boost regulator's power path (path from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$) controlled by the GATE pin, will serve to disconnect the input from the output when the output has a short to ground, thereby helping save the IC, and the other components in the power path from damage. Ensure that both, the diode and the inductor can survive low duty cycle current pulses of 3 to 4 times their steady state levels.
The PMOS chosen must be capable of handling the maximum input or output current depending on whether the PMOS is used at the input (see Figure 11) or the output (see Figure 18).
Ensure that the PMOS is biased with enough source to gate voltage $\left(V_{S G}\right)$ to enhance the device into the triode mode of operation. The higher the V_{SG} voltage that biases the PMOS into triode, the lower the R ${ }_{D S O N}$ of the PMOS, thereby lowering power dissipation in the device during normal operation, as well as improving the efficiency of the application in which the PMOS is used. The following equations show the relationship between $\mathrm{R}_{\text {GATE }}$ (see Block Diagram) and the desired $V_{S G}$ that the PMOS is biased with:

$$
V_{S G}=\left\{\begin{array}{r}
V_{I N} \frac{R_{G A T E}}{R_{G A T E}+2 k \Omega} \text { if } V_{G A T E}<2 V \\
933 \mu A \bullet R_{G A T E} \text { if } V_{G A T E} \geq 2 V
\end{array}\right.
$$

When using a PMOS, it is advisable to configure the specific application for undervoltage lockout (see the Operations section). The goal is to have $\mathrm{V}_{\text {IN }}$ get to a certain minimum voltage where the PMOS has sufficient headroom to attain a high enough $V_{S G}$, which prevents it from entering the saturation mode of operation during start-up.
Figure 18 shows the PMOS connected in series with the output to act as an output disconnect during a fault condition. The Schottky diode from the V_{IN} pin to the GATE pin is optional and helps turn off the PMOS quicker in the
event of hard shorts. The resistor divider from $V_{\text {IN }}$ to the $\overline{\text { SHDN }}$ pin sets a UVLO of 4V for this application.
Connecting the PMOS in series with the output offers certain advantages over connecting it in series with the input:

- Since the load current is always less than the input current for a boost converter, the current rating of the PMOS goes down.
- A PMOS in series with the output can be biased with a higher overdrive voltage than a PMOS used in series with the input, since $V_{\text {OUT }}>\mathrm{V}_{\text {IN }}$. This higher overdrive results in a lower $\mathrm{R}_{\text {DSON }}$ rating for the PMOS, thereby improving the efficiency of the regulator.

In contrast, an input connected PMOS works as a simple hot-plug controller (covered in more detail in the Hot-Plug section). The input connected PMOS also functions as an inexpensive means of protecting against multiple output shorts in boost applications that synchronize the LT3581 with other compatible ICs (see Figure 11).
Table 7 shows a list of several discrete PMOS manufacturers. Consult the manufacturers for detailed information on their entire selection of PMOS devices.

Table 7. Discrete PMOS Manufacturers

Vishay	www.vishay.com
Fairchild Semiconductor	www.fairchildsemi.com

COMPENSATION - ADJUSTMENT

To compensate the feedback loop of the LT3581, a series resistor-capacitor network in parallel with an optional single capacitor should be connected from the V_{C} pin to GND. For most applications, choose a series capacitor in the range of 1 nF to 10 nF with 2.2 nF being a good starting value. The optional parallel capacitor should range in value from 47 pF to 160 pF with 100 pF being a good starting value. The compensation resistor, R_{C}, is usually in the range of 5 k to 50 k with 10 k being a good starting value. A good technique to compensate a new application is to use a 100k potentiometer in place of the series resistor R_{C}. With the series and parallel capacitors at 2.2 nF and 100 pF respectively, adjust the potentiometer while observing the transient response and the optimum value for R_{C} can be

APPERDIX

found. Figures 15 a to 15 c illustrate this process for the circuit of Figure 18 with a load current stepped between 540 mA and 800 mA . Figure 15a shows the transient response with R_{c} equal to 1 k . The phase margin is poor as evidenced by the excessive ringing in the output voltage and inductor current. In Figure 15b, the value of R_{c} is increased to $3 k$, which results in a more damped response. Figure 15 c shows the results when R_{C} is increased further to 10.5 k . The transient response is nicely damped and the compensation procedure is complete.

Figure 15a. Transient Response Shows Excessive Ringing

Figure 15b. Transient Response is Better

Figure 15c. Transient Response is Well Damped

COMPENSATION - THEORY

Like all other current mode switching regulators, the LT3581 needs to be compensated for stable and efficient operation. Two feedback loops are used in the LT3581: a fast current loop which does not require compensation, and a slower voltage loop which does. Standard Bode plot analysis can be used to understand and adjust the voltage feedback loop.

As with any feedback loop, identifying the gain and phase contribution of the various elements in the loop is critical. Figure 16 shows the key equivalent elements of a boost converter. Because of the fast current control loop, the power stage of the IC, inductor and diode have been replaced by a combination of the equivalent transconductance amplifier $g_{m p}$ and the current controlled current source (which converts $I_{\text {VIN }}$ to $\eta V_{\text {IN }} / V_{\text {OUT }} \bullet I_{\text {VIN }}$). $g_{m p}$ acts as a current source where the peak input current, I_{VIN}, is proportional to the V_{C} voltage. η is the efficiency of the switching regulator and is typically about 80%.

Note that the maximum output currents of the $g_{m p}$ and $g_{m a}$ stages are finite. The output of the $g_{m p}$ stage is limited by the minimum switch current limit (see Electrical Specifications) and the output of the $g_{m a}$ stage is nominally limited to about $\pm 12 \mu \mathrm{~A}$.

Figure 16. Boost Converter Equivalent Model

APPERDIX

From Figure 16, the DC gain, poles and zeros can be calculated as follows:

DC Gain:
(Breaking loop at FB pin)

$$
\begin{aligned}
& A_{D C}=A_{O L}(0)=\frac{\partial V_{C}}{\partial V_{F B}} \bullet \frac{\partial I_{V I N}}{\partial V_{C}} \bullet \frac{\partial V_{O U T}}{\partial I_{\mathrm{VIN}}} \bullet \frac{\partial V_{F B}}{\partial V_{\text {OUT }}}= \\
& \left(g_{\mathrm{ma}} \bullet R_{0}\right) \bullet g_{\mathrm{mp}} \bullet\left(\eta \bullet \frac{V_{I N}}{\mathrm{~V}_{\text {OUT }}} \bullet \frac{R_{L}}{2}\right) \bullet \frac{0.5 R_{2}}{R_{1}+0.5 R_{2}}
\end{aligned}
$$

Output Pole: $\mathrm{P} 1=\frac{2}{2 \bullet \pi \bullet R_{L} \bullet C_{O U T}}$
Error Amp Pole: $\mathrm{P} 2=\frac{1}{2 \bullet \pi \bullet\left[\mathrm{R}_{0}+\mathrm{R}_{\mathrm{C}}\right] \cdot \mathrm{C}_{\mathrm{C}}}$
Error Amp Zero:Z1= $\frac{1}{2 \bullet \pi \bullet R_{C} \bullet C_{C}}$
ESR Zero: Z2 $=\frac{1}{2 \bullet \pi \bullet \mathrm{R}_{\mathrm{ESR}} \bullet \mathrm{C}_{\text {OUT }}}$
RHP Zero: Z3 $=\frac{V_{\text {IN }}{ }^{2} \bullet R_{L}}{2 \bullet \pi \bullet V_{\text {OUT }}{ }^{2} \bullet L}$
HighFrequency Pole: $\mathrm{P} 3>\frac{\mathrm{f}_{\mathrm{S}}}{3}$
Phase Lead Zero: $Z 4=\frac{1}{2 \bullet \pi \bullet R 1 \bullet C_{P L}}$

$$
\text { Phase Lead Pole: } \mathrm{P} 4=\frac{1}{2 \bullet \pi \bullet \frac{\mathrm{R} 1 \cdot \frac{\mathrm{R} 2}{2}}{\mathrm{R} 1+\frac{\mathrm{R} 2}{2}} \cdot \mathrm{C}_{\mathrm{PL}}}
$$

Error Amp Filter Pole:

$$
P 5=\frac{1}{2 \bullet \pi \bullet \frac{R_{C} \cdot R_{0}}{R_{C}+R_{0}} \bullet C_{F}}, C_{F}<\frac{C_{C}}{10}
$$

The current mode zero (Z3) is a right half plane zero which can be an issue in feedback control design, but is manageable with proper external component selection.

Using the circuit in Figure 18 as an example, Table 8 shows the parameters used to generate the Bode plot shown in Figure 17.

Table 8. Bode Plot Parameters

PARAMETER	VALUE	UNITS	COMMENT
R_{L}	14.5	Ω	Application Specific
$\mathrm{C}_{\text {OUT }}$	9.4	$\mu \mathrm{~F}$	Application Specific
$\mathrm{R}_{\text {ESR }}$	1	$\mathrm{~m} \Omega$	Application Specific
R_{0}	305	$\mathrm{k} \Omega$	Not Adjustable
C_{C}	1000	pF	Adjustable
C_{F}	56	pF	Optional/Adjustable
C_{PL}	0	pF	Optional/Adjustable
R_{C}	10.5	$\mathrm{k} \Omega$	Adjustable
R_{1}	130	$\mathrm{k} \Omega$	Adjustable
R_{2}	14.6	$\mathrm{k} \Omega$	Not Adjustable
$\mathrm{V}_{\text {REF }}$	1.215	V	Not Adjustable
$\mathrm{V}_{\text {OUT }}$	12	V	Application Specific
$\mathrm{V}_{\text {IN }}$	5	V	Application Specific
$\mathrm{g}_{\text {ma }}$	270	$\mu \mathrm{mho}$	Not Adjustable
$g_{\text {mp }}$	15.1	mho	Not Adjustable
L	1.5	$\mu \mathrm{H}$	Application Specific
$\mathrm{f}_{\text {OSC }}$	2	MHz	Adjustable

From Figure 17, the phase is -130° when the gain reaches 0 dB giving a phase margin of 50°. The crossover frequency is 17 kHz , which is more than three times lower than the frequency of the RHP zero Z3 to achieve adequate phase margin.

Figure 17. Bode Plot for Example Boost Converter

TYPICAL APPLICATIONS

Figure 18. 2MHz, 5V to 12V, 830mA Boost Converter with Output Short Circuit Protection

Transient Response with 430 mA to 830 mA to 430 mA Load Step

Switching Waveforms with 830 mA Load

$2 \mathrm{MHz}, 5 \mathrm{~V}, 1.1 \mathrm{~A}$ Boost Converter Operates from an Input Range of 2.8 V to 4.2 V

TYPICAL APPLICATIONS

High Efficiency, VFD (Vacuum Fluorescent Display) Power Supply Switches at 2MHz to Avoid AM Band DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY

Transient Response with 60 mA to 140 mA to 60 mA

Efficiency and Power Loss at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$

TYPICAL APPLICATIONS
2MHz, 12V SEPIC Converter Can Accept Input Voltages from 9V to 16V

Efficiency

Line Regulation with No Load

Load Regulation at $V_{I N}=12$

TYPICAL APPLICATIONS

Wide Input Range, 3.3V SEPIC Converter Can Operate from 3V to 36V

Wide Input Range SEPIC Can Ride Through $V_{\text {Bat }}$ Voltages that Are Higher than $\mathrm{V}_{\mathrm{IN} \text { _ovp }}$

3581 TA07b

LT3581

TYPICAL APPLICATIONS

$1 \mathrm{MHz}, \pm 12 \mathrm{~V}$ Charge Pump Topology Uses Only Single Inductor

700kHz, -5V Inverting Converter Can Accept Input Voltages from 3V to 16V

C1: $22 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 1210$
C2: $1 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 1206$
C3: $22 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 1210$
D1: VISHAY SSB44
L1, L2: COILCRAFT MSD7342-332MLB
700kHz, 5V SEPIC Can Accept Input Voltages from 3V to 16V

Efficiency and Power Loss with Symmetric Load

Efficiency

Efficiency

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

MSE Package
16-Lead Plastic MSOP, Exposed Die Pad
(Reference LTC DWG \# 05-08-1667 Rev F)

LT3581

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

DE Package
14-Lead Plastic DFN ($4 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1708 Rev B)

BOTTOM VIEW-EXPOSED PAD

NOTE:

1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC PACKAGE OUTLINE MO-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

TOP AND BOTTOM OF PACKAGE

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$11 / 13$	Added H-grade to Absolute Maximum Ratings table and Order Information table Clarified Electrical Characteristics	2
B	$07 / 14$	Clarified FAULT Output Voltage Low on Electrical Characteristics table, Typ was 150, changed to 100	4

TYPICAL APPLICATION

5 V to -12V Inverting Converter Switches at 2MHz

C1: $3.3 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 1206$
C2: 1 $\mu \mathrm{F}, 25 \mathrm{~V}, \mathrm{X7R}, 1206$
C3: 4.7 F F , 25V, X7R, 1206
D1: DIODES INC. PD3S230H-7
L1, L2: COILCRAFT MSD7342-332MLB

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT3580	2A (Isw), 2.5MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{I N}=2.5 \mathrm{~V} \text { to } 32 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=42 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ $3 \mathrm{~mm} \times 3 \mathrm{~mm} \text { DFN- } 8 \text {, MSOP-8E Packages }$
LT3471	Dual Output 1.3A (Isw), 1.2MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-10 Package
LT3479	40V, 3A, Full Featured DC/DC Converter with Soft-Start and Inrush Current Protection	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~V}_{\text {OUT (MAX }}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=$ Analog $/ \mathrm{PWM}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, DFN, TSSOP Packages
LT3477	40V, 3A, Full Featured DC/DC Converter	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V} \text { to } 25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }(M A X)}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=\text { Analog } / \mathrm{PWM}, \\ & \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{QFN} \text {, TSSOP-20E Packages } \end{aligned}$
LT1946/LT1946A	1.5A (Isw), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=2.6 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3.2 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, MS8E Package
LT1935	2A (Isw), 40V, 1.2MHz, High Efficiency Step-Up DC/DC Converter	$V_{I N}=2.3 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ ThinSOT Package
LT1310	2A (Isw), 40V, 1.2MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{I N}=2.3 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\text {OUT }(\mathrm{MAX})}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ ThinSOT Package
LT3436	3A (Isw), 800kHz, 34V Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V} \text { to } 25 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=0.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<6 \mu \mathrm{~A},$ TSSOP-16E Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G MP3416GJ-P MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

