LT4320/LT4320-1 Ideal Diode Bridge Controller

feATURES

- Maximizes Power Efficiency
- Eliminates Thermal Design Problems
- DC to 600Hz
- 9V to 72V Operating Voltage Range
- $I_{0}=1.5 \mathrm{~mA}$ (Typical)
- Maximizes Available Voltage
- Available in 8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) DFN, 12-Lead MSOP and 8-Lead PDIP Packages

APPLICATIONS

- Security Cameras
- Terrestrial or Airborne Power Distribution Systems
- Power-over-Ethernet Powered Device with a Secondary Input
- Polarity-Agnostic Power Input
- Diode Bridge Replacement
$\boldsymbol{\Sigma T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Patent pending.

DESCRIPTION

The LT®4320/LT4320-1 are ideal diode bridge controllers that drive four N-channel MOSFETs, supporting voltage rectification from DC to 600 Hz typical. By maximizing available voltage and reducing power dissipation (see thermograph comparison below), the ideal diode bridge simplifies power supply design and reduces power supply cost, especially in low voltage applications.

An ideal diode bridge also eliminates thermal design problems, costly heat sinks, and greatly reduces PC board area. The LT4320's internal charge pump supports an allNMOS design, which eliminates larger and more costly PMOS switches. If the power source fails or is shorted, a fast turn-off minimizes reverse current transients.

The LT4320 is designed for DC to 60 Hz typical voltage rectification, while the LT4320-1 is designed for DC to 600 Hz typical voltage rectification. Higher frequencies of operation are possible depending on MOSFET size and operating load current.

TYPICAL APPLICATION

Thermograph of Passive Diode Bridge

Thermograph of LT4320 Driving Four MOSFETs

CONDITIONS: 24 V AC ${ }_{I N}, 9.75 \mathrm{~A}$ DC LOAD ON SAME PCB

Temperature Rise

	MOSFET	DIODE SBM CURRENT
$2.5 \mathrm{~m} \boldsymbol{\Omega}$	$\mathbf{1 0 4 0}$	
2 A	$0.6^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$
4 A	$3.5^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{C}$
6 A	$6.7^{\circ} \mathrm{C}$	$49^{\circ} \mathrm{C}$
8 A	$11^{\circ} \mathrm{C}$	$66^{\circ} \mathrm{C}$
10 A	$16^{\circ} \mathrm{C}$	$84^{\circ} \mathrm{C}$

DC Input, On Same PCB

ABSOLUTG MAXIMUM RATINGS (Notes 1,2)

Operating Junction Temperature Range	
LT4320I	-4
LT4320H $\quad-40^{\circ} \mathrm{C}$ to 125°	
LT4320MP	
Lead Temperature (Soldering, 10 sec)	
MSE, PDIP Packages	

Operating Junction Temperature Range LT43201... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ LT4320H ... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ LT4320MP $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) MSE, PDIP Packages $300^{\circ} \mathrm{C}$

PIn COnfiGURATIOn

8-LEAD $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ PLASTIC DFN
$T_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JC}}=5.5^{\circ} \mathrm{C} / \mathrm{W}$ EXPOSED PAD (PIN 9) MUST BE CONNECTED TO OUTN (PIN 5)

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	OPERATING JUNCTION TEMPERATURE RANGE
LT4320IDD\#PBF	LT4320IDD\#TRPBF	LGCV	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT4320HDD\#PBF	LT4320HDD\#TRPBF	LGCV	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT4320IDD-1\#PBF	LT4320IDD-1\#TRPBF	LGCW	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT4320HDD-1\#PBF	LT4320HDD-1\#TRPBF	LGCW	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT4320IMSE\#PBF	LT4320IMSE\#TRPBF	4320	12-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT4320HMSE\#PBF	LT4320HMSE\#TRPBF	4320	12-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT4320MPMSE\#PBF	LT4320MPMSE\#TRPBF	4320	12-Lead Plastic MSOP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT4320IMSE-1\#PBF	LT4320IMSE-1\#TRPBF	43201	12-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT4320HMSE-1\#PBF	LT4320HMSE-1\#TRPBF	43201	12-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT4320MPMSE-1\#PBF	LT4320MPMSE-1\#TRPBF	43201	12-Lead Plastic MSOP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT4320IN8\#PBF	NA	LT4320N8	8-Lead PDIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT4320HN8\#PBF	NA	LT4320N8	8-Lead PDIP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT43201N8-1\#PBF	NA	LT4320N8-1	8-Lead PDIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT4320HN8-1\#PBF	NA	LT4320N8-1	8-Lead PDIP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The e denotes the speciications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	OUTP Voltage Range		\bullet	9		72	V
	OUTP Undervoltage Lockout (UVLO) Threshold	INn = OUTP, Other IN = 0V	\bullet	6.2	6.6	7.0	V
$\mathrm{V}_{\text {INT }}$	INn Turn-On/Off Threshold	OUTP = 9V, Other IN = OV	\bullet	1.3		3.7	V
$\mathrm{I}_{\text {OUTP }}$	OUTP Pin Current	$\mathrm{INn}=0 \mathrm{UTP}+\Delta \mathrm{V}_{\text {SD(MAX }}+5 \mathrm{mV}$, Other $\mathrm{IN}=0 \mathrm{~V}$	\bullet		1.0	1.5	mA
I_{IN}	$\begin{aligned} & \text { INn Pin Current } \\ & \text { at 9V } \\ & \text { at } 72 \mathrm{~V} \end{aligned}$	$\mathrm{INn}=0 \mathrm{UTP}+\Delta \mathrm{V}_{\text {SD(MAX }}+5 \mathrm{mV}$, Other $\mathrm{IN}=0 \mathrm{~V}$	\bullet		$\begin{aligned} & 44 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 63 \\ & 0.4 \end{aligned}$	$\mu \mathrm{A}$ mA
$\overline{\Delta V_{S D}}$	```Topside Source-Drain Regulation Voltage (INn - OUTP) LT4320 LT4320-1```		\bullet	$\begin{gathered} 8 \\ 26 \end{gathered}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 55 \end{aligned}$	mV mV
$\Delta \mathrm{V}_{\text {TGATE }}$	Top Gate Drive (TGn - INn)	INn $=0 U T P+\Delta V_{S D(M A X)}+5 \mathrm{mV}, 10 \mu \mathrm{~A}$ Out of TGn, Other IN = OV	\bullet	6.6		10.8	V
$\mathrm{V}_{\text {BGATE }}$	Bottom Gate Drive (BGn)	INn = OUTP, 10 μ A Out of BGn, Other IN = OV	\bullet	7.0		12	V
ItGUn	Top Gate Pull-Up Current	$\begin{aligned} & \mathrm{TGn}-\mathrm{INn}=0 \mathrm{~V}, \mathrm{INn}=0 \mathrm{UTP}+0.1 \mathrm{~V} \\ & \mathrm{TGn}-\mathrm{INn}=5 \mathrm{~V}, \mathrm{INn}=0 \mathrm{UTP}+0.1 \mathrm{~V} \\ & \text { Current Flows Out of TGn, Other IN }=0 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 425 \\ & 120 \end{aligned}$			$\mu \mathrm{A}$ $\mu \mathrm{A}$
ITGSn	Top Gate Pull-Down Current to INn	$\begin{aligned} & \text { TGn }-\mathrm{INn}=5 \mathrm{~V}, \mathrm{INn}=0 \mathrm{UTP}-0.25 \mathrm{~V} \\ & \text { Current Flows Into TGn, Other IN }=0 \mathrm{~V} \end{aligned}$	\bullet	1.25			mA
ITGGn	Top Gate Pull-Down Current to OUTN	INn = OV, Other IN = OUTP = 9.0V, TGn = 5V Current Flows Into TGn	\bullet	6.0			mA
$I_{\text {BGUn }}$	Bottom Gate Pull-Up Current	BGn = 5V; INn = OUTP = 9.0V, Other IN = 0V Current Flows Out of BGn	\bullet	1.9			mA
$I_{\text {BGD }}$	Bottom Gate Pull-Down Current	$\begin{aligned} & \mathrm{BGn}=5 \mathrm{~V} \text {; INn = OV, Other } \mathrm{IN}=0 \mathrm{UTP}=9.0 \mathrm{~V} \\ & \text { Current Flows Into BGn } \end{aligned}$	\bullet	12.5			mA

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Unless otherwise specified, exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All voltages are referenced to OUTN = OV unless otherwise specified.
Note 3: Externally forced voltage absolute maximums. The LT4320 may exceed these limits during normal operation.

LT4320/LT4320-1

TYPICAL PERFORMANCE CHARACTERISTICS

4320 G01

4320 G04

I ${ }_{\text {OUTP }}$ vs OUTP

4320 GO2
TGn Pull-Up Strength

4320 G05

4320 GO3
TGn Pull-Down Strength to INn

4320 G06

LT4320/LT4320-1

PIn functions (ofn, pipi/Msop)

IN2 (Pin 1/Pin 1): Bridge Rectifier Input. IN2 connects to the external NMOS transistors MTG2 source, MBG1 drain and the power input.

TG2 (Pin 2/Pin 2): Topside Gate Driver Output. TG2 pin drives MTG2 gate.
BG2 (Pin 3/Pin 5): Bottom-Side Gate Driver Output. BG2 pin drives MBG2 gate.

BG1 (Pin 4/Pin 6): Bottom-Side Gate Driver Output. BG1 pin drives MBG1 gate.

OUTN (Pin 5/Pin 7): OUTN is the rectified negative output voltage, and connects to the sources of MBG1 and MBG2.

OUTP (Pin 6/Pin 9): OUTP is the rectified positive output voltage that powers the LT4320 and connects to the drains of MTG1 and MTG2.

TG1 (Pin 7/Pin 11): Topside Gate Driver Output. TG1 pin drives MTG1 gate.

IN1 (Pin 8/Pin 12): Bridge Rectifier Input. IN1 connects to the external NMOS transistors MTG1 source, MBG2 drain, and the power input.

NC (Pins 3, 4, 8, 10, MSOP Only): No Connections. Not internally connected.
Exposed Pad (Pin 9/Pin 13): Exposed Pad, DFNand MSOP. Must be connected to OUTN.

BLOCK DIAGRAM

LT4320/LT4320-1

operation

Electronic systems that receive power from an AC power source or a DC polarity-agnostic power source often employ a 4-diode rectifier. The traditional diode bridge comes with an efficiency loss due to the voltage drop generated across two conducting diodes. The voltage drop reduces the available supply voltage and dissipates significant power especially in low voltage applications.
By maximizing available voltage and reducing power dissipation, the ideal diode bridge simplifies power supply design and reduces power supply cost. An ideal diode
bridge also eliminates thermal design problems, costly heat sinks, and greatly reduces PC board area.
The LT4320 is designed for DC to 60 Hz typical voltage rectification, while the LT4320-1 is designed for DC to 600 Hz typical voltage rectification. Higher frequencies of operation are possible depending on MOSFET size and operating load current.
Figure 2 presents sample waveforms illustrating the gate pins in an AC voltage rectification design.

Figure 1. LT4320 with Four N-Channel MOSFETS, Illustrating Current Flow When IN1 Is Positive

Figure 2. 24V AC Sample Waveform

APPLICATIONS INFORMATION

MOSFET Selection

A good starting point is to reduce the voltage drop of the ideal bridge to 30 mV per MOSFET with the LT4320 $(50 \mathrm{mV}$ per MOSFET with the LT4320-1). Given the average output load current, $I_{\text {AVG }}$, select $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ to be:

$$
R_{D S(O N)}=\frac{30 \mathrm{mV}}{\mathrm{I}_{\mathrm{AVG}}} \text { for a } D C \text { power input }
$$

or

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=\frac{30 \mathrm{mV}}{3 \cdot \mathrm{I}_{\mathrm{AVG}}} \text { for an AC power input }
$$

In the AC power input calculation, $3 \cdot I_{\text {AVG }}$ assumes the duration of current conduction occupies $1 / 3$ of the AC period.
Select the maximumallowable drain-source voltage, $\mathrm{V}_{\text {DSS }}$, to be higher than the maximum input voltage.

Design Example

For a $24 \mathrm{~W}, 12 \mathrm{~V}$ DC/24V AC application, $\mathrm{I}_{\mathrm{AVG}}=2 \mathrm{~A}$ for 12 V DC. To cover the 12V DC case:

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=\frac{30 \mathrm{mV}}{2 \mathrm{~A}}=15 \mathrm{~m} \Omega
$$

For the 24 V AC operation, $\mathrm{I}_{\mathrm{AVG}}=1 \mathrm{~A}$. To cover the 24 V AC case:

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=\frac{30 \mathrm{mV}}{3 \cdot 1 \mathrm{~A}}=10 \mathrm{~m} \Omega
$$

This provides a starting range of $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ values to choose from.

Ensure the MOSFET can handle a continuous current of $3 \cdot I_{\text {AVG }}$ to cover the expected peak currents during AC rectification. That is, select $I_{D} \geq 3 A$. Since a $24 V$ AC waveform can reach 34 V peak, select a MOSFET with $\mathrm{V}_{\text {DSS }} \gg 34 \mathrm{~V}$. A good choice of $\mathrm{V}_{\text {DSS }}$ is 60 V in a 24 V AC application.

Other Considerations in MOSFET Selection

Practical MOSFET considerations for the LT4320-based ideal bridge application include selecting the lowest available total gate charge $\left(Q_{g}\right)$ for the desired $R_{D S}(O N)$. Avoid oversizing the MOSFET, since an oversized MOSFET limits
the maximum operating frequency, creates unintended efficiency losses, adversely increases turn-on/turn-off times, and increases the total solution cost. The LT4320 gate pull-up/pull-down current strengths specified in the Electrical Characteristics section, and the MOSFET total gate charge $\left(Q_{g}\right)$, determinethe MOSFET turn-on/offtimes and the maximum operating frequency in an AC application. Choosing the lowest gate capacitance while meeting $R_{D S(O N)}$ speeds up the response time for fullenhancement, regulation, turn-off and input shorting events.
$V_{G S}(t h)$ must be a minimum of 2 V or higher. A gate threshold voltage lower than 2 V is not recommended since too much time is needed to discharge the gate below the threshold and halt current conduction during a hot plug or input short event.

$C_{\text {LOAD }}$ Selection

A $1 \mu \mathrm{~F}$ ceramic and a $10 \mu \mathrm{~F}$ minimum electrolytic capacitor must be placed across the OUTP and OUTN pins with the $1 \mu \mathrm{~F}$ ceramic placed as close to the LT4320 as possible. Downstream power needs and voltage ripple tolerance determine how much additional capacitance between OUTP and OUTN is required. CLOAD in the hundreds to thousands of microfarads is common.

A good starting point is selecting C LOAD such that:

$$
\mathrm{C}_{\mathrm{LOAD}} \geq \mathrm{I}_{\mathrm{AVG}} /\left(\mathrm{V}_{\mathrm{RIPPLE}} \cdot 2 \cdot \text { Freq }\right)
$$

where $\mathrm{I}_{\mathrm{AVG}}$ is the average output load current, $\mathrm{V}_{\text {RIPPLE }}$ is the maximum tolerable output ripple voltage, and Freq is the frequency of the input AC source. For example, in a $60 \mathrm{~Hz}, 24 \mathrm{VAC}$ application where the load current is 1 A and the tolerable ripple is 15 V , choose $C_{\text {LOAD }} \geq 1 \mathrm{~A} /(15 \mathrm{~V}$ - $2 \cdot 60 \mathrm{~Hz})=556 \mu \mathrm{~F}$.

ClOAD must also be selected so that the rectified output voltage, OUTP-OUTN, mustbe withinthe LT4320/LT4320-1 specified OUTP voltage range.

Transient Voltage Suppressor

For applications that may encounter brief overvoltage events higher than the LT4320 absolute maximum rating, install a unidirectional transient voltage suppressor (TVS) between the OUTP and OUTN pins as close as possible to the LT4320.

Figure 3. Thermograph: B360B vs LT4320 +4 Compact FETs

TYPICAL APPLICATIONS

Figure 4. Demonstration Circuit 1902A Used in Figure 3 Thermograph

PACKAGE DESCRIPTION
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DD Package
8-Lead Plastic DFN (3mm $\times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

BOTTOM VIEW—EXPOSED PAD
NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

Package
12-Lead Plastic MSOP, Exposed Die Pad
(Reference LTC DWG \# 05-08-1666 Rev G)

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

N Package

8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510 Rev I)

> NOTE: 1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

revision history

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$11 / 13$	Clarified that input frequency ranges use typical numbers $(60 \mathrm{~Hz}, 600 \mathrm{~Hz})$	1,6
		Added PDIP package Reduced MOSFET drop to 30 mV from 70 mV in "MOSFET Selection" and "Design Example" sections 	Provided additional guidance in "Other Considerations in MOSFET Selection" section Updated MSE package drawing
B	$2 / 14$	Added H- and MP-grade information	7

LT4320/LT4320-1

TYPICAL APPLICATION

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT4321	PoE Ideal Diode Bridge Controller	Replaces 8 Diodes with 8 N -Channel MOSFETs, Reduces Heat, Maximizes Efficiency
LTC4352	Low Voltage Ideal Diode Controller with Monitoring	N-Channel, OV to 18V, UV, OV, MSOP-12 and DFN-12 Packages
LTC4353	Dual Low Voltage Ideal Diode Controller	Dual N-Channel, OV to 18V, MSOP-16 and DFN-16 Packages
LTC4354	Negative Voltage Diode-OR Controller and Monitor	Controls Two N-Channel MOSFETs, 1 ¢s Turn-Off, -80V Operation
LTC4355	Positive Voltage Diode-OR Controller and Monitor	Controls Two N-Channel MOSFETs, $0.5 \mu \mathrm{~s}$ Turn-Off, 9 V to 80V Operation
LTC4357	Positive High Voltage Ideal Diode Controller	Controls Single N-Channel MOSFETs, 0.5 us Turn-Off, 9V to 80V Operation
LTC4358	5A Ideal Diode	Positive Voltage Ideal Diode with Integrated MOSFET, 9V to 26.5V Operation
LTC4359	Ideal Diode Controller with Reverse Input Protection	N-Channel, 4V to 80V, MSOP-8 and DFN-6 Packages
LTC4370	2-Supply Diode-OR Current Balancing Controller	Dual N-Channel, OV to 18V, MSOP-16 and DFN-16 Packages
LTC4415	Dual 4A ideal Diodes with Adjustable Current Limit	1.7V to 5.5V Operating Range

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management Specialised - PMIC category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 MAX4940MB LV56841PVD-XH MAX77686EWE+T AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G TEA1998TS/1H PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B
MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MAX17506EVKITBE\# MCP16501TC-E/RMB ISL91212AIIZ-TR5770 ISL91212BIIZ-TR5775 CPX200D TP-1303 TP-1305 TP-1603 TP2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C MPS-3003L-3 MPS-3005D NCP392ARFCCT1G SPD-3606 MMPF0200F6AEP STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ-AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB

