800 MHz to 2.7 GHz RF Measuring Receiver

feATURES

- RF Frequency Range: 800MHz to 2.7 GHz
- Ultra Wide Dynamic Range: 75dB at 900MHz
- Wide Power Supply Range: 2.7V to 5.25V
- Low Supply Current: 14.7 mA at 3 V
- 8-Lead MSOP Package

APPLICATIONS

- RSSI Measurements
- Receive AGC
- Transmit Power Control
- ASK and Envelope Demodulation
- GSM/TDMA/CDMA/WCDMA

DESCRIPTIOn

The LT® 5504 is an 800 MHz to 2700 MHz monolithic integrated measuring receiver, capable of detecting a wide dynamic range RF signal from -75 dBm to +5 dBm . The logarithm of the RF signal is precisely converted into a linear DC voltage. The LT5504 consists of RF/IF limiters, an LO buffer amplifier, a limiting mixer, a 3rd-order 450MHz integrated low pass filter, RF/IF detectors and an output interface. The ultrawide dynamic range is achieved by simultaneously measuring the RF signal and a downconverted IF signal obtained using the on-chip mixer and an external local oscillator. The RF- and IF-detected signals are summed to generate an accurate linear DC voltage proportional to the input RF voltage (or power) in dB . The output is buffered with a low output impedance driver.

TYPICAL APPLICATION

Output Voltage and Slope Variation vs RF Input Power

5504 TA01b

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Power Supply Voltage ... 5.5V
Vout, EN $0, V_{C C}$
LO Input Power ... 6dBm
RF Input Power Differential ($50 \Omega, 5.5 \mathrm{~V}$) 24 dBm
RF Input Power Single-Ended ($50 \Omega, 5.5 \mathrm{~V}$) 18dBm
Operating Ambient Temperature $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LT5504EMS8
	MS8 PART MARKING
	LTGP

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C} . v_{C C}=3 V, P_{L 0}=-10 d B m$, unless otherwise noted. (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
RF Input					
$\mathrm{f}_{\text {RF }}$	Frequency Range		800 to 2700		MHz
	Input Impedance	(Note 6)			
	DC Voltage	Internally Biased	1.7		V
LO Input					
flo	Frequency Range		850 to 3100		MHz
	Input Return Loss	Internally Matched to 50ת	14		dB
	DC Voltage	Internally Biased	0.82		V
PLo	LO Power		-16 to -8		dBm
	LO to RF Leakage	$\begin{aligned} & \hline 900 \mathrm{MHz} \\ & 1.9 \mathrm{GHz} \\ & 2.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -50 \\ & -45 \\ & -40 \end{aligned}$		dBc dBc dBc

IF Frequency

$\mathrm{f}_{\text {IF }}$	Frequency		50 to 450	MHz

Output Voltage at $\mathrm{f}_{\text {RF }}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{L} 0}=1140 \mathrm{MHz}$

	Linear Dynamic Range (Note 4)		66	75
	Output Voltage	Input $=-70 \mathrm{dBm}$	0.4	
		Input $=-20 \mathrm{dBm}$	dB	
		Input $=0 \mathrm{dBm}$	V	
		Input from -50 dBm to -20 dBm	2.1	V
	Average Slope	16	23	$\mathrm{VV} / \mathrm{dB}$

Output Voltage at $f_{\text {RF }}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{L} 0}=2140 \mathrm{MHz}$

	Linear Dynamic Range (Note 4)		60	72
	Output Voltage	Input $=-70 \mathrm{dBm}$	0.35	dB
		Input $=-20 \mathrm{dBm}$	1.52	V
		Input $=0 \mathrm{dBm}$	V	
		Input from -50 dBm to -20 dBm	V	
	Average Slope	16	23	$\mathrm{mV} / \mathrm{dB}$

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3 V, P_{\mathrm{L} 0}=-10 \mathrm{dibm}$, unless otherwise noted. (Notes 2,3$)$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage at $\mathrm{f}_{\mathrm{RF}}=2500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2260 \mathrm{MHz}$						
	Linear Dynamic Range (Note 4)		58	70		dB
	Output Voltage	$\begin{aligned} & \text { Input }=-70 \mathrm{dBm} \\ & \text { Input }=-20 \mathrm{dBm} \\ & \text { Input }=0 \mathrm{dBm} \end{aligned}$		$\begin{gathered} 0.3 \\ 1.45 \\ 1.8 \end{gathered}$		V V V
	Average Slope	Input from -50dBm to -20dBm	16	23		$\mathrm{mV} / \mathrm{dB}$

Output Interface

	Current Drive Capability		400	$\mu \mathrm{~A}$
	Output Noise Spectral Density	At 100 KHz	3.9	$\mu \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		At 10 MHz	0.32	$\mu \mathrm{~V} / \sqrt{\mathrm{Hz}}$
	Output Response Time (Note 5)	RF Input Pin from No Signal to 0dBm	200	ns

Power Up/Down

$t_{\text {ON }}$	Turn ON Time (Note 5)		400	ns
	Turn OFF Time (Note 5)		4	HS
	Input Resistance		30	$\mathrm{k} \Omega$
	Enable Turn ON Voltage (Note 7)		$0.6 \bullet V_{\text {CC }}$	V
	Disable Turn OFF Voltage (Note 7)		$0.4 \bullet V_{\text {CC }}$	V

Power Supply

$V_{\text {CC }}$	Supply Voltage		2.7	5.25	V
$I_{\text {CC }}$	Supply Current		14.7	22	mA
	Shutdown Current			30	$\mu \mathrm{~A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Tests are performed as shown in the configuration of Figure 5. Note 3: Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range are guaranteed by design, characterization and correlation with statistical process controls.

Note 4: The Linear Dynamic Range is defined as the range over which the output slope is at least 50% of the average slope from -50 dBm to -20 dBm . Note 5: The output voltage is settled to the full specification within 1 dB .
Note 6: Refer to Figure 1 and Applications Information.
Note 7: Refer to Pin Functions description.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMAOCE CHARACTERISTICS (Vcc = 3v unless otherwise noted).

Output Slope Variation vs RF Input Power and Frequency

Output Voltage and Slope Variation vs RF Input Power and Temperature, $\mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$

Output Voltage and Slope Variation vs RF Input Power and Temperature, $\mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}$

5504 G10

Output Voltage and Slope Variation vs RF Input Power and Temperature, $\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}$

Output Voltage and Slope Variation
vs RF Input Power and IF Frequency

Output Voltage and Slope Variation vs RF Input Power and Temperature, $\mathrm{f}_{\mathrm{IF}}=400 \mathrm{MHz}$

5504 G11

Output Voltage and Slope Variation vs RF Input Power and Temperature, $\mathrm{f}_{\mathrm{RF}}=2.5 \mathrm{GHz}$

Output Voltage and Slope Variation vs RF Input Power and Supply Voltage

PIn functions

VCc (Pins 1, 8): Power Supply Pins. These pins must be tied together at the part as close as possible, and should be decoupled using 1000pF capacitors.
RF+ (Pin 2): Positive RF Input Pin.
RF $^{-}$(Pin 3): Negative RF Input Pin.
GND (Pin 4): Ground Pin.

EN (Pin 5): Enable Pin. The on/off threshold voltage is about $\mathrm{V}_{\mathrm{CC}} / 2$. When the input voltage is higher than $0.6-V_{C C}$, the circuit is completely turned on. When the input voltage is less than $0.4 \bullet \mathrm{~V}_{\mathrm{CC}}$, the circuit is turned off.
LO (Pin 6): Local Oscillator Input Pin.
$\mathbf{V}_{\text {OUT }}$ (Pin 7): Output Pin.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

The LT5504 consists of the following sections: RF/IF limiters, limiting mixer, RF/IF detectors, LO buffer amplifier, 3rd-order integrated Iow pass filter (LPF), output interface and bias circuitry.
An RF signal ranging from 800 MHz to 2.7 GHz is detected by the RF and IF detectors using a proprietary technique. The down-converted IF signal is band limited by the onchip LPF, reducing broadband noise, and thus an ultrawide dynamic range signal can be measured. The RF measuring receiver is essentially a logarithmic voltage detector. The measured output voltage is directly proportional to the RF signal voltage. An internal temperature compensation circuit results in a highly temperature-stable output voltage.

RF Limiter

The differential input impedance of the RF limiter is shown in Figure 1. A 1:1 input transformer can be used to achieve 50Ω broadband matching with an 82Ω shunt resistor (R1) at the inputs as shown in Figure 5.
The 1:1 RF input transformer can also be replaced with a narrow band single-ended-to-differential conversion circuit using three discrete elements as shown in Figure 2. Their nominal values are listed in Table 1. Due to the parasitics of the PCB, these values may require adjustment.

APPLICATIONS InfORMATION

Figure 1. Differential RF Input Impedance

Figure 2. RF Input Matching Network at 1900 MHz
Figure 3 shows the output voltage vs RF input power response for these two input terminations. The voltage gain of the single-ended-to-differential conversion circuit is:

$$
\mathrm{GAIN}=20 \cdot \mathrm{LOG} \sqrt{\frac{\mathrm{R}_{\mathrm{IN}}}{50}}=3 \mathrm{~dB},
$$

where $R_{I N}=100 \Omega$ is the narrow band input impedance.
Thus, the output voltage curve in this case is shifted to the left by about 3dB.
Table 1. The Component Values of Matching Network $\mathrm{L}_{\mathrm{SH}}, \mathrm{C}_{\mathrm{S} 1}$ and $\mathrm{C}_{\mathrm{S} 2}$

$\mathrm{f}_{\mathrm{IF}}(\mathbf{M H z})$	$\mathrm{L}_{\mathbf{S H}}(\mathbf{n H})$	$\mathbf{C}_{\mathbf{S} 1} / \mathrm{C}_{\mathbf{S} 2}(\mathbf{p F})$
900	12.0	3.9
1900	3.3	3.3
2500	2.7	2.2
2700	2.4	1.5

5504 F03
Figure 3. The Output Voltage vs RF Input Power

Limiting Mixer and LPF

The amplified RF signal is down-converted using the limiting mixer and LO signal. The resulting signal is filtered by the 3rd-order, 450 MHz , integrated low pass filter (LPF). Only the desired IF signal is passed to the IF limiters for further detection. Any other mixing products, including LO feedthrough, are much reduced to maximize sensitivity. The receiver's sensitivity is thus defined by the LPF bandwidth.

IF Limiter

The IF signal is then amplified through the multiple limiter stages for further signal detection. All DC offsets, including LO signal self-mixing, are eliminated by an internal DC offset cancellation circuit. Nevertheless, care should be taken in component placement and in PCB layout to minimize LO coupling to the RF port.

Output Interface

The output interface of the LT5504 is shown in Figure 4. The output currents from the RF and IF detectors are summed and converted into an output voltage, $\mathrm{V}_{\text {OUT }}$. The maximum charging current available to the output load is about $400 \mu A$. An internal compensation capacitor C_{C} is used to guarantee stable operation for a large capacitive output load. The slew rate is $80 \mathrm{~V} / \mu \mathrm{s}$ and the small signal output bandwidth is approximately 5 MHz when the output is resistively terminated. When the output is loaded with a large capacitor C_{L}, the slew rate is limited

APPLICATIONS INFORMATION

to $400 \mu \mathrm{~A} / \mathrm{C}_{\mathrm{L}}$. For example, the slew rate is reduced to $4 \mathrm{~V} /$ μs when $C_{L}=100 \mathrm{pF}$.

Figure 4. Simplified Circuit Schematic of the Output Interface

Applications

The LT5504 can be used as a self-standing signal strengthmeasuring receiver (RSSI) for a wide range of input signals from -75 dBm to +5 dBm , for frequencies from 800 MHz to 2.7 GHz .
The LT5504 can be used as a demodulator for AM and ASK modulated signals with data rates up to 5 MHz . Depending on specific application needs, the RSSI output can be split into two branches, providing AC coupled data output, and DC coupled, RSSI output for signal strength measurements and AGC. Refer to Figure 5.
The LT5504 can also be used as a wide range RF power detector for transmit power control.

TYPICAL APPLICATIONS

Figure 5. LT5504 Evaluation Board Circuit Schematic

Figure 6.Component Side Silkscreen of Evaluation Board

Figure 7. Component Side Layout of Evaluation Board

Figure 8.Bottom Side
Silkscreen of Evaluation Board

Figure 9. Bottom Side Layout of Evaluation Board

PACKAGE DESCRIPTION

MS8 Package 8-Lead Plastic MSOP

(Reference LTC DWG \# 05-08-1660)

RECOMMENDED SOLDER PAD LAYOUT

NOTE:

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED $0.152 \mathrm{~mm}\left(.0066^{\prime \prime}\right)$ PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102 mm (.004") MAX

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT5500	Receiver Front End	Dual LNA Gain Settling 13.5dB/-14dB at 2.5GHz, Double Balanced Mixer, $1.8 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPLY }} \leq 5.25 \mathrm{~V}$
LT5502	400MHz Quadrature Demodulator with RSSI	1.8 V to 5.25 V Supply, 70 MHz to 400 MHz IF, 84 dB Limiting Gain, 90dB RSSI Range
LT5503	1.2GHz to 2.7GHz Direct IQ Modulator and Upconverting Mixer	1.8 V to 5.25 V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth
LTC5505	300MHz to 3.5GHz RF Power Detector	>40dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply
LT5506	500 MHz Quadrature IF Demodulator with VGA	1.8 V to 5.25 V Supply, 40 MHz to 500 MHz IF, -4 dB to 57 dB Linear Power Gain
LTC5507	100kHz to 1GHz RF Power Detector	48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply
LTC5508	300MHz to 7GHz RF Power Detector	44dB Dynamic Range, Temperature Compensated, SC70 Package
LTC5509	300 MHz to 3GHz RF Power Detector	36dB Dynamic Range, SC70 Package
LT5511	High Signal Level Upconverting Mixer	RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer
LT5512	High Signal Level Downconverting Mixer	DC-3GHz, 20dBm IIP3, Integrated LO Buffer
$\underline{\text { LT5515 }}$	1.5GHz to 2.5GHz Direct Conversion Demodulator	20dBm IIP3, Integrated LO Quadrature Generator
LT5516	0.8 GHz to 1.5GHz Direct Conversion Quadrature Demodulator	21.5 dBm IIP3, Integrated LO Quadrature Generator
LT5522	600MHz to 2.7GHz High Signal Level Mixer	25 dBm IIP3 at 900 MHz , 21.5 dBm IIP3 at 1.9 GHz , Matched 50Ω RF and LO Ports, Integrated LO Buffer
LTC5532	300MHz to 7GHz Precision RF Power Detector	Precision Vout Offset Control, Adjustable Gain and Offset Voltage

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Receiver category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MICRF011YN HMC8100LP6JETR TDA5240 TDA5201XT TDA5225 ATA8205P6C-TKQW VRC522 MICRF229YQS SI4825-A10-CS SI4730-D60-GMR MICRF219AAYQS AW13412DNR LT5504EMS8\#PBF AD6677BCPZ AD6641BCPZ-500 AD6643BCPZ-200
AD6643BCPZ-250 AD6649BCPZ AD6649BCPZRL7 AD6650ABC AD6652BBCZ AD6655ABCPZ-125 AD6655ABCPZ-150
AD6655ABCPZ-80 AD6657ABBCZ AD6657BBCZ AD6673BCPZ-250 AD6674-1000EBZ AD6674BCPZ-1000 AD6674BCPZ-500
AD6676BCBZRL AD6679BBPZ-500 ADRV9008BBCZ-1 AD9864BCPZ AD9864BCPZRL ADAR2004ACCZ AD9874ABST
HMC8100LP6JE LTC5556IUH\#PBF BGT24MR2E6327XUMA1 TDA5211 MICRF011YM MAX7036GTP/V+ MAX2141ETH/V+ $\underline{\text { MAX7033EUI+ MAX1473EUI+T MAX1473EUI+ MAX1470EUI+ MAX7034AUI+ MAX7034AUI/V+ }}$

