42V, 15A Synchronous Step-Down Silent Switcher 2

features

- Silent Switcher ${ }^{\oplus}$ 2 Architecture

- Ultralow EMI Emissions on Any PCB
- Eliminates PCB Layout Sensitivity
- Internal Bypass Capacitors Reduce Radiated EMI
- Optional Spread Spectrum Modulation
- High Efficiency at High Frequency
- Up to 95.5% Efficiency at $1 \mathrm{MHz}, 12 \mathrm{~V}_{\text {IN }}$ to $5 \mathrm{~V}_{\text {OUT }}$
- Up to 93% Efficiency at $2 \mathrm{MHz}, 12 \mathrm{~V}_{\text {IN }}$ to $5 \mathrm{~V}_{\text {OUT }}$
- Wide Input Voltage Range: 3V to 42V
- 15A Output Current
- Low Quiescent Current Burst Mode ${ }^{\circledR}$ Operation
- $100 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$ Regulating $12 \mathrm{~V}_{\text {IN }}$ to $5 \mathrm{~V}_{\text {OUT }}$
- Output Ripple < 10 mV P-p
- External Compensation: Fast Transient Response and Current Sharing
- Fast Minimum Switch On-Time: 25ns
- Low Dropout Under All Conditions: 35 mV at 1 A
- Forced Continuous Mode
- Adjustable and Synchronizable: 200kHz to 2.2MHz
- Output Soft-Start and Power Good
- Safely Tolerates High Reverse Current
- Small 36 -Lead $7 \mathrm{~mm} \times 4 \mathrm{~mm}$ LQFN Package
- AEC-Q100 Qualified for Automotive Applications

APPLICATIONS

- Automotive and Industrial Supplies
- General Purpose Step-Down

DESCRIPTIOn

The $\mathrm{LT}{ }^{\circledR} 8648 \mathrm{~S}$ synchronous step-down regulator features second generation Silent Switcher architecture designed to minimize EMI emissions while delivering high efficiency at high switching frequencies. This includes the integration of input and boost capacitors to optimize all the fast current loops inside and make it easy to achieve advertised EMI performance by reducing layout sensitivity. This performance makes the LT8648S ideal for noise sensitive applications and environments.

The fast, clean, low overshoot switching edges enable high efficiency operation even at high switching frequencies, leading to a small overall solution size. Peak current mode control with a $25 n$ s minimum on-time allows high step down ratios even at high switching frequencies. External compensation via the V_{C} pin allows for fast transient response at high switching frequencies. The V_{C} pin also enables current sharing and a CLKOUT pin enables synchronizing other regulators to the LT8648S.
Burst Mode operation enables low standby current consumption, forced continuous mode can control frequency harmonics across the entire output load range, or spread spectrum operation can further reduce EMI emissions. Soft-start and tracking functionality is accessed via the SS pin, and an accurate input voltage UVLO threshold can be set using the EN/UV pin.

All registered trademarks and trademarks are the property of their respective owners. Protected by U.S. patents, including 8823345 .

TYPICAL APPLICATION

5V 15A Step-Down Converter

ABSOLUTE MAXIMUM RATIOGS

PIn CONFIGURATIOn

(Note 1)

VIN, EN/UV, PG...42V
BIAS 25 V

FB, SS
4 V
SYNC/MODE Voltage 6 V
Operating Junction Temperature Range (Note 2) LT8648SE
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

LT8648SJ
$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT8648SH... $40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Reflow (Package Body) Temperature $260^{\circ} \mathrm{C}$

	TOP VIEW	
		RT
$\mathrm{INTV}_{\text {cc }}$		En/UV
BST		$\mathrm{V}_{\text {IN }}$
Sw	(-)	V_{IN}
sw		$\mathrm{V}_{\text {IN }}$
sw	(-) 39 40 (25	NC
sw	(-) GND GND (2)	GND
sw	-8)	GND
SW		NC
sw	-10) 41 42 (21	V_{IN}
	-11) GND ${ }_{\text {10 }}$ (GND	V_{IN}
	(12)	V_{IN}
	-1 131 141 145 166 1171 181	
	잉 웅 웅 잉 응 웅	
	LQFN PACKAGE 36 -LEAD ($7 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.94 \mathrm{~mm}$)	
JEDEC BOARD: $\theta_{J A}=26$ EXPOSED PAD	$6^{\circ} \mathrm{C} / \mathrm{N}, \psi_{\mathrm{JT}}=0.3^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JCTOP}}=9.1^{\circ} \mathrm{C} \mathrm{CN}, \theta_{\mathrm{J}}$ DEMO BOARD: $\theta_{J A}=15^{\circ} \mathrm{C} / \mathrm{W}$ (PINS 37-42) ARE GND, SHOULD BE SOL	$\text { JCBOT }=1.9^{\circ} \mathrm{CW} \text { (Note 3) }$ DERED TO PCB

ORDER INFORMATION

PART NUMBER	PART MARKING*	FINISH CODE	PAD FINISH	PACKAGE TYPE**	$\begin{gathered} \text { MSL } \\ \text { RATING } \end{gathered}$	TEMPERATURE RANGE
LT8648SEV\#PBF	8648SV	e4	Au (RoHS)	LQFN (Laminate Package with QFN Footprint)	3	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8648SJV\#PBF						$40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT8648SHV\#PBF						-40 to

AUTOMOTIVE PARTS***

LT8648SEV\#WPBF			
LT8648SJV\#WPB	e4	Au (RoHS)	
LT8648SHV\#WPBF			

- Contact the factory for parts specified with wider operating temperature ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.

LQFN (Laminate Package with QFN Footprint)	3	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
		$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

- Recommended LGA and BGA PCB Assembly and Manufacturing Procedures
- LGA and BGA Package and Tray Drawings

Parts ending with PBF are RoHS and WEEE compliant. **The LT8648S package has the same dimensions as a standard $7 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN package.
***Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These models are designated with a \#W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

ELECTRICAL CHARACTGRISTICS The • denotes the speciitications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Input Voltage	$\begin{aligned} & \mathrm{f}_{\mathrm{SW}}=400 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{SW}}=2 \mathrm{MHz} \end{aligned}$	\bullet		$\begin{aligned} & 2.45 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.0 \end{aligned}$	V
$V_{\text {IN }}$ Quiescent Current in Shutdown	$\mathrm{V}_{\text {EN/UV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$			6	9	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IN }}$ Quiescent Current in Sleep	$\mathrm{V}_{\text {EN/UV }}=2 \mathrm{~V}, \mathrm{~V}_{\text {FB }}>0.6 \mathrm{~V}, \mathrm{~V}_{\text {SYNC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=0 \mathrm{~V}$	\bullet		$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 195 \\ & 255 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	$\mathrm{V}_{\text {EN/UV }}=2 \mathrm{~V}, \mathrm{~V}_{\text {FB }}>0.6 \mathrm{~V}, \mathrm{~V}_{\text {SYNC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}$			20	29	$\mu \mathrm{A}$
BIAS Quiescent Current in Sleep	$\mathrm{V}_{\text {EN/UV }}=2 \mathrm{~V}, \mathrm{~V}_{\text {FB }}>0.6 \mathrm{~V}, \mathrm{~V}_{\text {SYNC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}$			100	145	$\mu \mathrm{A}$
Feedback Reference Voltage	$\begin{aligned} & V_{I N}=12 \mathrm{~V} \\ & V_{I N}=12 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \hline 0.598 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.602 \\ & 0.604 \end{aligned}$	V
Feedback Voltage Line Regulation	$\mathrm{V}_{1 \text { I }}=4.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=1.25 \mathrm{~V}$	\bullet	0.001		0.025	\%/V
Feedback Pin Input Current	$\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}$		-20		20	nA
Error Amp Transconductance	$\mathrm{V}_{\mathrm{C}}=1.25 \mathrm{~V}$		1.1	1.45	1.8	mS
Error Amp Gain			600			V/N
V_{C} Source Current	$\mathrm{V}_{\text {FB }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=1.25 \mathrm{~V}$		320			$\mu \mathrm{A}$
$\mathrm{V}_{\text {c }}$ Sink Current	$\mathrm{V}_{\text {FB }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=1.25 \mathrm{~V}$		320			$\mu \mathrm{A}$
$\mathrm{V}_{\text {c }}$ Pin to Switch Current Gain			18			A/
$V_{\text {c }}$ Clamp Voltage			2.3			V
BIAS Pin Current Consumption	$\mathrm{V}_{\text {BIAS }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {SW }}=2 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}$		60			mA
Minimum On-Time	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{SYNC}=2 \mathrm{~V}$	\bullet	25		40	ns
Minimum Off-Time			75		100	ns
Oscillator Frequency	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{T}}=226 \mathrm{k} \\ \mathrm{R}_{\mathrm{T}}=38.3 \mathrm{k} \\ \mathrm{R}_{\mathrm{T}}=16.9 \mathrm{k} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 170 \\ 0.96 \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 200 \\ 1 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 230 \\ 1.04 \\ 2.2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Top Power NMOS On-Resistance	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$		12			$\mathrm{m} \Omega$
Top Power NMOS Current Limit		\bullet	24	30	34	A
Bottom Power NMOS On-Resistance	$\mathrm{V}_{\text {INTVCC }}=3.4 \mathrm{~V}, \mathrm{I}_{\text {SW }}=1 \mathrm{~A}$		4.5			$\mathrm{m} \Omega$
Bottom Power NMOS Current Limit	$\mathrm{V}_{\text {INTVCC }}=3.4 \mathrm{~V}$		15	21	27	A
SW Leakage Current	$\mathrm{V}_{\text {IN }}=42 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}, 42 \mathrm{~V}$		-1.5		1.5	$\mu \mathrm{A}$
EN/UV Pin Threshold	EN/UV Rising	\bullet	0.93	0.98	1.03	V
EN/UV Pin Hysteresis			40			mV
EN/UV Pin Current	$V_{\text {En/UV }}=2 \mathrm{~V}$		-20		20	nA
PG Upper Threshold Offset from V ${ }_{\text {FB }}$	$V_{\text {FB }}$ Rising	\bullet	6	7.75	9.5	\%
PG Lower Threshold Offset from V ${ }_{\text {FB }}$	$V_{\text {FB }}$ Falling	\bullet	-9.5	-7.75	-6	\%
PG Hysteresis				0.4		\%
PG Leakage	$V_{P G}=3.3 \mathrm{~V}$		-80		80	nA
PG Pull-Down Resistance	$V_{P G}=0.1 \mathrm{~V}$	\bullet		600	2000	Ω
SYNC/MODE Threshold	SYNC/MODE DC and Clock Low Level Voltage SYNC/MODE Clock High Level Voltage SYNC/MODE DC High Level Voltage	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 0.7 \\ & 2.2 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.9 \end{aligned}$	V
Spread Spectrum Modulation Frequency Range	$\mathrm{R}_{\mathrm{T}}=38.3 \mathrm{k}$			24		\%

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Spread Spectrum Modulation Frequency			3			kHz
SS Source Current		\bullet	1.3	2.0	2.7	$\mu \mathrm{A}$
SS Pull-Down Resistance	Fault Condition, SS $=0.1 \mathrm{~V}$			200		Ω
$\mathrm{V}_{\text {IN }}$ to Disable Forced Continuous Mode	$\mathrm{V}_{\text {IN }}$ Rising		35	37.5	40	V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LT8648SE is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature. Specifications over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range are assured by design, characterization, and correlation with statistical process controls. The LT8648SJ and LT8648SH are guaranteed over the full $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating junction temperature range. High junction temperatures degrade operating lifetimes. Operating lifetime is derated at junction temperatures greater than $125^{\circ} \mathrm{C}$. The junction temperature (T_{J}, in ${ }^{\circ} \mathrm{C}$) is calculated from the ambient temperature (T_{A} in ${ }^{\circ} \mathrm{C}$) and power dissipation (PD, in Watts) according to the formula:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{PD} \cdot \theta_{\mathrm{JA}}\right)
$$

where θ_{JA} (in ${ }^{\circ} \mathrm{C} / \mathrm{W}$) is the package thermal impedance.

Note 3: θ values determined per JEDEC 51-7, 51-12. See the Applications Information section for information on improving the thermal resistance and for actual temperature measurements of a demo board in typical operating conditions.
Note 4: This IC includes overtemperature protection that is intended to protect the device during overload conditions. Junction temperature will exceed $150^{\circ} \mathrm{C}$ when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature will reduce lifetime.

TYPICAL PERFORMANCE CHARACTERISTICS

$12 V^{\text {IN }}$ to $3.3 V_{\text {OUT }}$ Efficiency vs Frequency

8648S G02

8648S G05

Efficiency at $5 \mathrm{~V}_{\text {OUT }}$

8648S G03

8648 S 67

8648S G08

EN Pin Thresholds

LT8648S

TYPICAL PERFORMANCE CHARACTERISTICS

Top FET Current Limit vs Duty Cycle

Top FET Current Limit vs Temperature

Minimum On-Time

Switch $\mathrm{R}_{\mathrm{DS}(\mathbf{O N})}$ vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

Soft-Start Tracking

PG High Thresholds

Bias Pin Current vs Input Voltage

LT8648S

TYPICAL PERFORMANCE CHARACTERISTICS

CLKOUT Waveforms

Switching Waveforms, Full
Frequency Continuous Operation

Switching Rising Edge

$$
V_{I N}=12 \mathrm{~V}
$$

$I_{\text {LOAD }}=3 \mathrm{~A}$

Switching Waveforms, Burst Mode Operation

TYPICAL PERFORMANCE CHARACTERISTICS

Transient Response; 3A to 10A
Load Step

20 $\mu \mathrm{s} / \mathrm{DIV}$
FRONT PAGE APPLICATION
3A TO 10A TRANSIENT
$12 \mathrm{~V}_{\text {IN }}, 5 \mathrm{~V}_{\text {OUT }}, \mathrm{f}_{\text {SW }}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{C}}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{C}}=13.7 \mathrm{k}$
$\mathrm{C}_{\text {OUT }}=2 \times 47 \mu \mathrm{~F}, \mathrm{C}_{\text {LEAD }}=10 \mathrm{pF}$

Start-Up Dropout Performance

2.5Ω LOAD
(2A IN REGULATION)

Transient Response; 100mA to 7.1A Load Step

$50 \mu \mathrm{~s} / \mathrm{DIV}$
FRONT PAGE APPLICATION
100mA TO 7.1A TRANSIENT
$12 \mathrm{~V}_{\text {IN }}, 5 \mathrm{~V}_{\text {OUT, }}$, $\mathrm{f}_{\text {SW }}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{C}}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{C}}=13.7 \mathrm{k}$
$C_{\text {OUT }}=2 \times 47 \mu \mathrm{~F}, \mathrm{C}_{\text {LEAD }}=10 \mathrm{pF}$

Start-Up Dropout Performance

20Ω LOAD
(250mA IN REGULATION)

TYPICAL PERFORMANCE CHARACTERISTICS

Radiated EMI Performance
(CISPR25 Radiated Emission Test with Class 5 Peak Limits)

PIn fUnCTIOnS

BIAS (Pin 1): The internal regulator will draw current from BIAS instead of $\mathrm{V}_{\text {IN }}$ when BIAS is tied to a voltage higher than 3.1V. For output voltages of 3.3 V to 25 V this pin should be tied to $\mathrm{V}_{\text {Out. }}$. If this pin is tied to a supply other than $\mathrm{V}_{\text {out }}$ use a $1 \mu \mathrm{~F}$ local bypass capacitor on this pin. If no supply is available, tie to GND. However, especially for high input or high frequency applications, BIAS should be tied to output or an external supply of 3.3 V or above.

INTV $\mathbf{C C}$ (Pin 2): Internal 3.4V Regulator Bypass Pin. The internal power drivers and control circuits are powered from this voltage. Do not load the INTV CC pin with external circuitry. INTV ${ }_{\text {CC }}$ current will be supplied from BIAS if BIAS $>3.1 \mathrm{~V}$, otherwise current will be drawn from $\mathrm{V}_{\text {IN }}$. Voltage on INTV CC will vary between 2.8 V and 3.4 V when BIAS is between 3.0 V and 3.6 V . Place a low ESR ceramic capacitor of at least $1 \mu \mathrm{~F}$ from this pin to ground close to the IC.

BST (Pin 3): This pin is used to provide a drive voltage, higher than the input voltage, to the topside power switch. This pin should be floated.

SW (Pins 4-12): The SW pins are the outputs of the internal power switches. Tie these pins together and connect them to the inductor. This node should be kept small on the PCB for good performance and low EMI.
GND (Pins $13-18,23,24$, Exposed Pad Pins 37-42): Ground. Place the negative terminal of the input capacitor as close to the GND pins as possible. The exposed pads should be soldered to the PCB for good thermal performance. If necessary due to manufacturing limitations

Pins 37 to 42 may be left disconnected, however thermal performance will be degraded.
$V_{\text {IN }}$ (Pins 19-21, 26-28): The $V_{\text {IN }}$ pins supply current to the LT8648S internal circuitry and to the internal topside power switch. These pins must be tied together and be locally bypassed with a capacitor of $10 \mu \mathrm{~F}$ or more. Be sure to place the positive terminal of the input capacitor as close as possible to the V_{IN} pins, and the negative capacitor terminal as close as possible to the GND pins.

NC (Pins 22, 25): No Connect. This pin is not connected to internal circuitry and can be tied anywhere on the PCB, typically ground.

EN/UV (Pin 29): The LT8648S is shut down when this pin is low and active when this pin is high. The hysteretic threshold voltage is 0.98 V going up and 0.94 V going down. Tie to $\mathrm{V}_{\text {IN }}$ if the shutdown feature is not used. An external resistor divider from VIN can be used to program a $\mathrm{V}_{\text {IN }}$ threshold below which the LT8648S will shut down.
RT (Pin 30): A resistor is tied between RT and ground to set the switching frequency.
CLKOUT (Pin 31): In forced continuous mode, spread spectrum, and synchronization modes, the CLKOUT pin provides a 50% duty cycle square wave 180 degrees out of phase with the switching frequency. The low and high levels of the CLKOUT pin are ground and INTV ${ }_{\text {CC }}$ respectively, and the drive strength of the CLKOUT pin is several hundred ohms. In Burst Mode operation, the CLKOUT pin will be low. Float this pin if the CLKOUT function is not used.

PIn functions

SYNC/MODE (Pin 32): For the LT8648S, this pin programs four different operating modes: 1) Burst Mode operation. Tie this pin to ground for Burst Mode operation at low output loads-this will result in low quiescent current. 2) Forced Continuous mode (FCM). This mode offers fast transient response and full frequency operation over a wide load range. Float this pin for FCM. When floating, pin leakage currents should be <1 $\mu \mathrm{A}$. 3) Spread spectrum mode. Tie this pin high to INTV $_{\text {CC }}$ (or $>3 \mathrm{~V}$) for forced continuous mode with spread-spectrum modulation. 4) Synchronization mode. Drive this pin with a clock source to synchronize to an external frequency. During synchronization the part will operate in forced continuous mode.

PG (Pin 33): The PG pin is the open-drain output of an internal comparator. PG remains low until the FB pin is within $\pm 7.75 \%$ of the final regulation voltage, and there are no fault conditions. PG is also pulled low when EN/ UV is below 1 V , INTV $\mathrm{C}_{\text {CC }}$ has fallen too low, $\mathrm{V}_{\text {IN }}$ is too low, or thermal shutdown. PG is valid when $\mathrm{V}_{\text {IN }}$ is above 3 V .
V_{C} (Pin 34): The V_{C} pin is the output of the internal error amplifier. The voltage on this pin controls the peak switch current. Tie an RC network from this pin to ground to compensate the control loop.

SS (Pin 35): Output Tracking and Soft-Start Pin. This pin allows user control of output voltage ramp rate during start-up. A SS voltage below 1V forces the LT8648S to regulate the FB pin to a function of the SS pin voltage. See plot in the Typical Performance Characteristics section. When SS is above 1 V , the tracking function is disabled and the internal reference resumes control of the error amplifier. An internal $2 \mu \mathrm{~A}$ pull-up current from INTV CC on this pin allows a capacitor to program output voltage slew rate. This pin is pulled to ground with an internal 200Ω MOSFET during shutdown and fault conditions; use a series resistor if driving from a low impedance output. This pin may be left floating if the soft-start feature is not being used.

FB (Pin 36): The LT8648S regulates the FB pin to 0.6 V . Connect the feedback resistor divider tap to this pin. Also, connect a phase lead capacitor between FB and $\mathrm{V}_{\text {Out }}$. Typically, this capacitor is 4.7 pF to 47 pF .
Corner Pins: These pins are for mechanical support only and can be tied anywhere on the PCB, typically ground.

LT8648S
BLOCK DIAGRAM

operation

The LT8648S is a monolithic, constant frequency, current mode step-down DC/DC converter. An oscillator, with frequency set using a resistor on the RT pin, turns on the internal top power switch at the beginning of each clock cycle. Current in the inductor then increases until the top switch current comparator trips and turns off the top power switch. The peak inductor current at which the top switch turns off is controlled by the voltage on the internal VC node. The error amplifier servos the VC node by comparing the voltage on the V_{FB} pin with an internal 0.6 V reference. When the load current increases it causes a reduction in the feedback voltage relative to the reference leading the error amplifier to raise the VC voltage until the average inductor current matches the new load current. When the top power switch turns off, the synchronous power switch turns on until the next clock cycle begins, or inductor current falls to zero (only in Burst Mode Operation). If overload conditions result in more than 21A flowing through the bottom switch, the next clock cycle will be delayed until switch current returns to a safe level.

The " S " in LT8648S refers to the second generation silent switcher technology. This technology allows fast switching edges for high efficiency at high switching frequencies, while simultaneously achieving good EMI performance. This includes the integration of ceramic capacitors into the package for $V_{\text {IN }}$ and BST (see Block Diagram). These caps keep all the fast AC current loops small, which improves EMI performance.

If the EN/UV pin is low, the LT8648S is shut down and draws approximately $6 \mu \mathrm{~A}$ from the input. When the EN/UV pin is above 0.98 V , the switching regulator will become active.

To optimize efficiency at light loads, the LT8648S operates in Burst Mode operation in light load situations. Between bursts, all circuitry associated with controlling the output switch is shut down, reducing the input supply current to $140 \mu \mathrm{~A}$ (BIAS = 0). In a typical application, $100 \mu \mathrm{~A}$ $\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}\right.$, BIAS $\left.=5 \mathrm{~V}_{\text {OUT }}\right)$ will be consumed from the input supply when regulating with no load. The SYNC/ MODE pin is tied low to use Burst Mode operation and can be floated to use forced continuous mode (FCM). If a clock is applied to the SYNC/MODE pin, the part will synchronize to an external clock frequency and operate in FCM.

The LT8648S can operate in forced continuous mode (FCM) for fast transient response and full frequency operation over a wide load range. When in FCM the oscillator operates continuously and positive SW transitions are aligned to the clock. Negative inductor current is allowed. The LT8648S can sink current from the output and return this charge to the input in this mode, improving load step transient response.

To improve EMI, the LT8648S can operate in spread spectrum mode. This feature varies the clock with a triangular frequency modulation of $+24 \%$. For example, if the LT8648S's frequency is programmed to switch at 2 MHz , spread spectrum mode will modulate the oscillator between 2 MHz and approximately 2.5 MHz . The SYNC/MODE pin should be tied high to INTV ${ }_{\text {CC }}$ (or $>3 \mathrm{~V}$) to enable spread spectrum modulation with forced continuous mode.

To improve efficiency across all loads, supply current to internal circuitry can be sourced from the BIAS pin when biased at 3.3 V or above. Else, the internal circuitry will draw current from $\mathrm{V}_{\text {IN }}$. The BIAS pin should be connected to $\mathrm{V}_{\text {OUT }}$ if the LT8648S output is programmed at 3.3 V to 25 V .

The V_{C} pin optimizes the loop compensation of the switching regulator based on the programmed switching frequency, allowing for a fast transient response. The V_{C} pin also enables current sharing and a CLKOUT pin enables synchronizing other regulators to the LT8648S.

Comparators monitoring the FB pin voltage will pull the PG pin low if the output voltage varies more than $\pm 7.75 \%$ (typical) from the set point, or if a fault condition is present.

The oscillator reduces the LT8648S's operating frequency when the voltage at the FB pin is low. This frequency foldback helps to control the inductor current when the output voltage is lower than the programmed value which occurs during start-up or overcurrent conditions. When a clock is applied to the SYNC/MODE pin, the SYNC/MODE pin is floated, or held DC high, the frequency foldback is disabled and the switching frequency will slow down only during overcurrent conditions.

APPLICATIONS INFORMATION

Low EMI PCB Layout

The LT8648S is specifically designed to minimize EMI emissions and also to maximize efficiency when switching at high frequencies. For optimal performance the LT8648S should use multiple $\mathrm{V}_{\text {IN }}$ bypass capacitors.

Two small <1 $\mu \mathrm{F}$ capacitors can be placed as close as possible to the LT8648S ($\mathrm{C}_{0 \text { PT1 }}, \mathrm{C}_{0 \text { PT2 }}$) and a third capacitor with a larger value, $10 \mu \mathrm{~F}$ or higher, should be placed nearby.
See Figure 1 for a recommended PCB layout.
For more detail and PCB design files refer to the Demo Board guide for the LT8648S.
Note that large, switched currents flow in the LT8648S $V_{\text {IN }}$ and GND pins and the input capacitors. The loops formed by the input capacitors should be as small as possible by
placing the capacitors adjacent to the $\mathrm{V}_{\text {IN }}$ and GND pins. Capacitors with small case size such as 0603 are optimal due to lowest parasitic inductance.

The input capacitors, along with the inductor and output capacitors, should be placed on the same side of the circuit board, and their connections should be made on that layer. Place a local, unbroken ground plane under the application circuit on the layer closest to the surface layer. The SW and BOOST nodes should be as small as possible. Finally, keep the FB and RT nodes small so that the ground traces will shield them from the SW and BOOST nodes. The exposed pads on the bottom of the package should be soldered to the PCB to reduce thermal resistance to ambient. To keep thermal resistance low, extend the ground plane from GND as much as possible, and add thermal vias to additional ground planes within the circuit board and on the bottom side.

Figure 1. Recommended PCB Layout

APPLICATIONS INFORMATION

Burst Mode Operation

To enhance efficiency at light loads, the LT8648S operates in low ripple Burst Mode operation, which keeps the output capacitor charged to the desired output voltage while minimizing the input quiescent current and minimizing output voltage ripple. In Burst Mode operation the LT8648S delivers single small pulses of current to the output capacitor followed by sleep periods where the output power is supplied by the output capacitor. While in sleep mode the LT8648S consumes $140 \mu \mathrm{~A}$.

As the output load decreases, the frequency of single current pulses decreases (see Figure 2) and the percentage of time the LT8648S is in sleep mode increases, resulting in much higher light load efficiency than for typical converters. By maximizing the time between pulses, the quiescent current approaches $100 \mu \mathrm{~A}$ for a typical application when there is no output load. Therefore, to optimize the quiescent current performance at light loads, the current in the feedback resistor divider must be minimized as it appears to the output as load current.

Figure 2. SW Frequency vs Load Information in Burst Mode Operation

In order to achieve higher light load efficiency, more energy must be delivered to the output during the single small pulses in Burst Mode operation such that the LT8648S can stay in sleep mode longer between each pulse. This can be achieved by using a larger value inductor (i.e., $4.7 \mu \mathrm{H}$), and should be considered independent of switching frequency when choosing
an inductor. For example, while a lower inductor value would typically be used for a high switching frequency application, if high light load efficiency is desired, a higher inductor value should be chosen. See curve in Typical Performance Characteristics.

While in Burst Mode operation the current limit of the top switch is approximately 3A (as shown in Figure 3), resulting in low output voltage ripple. Increasing the output capacitance will decrease output ripple proportionally. As load ramps upward from zero the switching frequency will increase but only up to the switching frequency programmed by the resistor at the RT pin as shown in Figure 2.

Figure 3. Burst Mode Operation

The output load at which the LT8648S reaches the programmed frequency varies based on input voltage, output voltage and inductor choice. To select low ripple Burst Mode operation, tie the SYNC/MODE pin below 0.7 V (this can be ground or a logic low output).

Forced Continuous Mode

The LT8648S can operate in forced continuous mode (FCM) for fast transient response and full frequency operation over a wide load range. When in FCM, the oscillator operates continuously and positive SW transitions are aligned to the clock. Negative inductor current is allowed at light loads or under large transient conditions. The LT8648S can sink current from the output and return this charge to the input in this mode, improving load step transient response (see Figure 4). At light

APPLICATIONS INFORMATION

Figure 4. LT8648S Load Step Transient Response with and without Forced Continuous Mode
loads, FCM operation is less efficient than Burst Mode operation, but may be desirable in applications where it is necessary to keep switching harmonics out of the signal band. FCM must be used if the output is required to sink current. To enable FCM, float the SYNC/MODE pin. Leakage current on this pin should be $<1 \mu \mathrm{~A}$. See Block Diagram for internal pull-up and pull-down resistance.

FCM is disabled if the $\mathrm{V}_{\text {IN }}$ pin is held above 37 V or if the FB pin is held greater than 7.75% above the feedback reference voltage. FCM is also disabled during soft-start until the soft-start capacitor is fully charged. When FCM is disabled in these ways, negative inductor current is not allowed and the LT8648S operates in pulse-skipping mode.

Spread Spectrum Mode

The LT8648S features spread spectrum operation to further reduce EMI emissions. To enable spread spectrum operation, the SYNC/MODE pin should be tied high to $\mathrm{INTV}_{\text {CC }}$ (or $>3 \mathrm{~V}$). In this mode, triangular frequency modulation is used to vary the switching frequency between the value programmed by RT to approximately 24% higher than that value. The modulation frequency is approximately 3 kHz . For example, when the LT8648S is programmed to 2 MHz , the frequency will vary from 2 MHz to approximately 2.5 MHz at a 3 kHz rate. When spread spectrum operation is selected, Burst Mode operation is disabled, and the part will run in forced continuous mode.

Synchronization

To synchronize the LT8648S oscillator to an external frequency, connect a square wave to the SYNC/MODE pin. The square wave amplitude should have valleys that are below 0.7 V and peaks above 1.5 V (up to 6 V) with a minimum on-time and off-time of 50 ns .

The LT8648S will not enter Burst Mode operation at low output loads while synchronized to an external clock, but instead will run forced continuous mode to maintain regulation. The LT8648S may be synchronized over a 200 kHz to 2.2 MHz range. The RT resistor should be chosen to set the LT8648S switching frequency equal to or below the lowest synchronization input. For example, if the synchronization signal will be 500 kHz and higher, the RT should be selected for 500 kHz . The slope compensation is set by the RT value, while the minimum slope compensation required to avoid subharmonic oscillations is established by the inductor size, input voltage and output voltage. Since the synchronization frequency will not change the slopes of the inductor current waveform, if the inductor is large enough to avoid subharmonic oscillations at the frequency set by RT, then the slope compensation will be sufficient for all synchronization frequencies.

FB Resistor Network

The output voltage is programmed with a resistor divider between the output and the FB pin. Choose the resistor values according to:

$$
\begin{equation*}
\mathrm{R} 1=\mathrm{R} 2\left(\frac{\mathrm{~V}_{\text {OUT }}}{0.6 \mathrm{~V}}-1\right) \tag{1}
\end{equation*}
$$

Reference designators refer to the Block Diagram. 1\% resistors are recommended to maintain output voltage accuracy.

When using large FB resistors, a 4.7pF to 47pF phase-lead capacitor should be connected from $\mathrm{V}_{\text {OUT }}$ to FB .

Setting the Switching Frequency

The LT8648S uses a constant frequency PWM architecture that can be programmed to switch from 200 kHz to 2.2MHz by using a resistor tied from the RT pin to ground.

APPLICATIONS InFORMATION

A table showing the necessary R_{\top} value for a desired switching frequency is in Table 1.
The R_{\top} resistor required for a desired switching frequency can be calculated using:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=\frac{44.8}{\mathrm{f}_{\mathrm{SW}}}-5.9 \tag{2}
\end{equation*}
$$

where R_{T} is in $k \Omega$ and $f_{S W}$ is the desired switching frequency in MHz .

Table 1. SW Frequency vs R_{T} Value

$\mathbf{f}_{\mathbf{S W}}(\mathbf{M H z})$	$\mathbf{R}_{\mathbf{T}} \mathbf{(k \mathbf { \Omega })}$
0.2	226
0.3	143
0.4	105
0.5	82.5
0.6	66.5
0.7	56.2
0.8	48.7
1.0	38.3
1.2	31.6
1.4	26.1
1.6	22.1
1.8	19.1
2.0	16.9
2.2	15.4

Operating Frequency Selection and Trade-Offs

Selection of the operating frequency is a trade-off between efficiency, component size, and input voltage range. The advantage of high frequency operation is that smaller inductor and capacitor values may be used. The disadvantages are lower efficiency and a smaller input voltage range.
The highest switching frequency (fsw(MAX)) for a given application can be calculated as follows:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{SW}(\mathrm{MAX})}=\frac{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{SW}(\mathrm{BOT})}}{\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{SW}(\mathrm{TOP})}+\mathrm{V}_{\mathrm{SW}(\mathrm{BOT})}\right)} \tag{3}
\end{equation*}
$$

where $\mathrm{V}_{\text {IN }}$ is the typical input voltage, $\mathrm{V}_{\text {OUT }}$ is the output voltage, $\mathrm{V}_{S W(T O P)}$ and $\mathrm{V}_{S W(B O T)}$ are the internal switch drops ($\sim 0.18 \mathrm{~V}, \sim 0.07 \mathrm{~V}$, respectively at maximum load) and $\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}$ is the minimum top switch on-time (see the

Electrical Characteristics). This equation shows that a slower switching frequency is necessary to accommodate a high $\mathrm{V}_{\text {IN }} / V_{\text {OUT }}$ ratio.

For transient operation, $\mathrm{V}_{\text {IN }}$ may go as high as the absolute maximum rating of 42 V regardless of the R_{T} value, however the LT8648S will reduce switching frequency as necessary to maintain control of inductor current to assure safe operation.

The LT8648S is capable of a maximum duty cycle of approximately 99%, and the $\mathrm{V}_{\text {IN }}-\mathrm{to}-\mathrm{V}_{\text {OUT }}$ dropout is limited by the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of the top switch. In this mode the LT8648S skips switch cycles, resulting in a lower switching frequency than programmed by RT.
For applications that cannot allow deviation from the programmed switching frequency at low $\mathrm{V}_{\text {IN }} / V_{\text {OUT }}$ ratios use the following formula to set switching frequency:
$V_{\text {IN(MIN })}=\frac{V_{O U T}+V_{S W(B O T)}}{1-f_{S W} \bullet t_{\text {OFF(MIN) }}}-V_{S W(B O T)}+V_{S W(T O P)}$
where $\mathrm{V}_{\text {IN(MIN) }}$ is the minimum input voltage without skipped cycles, $\mathrm{V}_{\text {OUT }}$ is the output voltage, $\mathrm{V}_{\text {SW(TOP) }}$ and $\mathrm{V}_{\mathrm{SW}(\mathrm{BOT})}$ are the internal switch drops $(\sim 0.18 \mathrm{~V}, \sim 0.07 \mathrm{~V}$, respectively at maximum load), f_{Sw} is the switching frequency (set by R_{T}), and $t_{0 F F}$ (MIN) is the minimum switch off-time. Note that higher switching frequency will increase the minimum input voltage below which cycles will be dropped to achieve higher duty cycle.

Inductor Selection and Maximum Output Current

The LT8648S is designed to minimize solution size by allowing the inductor to be chosen based on the output load requirements of the application. During overload or short-circuit conditions the LT8648S safely tolerates operation with a saturated inductor through the use of a high speed peak-current mode architecture.
A good first choice for the inductor value is:

$$
\begin{equation*}
L=\left(\frac{V_{\text {OUT }}+V_{S W(B O T)}}{f_{S W}}\right) \cdot 0.2 \tag{5}
\end{equation*}
$$

where f_{SW} is the switching frequency in $\mathrm{MHz}, \mathrm{V}_{\text {OUT }}$ is the output voltage, $\mathrm{V}_{S W(B O T)}$ is the bottom switch drop $(\sim 0.07 \mathrm{~V})$ and L is the inductor value in $\mu \mathrm{H}$.

APPLICATIONS INFORMATION

To avoid overheating and poor efficiency, an inductor must be chosen with an RMS current rating that is greater than the maximum expected output load of the application. In addition, the saturation current (typically labeled I $\mathrm{IST}_{\text {I }}$) rating of the inductor must be higher than the load current plus $1 / 2$ of in inductor ripple current:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}(\mathrm{PEAK})}=\mathrm{I}_{\mathrm{LOAD}(\mathrm{MAX})}+\frac{1}{2} \Delta \mathrm{I}_{\mathrm{L}} \tag{6}
\end{equation*}
$$

where ΔL_{L} is the inductor ripple current as calculated in Equation 8 and $I_{\text {LOAD(MAX) }}$ is the maximum output load for a given application.
As a quick example, an application requiring 3A output should use an inductor with an RMS rating of greater than 3 A and an $\mathrm{I}_{\text {SAT }}$ of greater than 4A. During long duration overload or short-circuit conditions, the inductor RMS rating requirement is greater to avoid overheating of the inductor. To keep the efficiency high, the series resistance (DCR) should be less than $4 \mathrm{~m} \Omega$, and the core material should be intended for high frequency applications.
The LT8648S limits the peak switch current in order to protect the switches and the system from overload faults. The top switch current limit (llim) is 30A at low duty cycles and decreases linearly to 24 A at $\mathrm{DC}=0.8$. The inductor value must then be sufficient to supply the desired maximum output current ($\mathrm{I}_{\text {OUT(MAX) }}$), which is a function of the switch current limit (lıIM) and the ripple current.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}=\mathrm{I}_{\mathrm{LIM}}-\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2} \tag{7}
\end{equation*}
$$

The peak-to-peak ripple current in the inductor can be calculated as follows:

$$
\begin{equation*}
\Delta L_{\mathrm{L}}=\frac{\mathrm{V}_{\text {OUT }}}{L \bullet f_{\mathrm{SW}}} \cdot\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}}\right) \tag{8}
\end{equation*}
$$

where f_{S} is the switching frequency of the LT8648S, and L is the value of the inductor. Therefore, the maximum output current that the LT8648S will deliver depends on the switch current limit, the inductor value, and the input and output voltages. The inductor value may have to be increased if the inductor ripple current does not allow
sufficient maximum output current (lout(MAX) given the switching frequency, and maximum input voltage used in the desired application.

In order to achieve higher light load efficiency, more energy must be delivered to the output during the single small pulses in Burst Mode operation such that the LT8648S can stay in sleep mode longer between each pulse. This can be achieved by using a larger value inductor (i.e., $4.7 \mu \mathrm{H}$), and should be considered independent of switching frequency when choosing an inductor. For example, while a lower inductor value would typically be used for a high switching frequency application, if high light load efficiency is desired, a higher inductor value should be chosen. See curve in Typical Performance Characteristics.
The optimum inductor for a given application may differ from the one indicated by this design guide. A larger value inductor provides a higher maximum load current and reduces the output voltage ripple. For applications requiring smaller load currents, the value of the inductor may be lower and the LT8648S may operate with higher ripple current. This allows use of a physically smaller inductor, or one with a lower DCR resulting in higher efficiency. Be aware that low inductance may result in discontinuous mode operation, which further reduces maximum load current.

For more information about maximum output current and discontinuous operation, see Analog Devices' Application Note 44.

For duty cycles greater than $50 \%\left(\mathrm{~V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}>0.5\right)$, a minimum inductance is required to avoid subharmonic oscillation. (See Equation 9). See Application Note 19 for more details.

$$
\begin{equation*}
L_{\text {MIN }}=\frac{V_{\text {IN }}(2 \cdot D C-1)}{7 \cdot f_{S W}} \tag{9}
\end{equation*}
$$

where $D C$ is the duty cycle ratio $\left(V_{\text {OUT }} / V_{\text {IN }}\right)$ and $f_{\text {SW }}$ is the switching frequency.

Input Capacitors

The $V_{\text {IN }}$ of the LT8648S should be bypassed with at least three ceramic capacitors for best performance. Two small ceramic capacitors of <1 $\mu \mathrm{F}$ can be placed close to the part

APPLICATIONS InFORMATION

($C_{0 P T 1}, C_{0 P T 2}$). These capacitors should be 0402 or 0603 in size. For automotive applications requiring 2 series input capacitors, two small 0402 or 0603 may be placed at each side of the LT8648S near the V_{IN} and GND pins.

A third, larger ceramic capacitor of $10 \mu \mathrm{~F}$ or larger should be placed close to $\mathrm{C}_{0 \mathrm{PT} 1}$ or $\mathrm{C}_{\text {OPT2 }}$. See PCB Layout section for more detail. X7R or X5R capacitors are recommended for best performance across temperature and input voltage variations.

Note that larger input capacitance is required when a lower switching frequency is used. If the input power source has high impedance, or there is significant inductance due to long wires or cables, additional bulk capacitance may be necessary. This can be provided with a low performance electrolytic capacitor.

A ceramic input capacitor combined with trace or cable inductance forms a high quality (under damped) tank circuit. If the LT8648S circuit is plugged into a live supply, the input voltage can ring to twice its nominal value, possibly exceeding the LT8648S's voltage rating. This situation is easily avoided (see Analog Devices Application Note 88).

Output Capacitor and Output Ripple

The output capacitor has two essential functions. Along with the inductor, it filters the square wave generated by the LT8648S to produce the DC output. In this role it determines the output ripple, thus low impedance at the switching frequency is important. The second function is to store energy in order to satisfy transient loads and stabilize the LT8648S's control loop. Ceramic capacitors have very low equivalent series resistance (ESR) and provide the best ripple performance. For good starting values, see the Typical Applications section.

Use X5R or X7R types. This choice will provide low output ripple and good transient response. Transient performance can be improved with a higher value output capacitor and the addition of a feedforward capacitor placed between $\mathrm{V}_{\text {OUT }}$ and FB. Increasing the output capacitance will also decrease the output voltage ripple. A lower value of output capacitor can be used to save space and cost but transient performance will suffer and may cause loop
instability. See the Typical Applications in this data sheet for suggested capacitor values.
When choosing a capacitor, special attention should be given to the data sheet to calculate the effective capacitance under the relevant operating conditions of voltage bias and temperature. A physically larger capacitor or one with a higher voltage rating may be required.

Ceramic Capacitors

Ceramic capacitors are small, robust and have very low ESR. However, ceramic capacitors can cause problems when used with the LT8648S due to their piezoelectric nature. When in Burst Mode operation, the LT8648S's switching frequency depends on the load current, and at very light loads the LT8648S can excite the ceramic capacitor at audio frequencies, generating audible noise. Since the LT8648S operates at a lower current limit during Burst Mode operation, the noise is typically very quiet to a casual ear. If this is unacceptable, use a high performance tantalum or electrolytic capacitor at the output. Low noise ceramic capacitors are also available.

A final precaution regarding ceramic capacitors concerns the maximum input voltage rating of the LT8648S. As previously mentioned, a ceramic input capacitor combined with trace or cable inductance forms a high quality (underdamped) tank circuit. If the LT8648S circuit is plugged into a live supply, the input voltage can ring to twice its nominal value, possibly exceeding the LT8648S's rating. This situation is easily avoided (see Analog Devices Application Note 88).

Enable Pin

The LT8648S is in shutdown when the EN pin is low and active when the pin is high. The rising threshold of the EN comparator is 0.98 V , with 40 mV of hysteresis. The EN pin can be tied to $\mathrm{V}_{\text {IN }}$ if the shutdown feature is not used, or tied to a logic level if shutdown control is required.
Adding a resistor divider from $\mathrm{V}_{\text {IN }}$ to EN programs the LT8648S to regulate the output only when $\mathrm{V}_{\text {IN }}$ is above a desired voltage (see the Block Diagram). Typically, this threshold, $\mathrm{V}_{\operatorname{IN}(E N)}$, is used in situations where the input supply is current limited, or has a relatively high source resistance. A switching regulator draws constant power

APPLICATIONS InFORMATION

from the source, so source current increases as source voltage drops. This looks like a negative resistance load to the source and can cause the source to current limit or latch low under low source voltage conditions. The $\mathrm{V}_{\text {IN(EN) }}$ threshold prevents the regulator from operating at source voltages where the problems might occur. This threshold can be adjusted by setting the values R3 and R4 such that they satisfy the following equation:

$$
\begin{equation*}
V_{\operatorname{IN}(\text { EN })}=\left(\frac{\mathrm{R} 3}{\mathrm{R} 4}+1\right) \cdot 0.98 \mathrm{~V} \tag{10}
\end{equation*}
$$

where the LT8648S will remain off until $\mathrm{V}_{\text {IN }}$ is above $\mathrm{V}_{\text {IN(EN) }}$. Due to the comparator's hysteresis, switching will not stop until the input falls slightly below $\mathrm{V}_{\text {IN(EN) }}$.
When operating in Burst Mode operation for light load currents, the current through the $\mathrm{V}_{\operatorname{IN}(\mathrm{EN})}$ resistor network can easily be greater than the supply current consumed by the LT8648S. Therefore, the $\mathrm{V}_{\text {IN(EN) }}$ resistors should be large to minimize their effect on efficiency at low loads.

INTV $_{\text {cc }}$ Regulator

An internal low dropout (LDO) regulator produces the 3.4 V supply from $\mathrm{V}_{\text {IN }}$ that powers the drivers and the internal bias circuitry and must be bypassed to ground with a minimum of $1 \mu \mathrm{~F}$ ceramic capacitor. The $\mathrm{INTV}_{\text {CC }}$ can supply enough current for the LT8648S's circuitry. To improve efficiency the internal LDO can also draw current from the BIAS pin when the BIAS pin is at 3.1 V or higher. Typically the BIAS pin can be tied to the output of the LT8648S, or can be tied to an external supply of 3.3 V or above. If BIAS is connected to a supply other than $\mathrm{V}_{\text {OUT }}$, be sure to bypass with a local ceramic capacitor. If the BIAS pin is below 3.0 V , the internal LDO will consume current from $\mathrm{V}_{\text {IN }}$. Applications with high input voltage and high switching frequency where the internal LDO pulls current from $V_{\text {IN }}$ will increase die temperature because of the higher power dissipation across the LDO. Do not connect an external load to the INTV ${ }_{\text {CC }}$ pin.

Frequency Compensation

Loop compensation determines the stability and transient performance, and is provided by the components tied to
the V_{C} pin. Generally, a capacitor $\left(\mathrm{C}_{\mathrm{C}}\right)$ and a resistor $\left(\mathrm{R}_{\mathrm{C}}\right)$ in series to ground are used. Designing the compensation network is a bit complicated and the best values depend on the application. A practical approach is to start with one of the circuits in this data sheet that is similar to your application and tune the compensation network to optimize the performance. LTspice ${ }^{\circledR}$ simulations can help in this process. Stability should then be checked across all operating conditions, including load current, input voltage and temperature. The LT1375 data sheet contains a more thorough discussion of loop compensation and describes how to test the stability using a transient load.

Figure 5 shows an equivalent circuit for the LT8648S control loop. The error amplifier is a transconductance amplifier with finite output impedance. The power section, consisting of the modulator, power switches, and inductor, is modeled as a transconductance amplifier generating an output current proportional to the voltage at the V_{C} pin. Note that the output capacitor integrates this current, and that the capacitor on the V_{C} pin $\left(\mathrm{C}_{\mathrm{C}}\right)$ integrates the error amplifier output current, resulting in two poles in the loop. A zero is required and comes from a resistor R_{C} in series with C_{C}. This simple model works well as long as the value of the inductor is not too high and the loop crossover frequency is much lower than the switching frequency. A phase lead capacitor (C_{PL}) across the feedback divider can be used to improve the transient response and is required to cancel the parasitic pole caused by the feedback node to ground capacitance.
Table 2 provides a guidance for the compensation values of several typical applications. Slight tweaks to these values may be required depending on the specific application. All applications were using R1 $=100 \mathrm{k}$.

Table 2. Compensation Values

$\mathbf{V}_{\text {OUT }}$	$\boldsymbol{f}_{\mathbf{S W}}$	$\mathbf{C}_{\boldsymbol{C}}$	$\mathbf{R}_{\boldsymbol{C}}$	$\mathbf{C}_{\text {OUT }}$	$\mathbf{C}_{\text {PL }}$
3.3 V	400 kHz	820 pF	6.65 k	$47 \mu \mathrm{~F} \times 3$	33 pF
3.3 V	2 MHz	330 pF	10.2 k	$47 \mu \mathrm{~F}$	10 pF
5 V	400 kHz	820 pF	7.5 k	$47 \mu \mathrm{~F} \times 3$	33 pF
5 V	2 MHz	330 pF	11.8 k	$47 \mu \mathrm{~F}$	10 pF

APPLICATIONS INFORMATION

Figure 5. Model for Loop Response

Output Voltage Tracking and Soft-Start

The LT8648S allows the user to program its output voltage ramp rate by means of the SS pin. An internal $2 \mu \mathrm{~A}$ pulls up the SS pin to INTV ${ }_{C C}$. Putting an external capacitor on SS enables soft starting the output to prevent current surge on the input supply. During the soft-start ramp the output voltage will proportionally track the SS pin voltage. For output tracking applications, SS can be externally driven by another voltage source. From OV to 1 V , the SS voltage will override the internal 0.6 V reference input to the error amplifier, thus regulating the FB pin voltage to a function of the SS pin. See plot in the Typical Performance Characteristics section. When SS is above 1 V , tracking is disabled and the feedback voltage will regulate to the internal reference voltage. The SS pin may be left floating if the function is not needed.
An active pull-down circuit is connected to the SS pin which will discharge the external soft-start capacitor in the case of fault conditions and restart the ramp when the faults are cleared. Fault conditions that clear the soft-start capacitor are the EN/UV pin transitioning low, $\mathrm{V}_{\text {IN }}$ voltage falling too low, or thermal shutdown.

Paralleling

To increase the possible output current, two LT8648Ss can be connected in parallel to the same output. To do this, the V_{C} and $F B$ pins are connected together, and each

Figure 6. Paralleling Two LT8648Ss
LT8648S's SW node is connected to the common output through its own inductor. The CLKOUT pin of one LT8648S should be connected to the SYNC/MODE pin of the second LT8648S to have both devices operate in the same mode. During FCM, spread spectrum, and synchronization modes, both devices will operate at the same frequency. Figure 6 shows an application where two LT8648Ss are paralleled to get one output capable of up to 30 A .

Output Power Good

When the LT8648S's output voltage is within the $\pm 7.75 \%$ window of the regulation point, the output voltage is considered good and the open-drain PG pin goes high impedance and is typically pulled high with an external resistor. Otherwise, the internal pull-down device will pull the PG pin low. To prevent glitching both the upper and lower thresholds include 0.2% of hysteresis. PG is valid when $\mathrm{V}_{\text {IN }}$ is above 3 V .

The PG pin is also actively pulled low during several fault conditions: EN/UV pin is below 0.98 V , INTV CC has fallen too low, $\mathrm{V}_{\text {IN }}$ is too low, or thermal shutdown.

Shorted and Reversed Input Protection

The LT8648S will tolerate a shorted output. Several features are used for protection during output short-circuit and brownout conditions. The first is the switching frequency will be folded back while the output is lower than the set point to maintain inductor current control. Second, the bottom switch current is monitored such that

APPLICATIONS INFORMATION

if inductor current is beyond safe levels switching of the top switch will be delayed until such time as the inductor current falls to safe levels.

Frequency foldback behavior depends on the state of the SYNC pin: If the SYNC pin is low the switching frequency will slow while the output voltage is lower than the programmed level. If the SYNC pin is connected to a clock source, floated or tied high, the LT8648S will stay at the programmed frequency without foldback and only slow switching if the inductor current exceeds safe levels.
There is another situation to consider in systems where the output will be held high when the input to the LT8648S is absent. This may occur in battery charging applications or

Figure 7. Reverse $V_{I N}$ Protection
in battery-backup systems where a battery or some other supply is diode ORed with the LT8648S's output. If the $\mathrm{V}_{\text {IN }}$ pin is allowed to float and the EN pin is held high (either by a logic signal or because it is tied to $\mathrm{V}_{\text {IN }}$), then the LT8648S's internal circuitry will pull its quiescent current through its SW pin. This is acceptable if the system can tolerate several $\mu \mathrm{A}$ in this state. If the EN pin is grounded the SW pin current will drop to near $6 \mu \mathrm{~A}$. However, if the $V_{\text {IN }}$ pin is grounded while the output is held high, regardless of EN, parasitic body diodes inside the LT8648S can pull current from the output through the SW pin and the $\mathrm{V}_{\text {IN }}$ pin. Figure 7 shows a connection of the $\mathrm{V}_{\text {IN }}$ and EN/UV pins that will allow the LT8648S to run only when the input voltage is present and that protects against a shorted or reversed input.

Thermal Considerations and Peak Output Current

For higher ambient temperatures, care should be taken in the layout of the PCB to ensure good heat sinking of the LT8648S. The ground pins on the bottom of the package should be soldered to a ground plane. This ground should
be tied to large copper layers below with thermal vias; these layers will spread heat dissipated by the LT8648S. Placing additional vias can reduce thermal resistance further. The maximum load current should be derated as the ambient temperature approaches the maximum junction rating. Power dissipation within the LT8648S can be estimated by calculating the total power loss from an efficiency measurement and subtracting the inductor loss. The die temperature is calculated by multiplying the LT8648S power dissipation by the thermal resistance from junction to ambient.

The internal overtemperature protection monitors the junction temperature of the LT8648S. If the junction temperature reaches approximately $170^{\circ} \mathrm{C}$, the LT8648S will stop switching and indicate a fault condition until the temperature drops about $5^{\circ} \mathrm{C}$ cooler.

Temperature rise of the LT8648S is worst when operating at high load, high V_{IN}, and high switching frequency. If the case temperature is too high for a given application, then either V_{IN}, switching frequency, or load current can be decreased to reduce the temperature to an acceptable level. Figure 8 shows examples of how case temperature rise can be managed by reducing V_{IN}, switching frequency, or load.

The LT8648S's top switch current limit decreases with higher duty cycle operation for slope compensation. This also limits the peak output current the LT8648S can deliver for a given application. See curve in Typical Performance Characteristics.

Figure 8. Case Temperature Rise

LT8648S

TYPICAL APPLICATIONS

Figure 9. 400kHz 5V 15A Step-Down Converter with Soft-Start and Power Good

Figure 10. 400kHz 3.3V, 15A Step-Down Converter with Soft-Start and Power Good

Figure 11. Ultralow EMI 5V, 15A Step-Down Converter with Spread Spectrum

TYPICAL APPLICATIONS

Figure 12. 2MHz 5V, 15A Step-Down Converter with Spread Spectrum

Figure 13. 2MHz 3.3V, 15A Step-Down Converter with Spread Spectrum

Figure 14. 1MHz 12V, 15A Step-Down Converter

LT8648S

PACKAGE DESCRIPTION

revision history

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$04 / 21$	Added AEC-Q100 Qualified for Automotive Applications.	1
		Updated Storage Temperature Range.	2
		Clarified Condition Units.	3
		Updated Power Good Description.	12,22
		Updated Block Diagram.	13
B	$06 / 22$	Updarified Equation 8 Reference.	19

TYPICAL APPLICATIONS

2MHz 1.8V, 15A Step-Down Converter

RELATED PARTS

PART	DESCRIPTION	COMMENTS
$\begin{aligned} & \text { LT8640S/ } \\ & \text { LT8643S } \end{aligned}$	$42 \mathrm{~V}, 6 \mathrm{~A}$ Synchronous Step-Down Silent Switcher 2 with $\mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & V_{I N(M I N)}=3.4 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN(MAX)}}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.97 \mathrm{~V}, \\ & I_{Q}=2.5 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 4 \mathrm{~mm} \times 4 \mathrm{~mm} \text { LQFN-24 } \end{aligned}$
$\begin{aligned} & \hline \text { LT8640/ } \\ & \text { LT8640-1 } \end{aligned}$	42V, 5A, 96\% Efficiency, 3MHz Synchronous MicroPower Step-Down $D C / D C$ Converter with $I_{Q}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}=3.4 \mathrm{~V}, \mathrm{~V}_{\text {IN(MAX) }}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.99 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}, \\ & \mathrm{ISD}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 4 \mathrm{~mm} \text { QFN-18 } \end{aligned}$
LT8645S/ LT8646S	$65 \mathrm{~V}, 8 \mathrm{~A}$, Synchronous Step-Down Silent Switcher 2 with $\mathrm{I}_{0}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}_{(\mathrm{MIIN})}=3.4 \mathrm{~V},} \mathrm{~V}_{\mathrm{IN}_{(\mathrm{MAX})}=65 \mathrm{~V}, \mathrm{~V}_{\text {OUT }(\mathrm{MIN})}=0.97 \mathrm{~V}, \mathrm{I}_{Q}=2.5 \mu \mathrm{~A},} \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 4 \mathrm{~mm} \times 6 \mathrm{~mm} \text { LQFN-32 } \end{aligned}$
LT8641	65V, 3.5A, 95\% Efficiency, 3MHz Synchronous MicroPower Step-Down $D C / D C$ Converter with $I_{Q}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & V_{I_{N(M I N)}=3 V} V_{\left.V_{I N(M A X)}\right)}=65 \mathrm{~V}, \mathrm{~V}_{\text {OUT }(\mathrm{MIN})}=0.81 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 4 \mathrm{~mm} \text { QFN-18 } \end{aligned}$
LT8609/ LT8609A/ LT8609B	42V, 2A, 94\% Efficiency, 2.2MHz Synchronous MicroPower Step-Down $D C / D C$ Converter with $I_{Q}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & V_{\text {IN(MIN })}=3 V, V_{I N(M A X)}=42 V, V_{O U T(M I N)}=0.8 V, I_{Q}=2.5 \mu \mathrm{~A}, \\ & I_{S D}<1 \mu A, M S O P-10 E \end{aligned}$
$\begin{aligned} & \text { LT8610A/ } \\ & \text { LT8610AB } \end{aligned}$	42V, 3.5A, 96\% Efficiency, 2.2MHz Synchronous MicroPower StepDown DC/DC Converter with $I_{Q}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(\operatorname{MIN})=3.4 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN}(\mathrm{MAX})}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.97 \mathrm{~V}, \mathrm{I}_{Q}=2.5 \mu \mathrm{~A},} \\ & \mathrm{I}_{S D}<1 \mu \mathrm{~A}, \mathrm{MSOP}-16 \mathrm{E} \end{aligned}$
LT8610AC/ LT8610AC-1	42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous MicroPower StepDown DC/DC Converter with $\mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & V_{I_{N(M I N)}=3 V}=V_{\operatorname{IN}(\operatorname{MAX})}=42 \mathrm{~V}, \mathrm{~V}_{0 U T(M I N)}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{MSOP-16E} \end{aligned}$
LT8610	42V, 2.5A, 96\% Efficiency, 2.2MHz Synchronous MicroPower StepDown DC/DC Converter with $\mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & V_{I N(M I N)}=3.4 \mathrm{~V}, \mathrm{~V}_{\text {IN(MAX) }}=42 \mathrm{~V}, \mathrm{~V}_{0 U T(\mathrm{MIN})}=0.97 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}, \\ & I_{S D}<1 \mu \mathrm{~A}, \mathrm{MSOP}-16 \mathrm{E} \end{aligned}$
LT8611	42V, 2.5A, 96\% Efficiency, 2.2MHz Synchronous MicroPower StepDown DC/DC Converter with $\mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}$ and Input/Output Current Limit/Monitor	$\begin{aligned} & \mathrm{V}_{\text {IN(MIN })}=3.4 \mathrm{~V}, \mathrm{~V}_{\text {IN(MAX })}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT }(\mathrm{MIN})}=0.97 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 5 \mathrm{~mm} \text { QFN-24 } \end{aligned}$
LT8616	42V, Dual 2.5A + 1.5A, 95\% Efficiency, 2.2MHz Synchronous MicroPower Step-Down DC/DC Converter with $I_{Q}=5 \mu \mathrm{~A}$	$\mathrm{V}_{\operatorname{IN}(\operatorname{MIN})}=3.4 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN}(\operatorname{MAX})}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=5 \mu \mathrm{~A},$ $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, TSSOP-28E, $3 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN-28
LT8620	65V, 2.5A, 94\% Efficiency, 2.2MHz Synchronous MicroPower StepDown $D C / D C$ Converter with $I_{Q}=2.5 \mu \mathrm{~A}$	$\mathrm{V}_{\operatorname{IN}(\operatorname{MIN})}=3.4 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN}(\operatorname{MAX})}=65 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.97 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mathrm{\mu A} \text {, }$ $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{MSOP}-16 \mathrm{E}, 3 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN-24
LT8614	42V, 4A, 96\% Efficiency, 2.2MHz Synchronous Silent Switcher StepDown $D C / D C$ Converter with $I_{Q}=2.5 \mu A$	$\begin{aligned} & \mathrm{V}_{\text {IN(MIN) })}=3.4 \mathrm{~V}, \mathrm{~V}_{\text {IN(MAX) }}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.97 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}, \\ & I_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 4 \mathrm{~mm} \text { QFN18 } \end{aligned}$
LT8612	42V, 6A, 96\% Efficiency, 2.2MHz Synchronous MicroPower Step-Down DC/DC Converter with $\mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\text {IN(MIN) }}=3.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}_{(\mathrm{MAX})}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.97 \mathrm{~V}, \mathrm{I}_{Q}=3.0 \mu \mathrm{~A},} \\ & I_{S D}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 6 \mathrm{~mm} \text { QFN-28 } \end{aligned}$
LT8613	42V, 6A, 96\% Efficiency, 2.2MHz Synchronous MicroPower Step-Down DC/DC Converter with Current Limiting	$\begin{aligned} & \mathrm{V}_{\text {IN(MIN) }}=3.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}_{(\mathrm{MAX})}}=42 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.97 \mathrm{~V}, \mathrm{I}_{Q}=3.0 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 6 \mathrm{~mm} \text { QFN-28 } \end{aligned}$
LT8602	42V, Quad Output ($2.5 \mathrm{~A}+1.5 \mathrm{~A}+1.5 \mathrm{~A}+1.5 \mathrm{~A}$) 95\% Efficiency, 2.2 MHz Synchronous MicroPower Step-Down DC/DC Converter with $I_{Q}=25 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\text {IN(MIN) })}=3 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN}(\mathrm{MAX})}=42 \mathrm{~V}, \mathrm{~V}_{0 U T(\mathrm{MIN})}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{SD}}<1 \mathrm{AA}, 6 \mathrm{~mm} \times 6 \mathrm{~mm} \text { QFN-40 } \end{aligned}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X EN6310QA 160215 R3 KE177614 FAN53611AUC12X MAX809TTR AST1S31PUR NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG PCA9412AUKZ NCP81109GMNTXG NCP81109JMNTXG MP2161AGJ-Z NCP81241MNTXG MPQ4481GU-AEC1-P MP8756GD-P MPQ2171GJ-P MPQ2171GJ-AEC1-P MP2171GJ-P NCV1077CSTBT3G MP28160GC-Z MPM3509GQVE-AEC1-P XDPE132G5CG000XUMA1 MP5461GC-P IR3888AMTRPBFAUMA1 MPQ4409GQBE-AEC1P S-19903DA-A8T1U7 S-19903CA-A6T8U7 S-19903CA-S8T1U7 S-19902BA-A6T8U7 S-19902CA-A6T8U7 AP7361EA-SPR-13 AP7361EA-33DR-13 S-19902AA-A6T8U7 S-19903AA-A6T8U7 S-19902AA-S8T1U7 S-19902BA-A8T1U7 AU8310 LMR36503R5RPER LMR36503RFRPER LMR54406DBVR XC9110C301MR-G XC9141A50CMR-G XCL206F083CR-G XCL210A111GR-G LTM4663EV\#PBF LD5537B1GL

