features

- Efficiently Translate Voltage Levels
- Internal Hysteresis for Noise Immunity
- Output Latches Included
- Three-State Outputs
- Programmable Power/Speed
- Power Can Be Completely Shut Off
- $\pm 50 \mathrm{~V}$ on Inputs with External 100k Limit Resistor
- $1.2 \mu \mathrm{~s}$ Response at $100 \mu \mathrm{~A}$ Supply Current

APPLICATIONS

- TTL/CMOS to $\pm 5 \mathrm{~V}$ Analog Switch Drive
- TTL to CMOS (3V to $\left.15 \mathrm{~V} \mathrm{~V}_{\text {CC }}\right)$
- ECL to CMOS (3V to $15 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$)
- Ground Isolation Buffer
- Low Power RS232 Line Receiver

DESCRIPTIOn

The LTC ${ }^{\circledR 1045}$ is a hex level translator manufactured using Linear Technology's enhanced LTCMOS ${ }^{\text {TM }}$ silicon gate process. It consists of six high speed comparators with output latches and three-state capability. Each comparator's plus input is brought out separately. The minus inputs of comparators 1 to 4 are tied to $\mathrm{V}_{\text {TRIP1 }}$ while 5 and 6 are tied to $\mathrm{V}_{\text {TRIP2 }}$.

The $\mathrm{I}_{\text {SET }}$ pin has several functions. When taken to V^{+}the outputs are latched and power is completely shut off. Power/speed can be programmed by connecting $\mathrm{I}_{\mathrm{SET}}$ to V^{-} through an external resistor.
$\boldsymbol{\triangle}$, LTC and LT are registered trademarks of Linear Technology Corporation. LTCMOS is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Total Supply Voltage ($\mathrm{V}^{+}, \mathrm{V}_{\mathrm{OH}}$ to $\mathrm{V}^{-}, \mathrm{V}_{\mathrm{OL}}$) 18 V
Output High Voltage (V_{OH}) $\leq \mathrm{V}^{+}$ Input Voltage 18 V to ($\mathrm{V}^{-}-0.3 \mathrm{~V}$) Output Short-Circuit Duration $\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \leq 10 \mathrm{~V}\right)$ \qquad Continuous
ESD (MIL-STD-883, Method 3015) 2000V
Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)
................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=\mathrm{V}_{0 H}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{V}_{0 \mathrm{~L}}=$ OVunless otherwise specified. (Note 3) .

AC ELECRICAL CMARACTERISTIS The o denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{V}_{0 \mathrm{~L}}=0 \mathrm{~V}$, unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :---: | :---: | :---: | UNITS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The maximum differential voltage between any two power pins $\left(\mathrm{V}^{+}, \mathrm{V}^{-}, \mathrm{V}_{\text {OH }}\right.$ and $\left.\mathrm{V}_{\mathrm{OL}}\right)$ must not exceed 18 V . The maximum recommended operating differential is 15 V .

Note 3: During operation near the maximum supply voltage limit, care should be taken to avoid or suppress power supply turn-on and turn-off transients, power supply ripple or ground noise; any of these conditions must not cause a supply differential to exceed the absolute maximum rating.

TYPICAL PERFORMAOCE CHARACTERISTICS

1045 G01

LTC 1045

PIn functions

V_{OH} (Pin 1): High Level to which the Output Switches.
IN1 to IN7 (Pins 2 to 7): Six Comparator Inputs; Voltage
Range $=\mathrm{V}^{-}$to $\mathrm{V}^{-}+18 \mathrm{~V}$.
$\mathrm{V}_{\text {TRIP2 }}$ (Pin 8): Trip Point for Last Two Comparators (Inputs 5,6); Voltage Range $=\mathrm{V}^{-}$to $\mathrm{V}^{+}-2 \mathrm{~V}$.
$V_{\text {TRIP1 }}$ (Pin 9): Trip Point for First Four Comparators (Inputs 1 to 4); Voltage Range $=\mathrm{V}^{-}$to $\mathrm{V}^{+}-2 \mathrm{~V}$.
V^{-}(Pin 10): Comparator Negative Supply.
$V_{0 L}$ (Pin 11): Low Level to which the Output Switches.
$I_{\text {SET }}$ (Pin 12): This has three functions: 1) $\mathrm{R}_{\text {SET }}$ from this pin to V^{-}sets bias current, 2) when forced to V^{+}power is shut off completely and 3) when forced to V^{+}outputs are latched.

DISABLE (Pin 13): When high, outputs are Hi-Z.
OUT6 to OUT1 (Pins 14 to 19): Six Driver Outputs.
V+(Pin 20): Comparator Positive Supply.

TEST CIRCUITS

Figure 1. Response Time Test Circuit

Figure 3. Three-State Output Test Circuit Conditions: $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{V}_{\mathrm{OL}}=\mathrm{OV}$

Figure 2. Latch Test Circuit

BLOCK DIAGRAM

APPLICATIONS InFORMATION

The LTC1045 consists of six voltage translators and associated control circuitry (see Block Diagram). Each translator has a linear comparator input stage with the positive input brought out separately. The negative inputs of the first four comparators are tied in common to $\mathrm{V}_{\text {TRIP1 }}$ and the negative inputs of the last two comparators are tied in common to $\mathrm{V}_{\text {TRIP2 }}$. With these inputs the switching point of the comparators can be set anywhere within the common mode range of V^{-}to $\mathrm{V}^{+}-2 \mathrm{~V}$. To improve noise immunity each comparator has a small built-in hysteresis. Hysteresis varies with bias current from 7 mV at low bias current to 20 mV at high bias current (see typical curve of Hysteresis vs R RET).

Setting the Bias Current

Unlike CMOS logic, any linear CMOS circuit must draw some quiescent current. The bias generator (Block Diagram) allows the quiescent current of the comparators to be varied. Bias current is programmed with an external resistor (see typical curve of I ${ }^{+}$vs $\mathrm{R}_{\text {SET }}$). As the bias current is decreased, the LTC1045 slows down (see typical curve of Delay Time vs R $\mathrm{RET}_{\text {I }}$).

Shutting Power Off and Latching the Outputs

In addition to setting the bias current, the I ${ }_{\text {SET }}$ pin shuts power completely off and latches the translator outputs. To do this, the $\mathrm{I}_{\text {SET }}$ pin must be forced to $\mathrm{V}^{+}-0.5 \mathrm{~V}$. As shown in Figure 4, a CMOS gate or a TTL gate with a resistor pull-up does this quite nicely. Even though power

Figure 4. Driving the $\mathrm{I}_{\text {SET }}$ Pin with Logic
is turned off to the linear circuitry, the CMOS output logic is powered and maintains the output state. With no DC load on the output, power dissipation, for all practical purposes, is zero.

Latching the output is fast-typically 80 ns from the rising edge of $\mathrm{I}_{\text {SET }}$. Going from the latched to flow-through state is much slower-typically $1.5 \mu \mathrm{~s}$ from the falling edge of $I_{\text {SET }}$. This time is set by the comparator's power-up time. During the power-up time, the output can assume false states. To avoid problems, the output should not be considered valid until $2 \mu \mathrm{~s}$ to $5 \mu \mathrm{~s}$ after the falling edge of $I_{\text {SET }}$.

Putting the Outputs in Hi-Z State

A DISABLE input sets the six outputs to a high impedance state. This allows the LTC1045 to be interfaced to a data bus. When DISABLE = "1" the outputs are high impedance and when DISABLE $=$ " 0 " they are active. With TTL supplies, $\mathrm{V}^{+}=4.5 \mathrm{~V}$ to 5.5 V and $\mathrm{V}^{-}=\mathrm{GND}$, the DISABLE input is TTL compatible.

Power Supplies

There are four power supplies on the LTC1045: $\mathrm{V}^{+}, \mathrm{V}^{-}$, V_{OH} and V_{OL}. They can be connected almostarbitrarily, but there are a few restrictions. A minimum differential must exist between V^{+}and V^{-}and V_{OH} and V_{OL}. The V^{+}to V^{-} differential must be at least 4.5 V and the V_{OH} to V_{OL} differential must be at least 3 V . Another restriction is caused by the internal parasitic diode D1 (see Figure 5).

Figure 5. Output Driver

APPLICATIONS INFORMATION

Because of this diode, V_{OH} must not be greater than V^{+}. Lastly, the maximum voltage between any two power supply pins must not exceed 15 V operating or 18 V absolute maximum. For example, if $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}$or $\mathrm{V}_{0 \mathrm{~L}}$ should be no more negative than -10 V . Note that $\mathrm{V}_{0 L}$ should not be more negative than -10 V even if the V_{OH} to V_{OL} differential does not exceed the 15 V maximum. In this case the V^{+}to $\mathrm{V}_{0 \mathrm{~L}}$ differential sets the limit.

Input Voltage

The LTC1045 has no upper clamp diodes as do conventional CMOS circuits. This allows the inputs to exceed the V^{+}supply. The inputs will break down approximately 30V above the V^{-}supply. If the input current is limited with $100 \mathrm{k} \Omega$, the input voltage can be driven to at least $\pm 50 \mathrm{~V}$ with no adverse effects for any combination of allowed
power supply voltages. Output levels will be correct even under these conditions (i.e., if the input voltage is above the trip point, the output will be high and if it is below, the output will be low).

Output Drive

Output drive characteristics of the LTC1045 will vary with the power supply voltages that are chosen. Output impedance is affected by $\mathrm{V}^{+}, \mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}} . \mathrm{V}^{-}$has no effect on output impedance. Guaranteed drive characteristics are specified in the table of electrical characteristics for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$ and $\mathrm{V}^{-}=\mathrm{V}_{0 \mathrm{~L}}=0 \mathrm{~V}$. Figures 6 and 7 show relative output impedance for other supply combinations. In general, output impedance is minimized if V^{+}to V_{OH} is minimized and V_{OH} to V_{OL} is maximized.

Figure 6. Relative Output Sourcing Resistance (R_{OH}) vs $\mathrm{V}^{+} \mathrm{V}_{\mathrm{OH}}$

Figure 7. Relative Output Sinking Resistance (R_{OL}) vs $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}$

TYPICAL APPLICATIONS

> ECL to CMOS/TTL Logic

TTL/CMOS $\left(V_{C C}=5 \mathrm{~V}\right)$ to High Voltage CMOS $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$

High Voltage CMOS $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$ to TTL/CMOS $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$

TYPICAL APPLICATIONS

TTL/CMOS $\left(\mathrm{V}_{\text {CC }}=5 \mathrm{~V}\right)$ to Low Voltage CMOS $\left(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\right)$

TTL/CMOS Logic Levels to $\pm 5 \mathrm{~V}$ Analog Switch Driver

TTL/CMOS $\left(V_{C C}=5 \mathrm{~V}\right)$ to 10V/-5V Clock Driver

LTC 1045

TYPICAL APPLICATIONS

Logic Ground Isolation when Two Grounds are within LTC1045 Common Mode Range

TYPICAL APPLICATIONS

$\pm 5 \mathrm{~V}$ Analog Switch Driver

LTC 1045

TYPICAL APPLICATIONS

Logic Systems DC Isolation

TYPICAL APPLICATIONS

24V Relay Supply from 12V/15V Supply

RS232 Receiver

LTC 1045

TYPICAL APPLICATIONS
LED Driver

TYPICAL APPLICATIONS

Multiwindow Comparator and Display

LTC 1045

TYPICAL APPLICATIONS

ECL to CMOS from Single 5V Supply

PACKAGE DESCRIPTION

J Package
20-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS

LTC 1045

PACKAGE DESCRIPTION

N Package

20-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

SW Package

20-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

LTC 1045

TYPICAL APPLICATION

Power MOSFET Driver Low Power Consumption Stepper Motor Driver

beLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1016	Ultrafast Precision Comparator	10ns Propagation Delay
LT1039	Triple RS232 Driver/Receiver with Shutdown	$\pm 12 \mathrm{~V}$ Supply, No Supply Current in Shutdown
LTC1440/LTC1441/LTC1442	Ultralow Power, Single/Dual Comparator with Reference	$2.8 \mu \mathrm{~A}$ Supply Current

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG
NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G
74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG
CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ-500RL7

