"Inductorless" 5V to -5V Converter

feATURES

- 50mA Output Current
- Plug-In Compatible with ICL7660/LTC1044
- Rout $=35 \Omega$ Maximum
- $300 \mu \mathrm{~A}$ Maximum No Load Supply Current at 5 V
- Boost Pin (Pin 1) for Higher Switching Frequency
- 97\% Minimum Open-Circuit Voltage Conversion Efficiency
- 95\% Minimum Power Conversion Efficiency
- Wide Operating Supply Voltage Range: 1.5 V to 6 V
- Easy to Use
- Low Cost

APPLICATIONS

- Conversion of 5 V to $\pm 5 \mathrm{~V}$ Supplies
- Precise Voltage Division, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }} / 2$
- Supply Splitter, $\mathrm{V}_{\text {OUT }}= \pm \mathrm{V}_{\mathrm{S}} / 2$

DESCRIPTIOn

The LTC ${ }^{\circledR 1046}$ is a 50 mA monolithic CMOS switched capacitor voltage converter. It plugs in for the ICL7660/ LTC1044 in 5V applications where more output current is needed. The device is optimized to provide high current capability for input voltages of 6 V or less. It trades off operating voltage to get higher output current. The LTC1046 provides several voltage conversion functions: the input voltage can be inverted $\left(\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\text {IN }}\right)$, divided $\left(\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN/2 }}\right.$) or multiplied $\left(\mathrm{V}_{\text {OUT }}= \pm \mathrm{n} \mathrm{V}_{\text {IN }}\right)$.
Designed to be pin-for-pin and functionally compatible with the ICL7660 and LTC1044, the LTC1046 provides 2.5 times the output drive capability.

All registered trademarks and trademarks are the property of their respective owners

TYPICAL APPLICATION

Generating - 5V from 5V

Output Voltage vs Load Current for $\mathrm{V}^{+}=5 \mathrm{~V}$

LTC1046

ABSOLUTE MAXIMUM RATINGS

(Note 1)
\qquad
Input Voltage on Pins 1, 6 and 7
(Note 2) $-0.3<\mathrm{V}_{\text {IN }}<\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$
Current into Pin 6...20رA
Output Short Circuit Duration
$\left(\mathrm{V}^{+} \leq 6 \mathrm{~V}\right)$
Continuous

Operating Temperature Range
LTC1046C $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
LTC10461 $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
LTC1046M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $300^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC1046CN8\#PBF	LTC1046CN8\#TRPBF		8-Lead PDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1046IN8\#PBF	LTC1046IN8\#TRPBF		8-Lead PDIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
OBSOLETE PACKAGE				
LTC1046MJ8\#PBF	LTC1046MJ8\#TRPBF		8-Lead CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC1046CS8\#PBF	LTC1046CS8\#TRPBF	1046	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1046IS8\#PBF	LTC1046IS8\#TRPBF	10461	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Contact the factory for parts specified with wider operating temperature ranges.
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{C}_{0 S C}=0 \mathrm{pF}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1046C			LTC10461/M			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$, Pins 1 and 7 No Connection $R_{L}=\infty$, Pins 1 and 7 No Connection, $\mathrm{V}^{+}=3 \mathrm{~V}$			$\begin{gathered} 165 \\ 35 \end{gathered}$	300		$\begin{gathered} 165 \\ 35 \end{gathered}$	300	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}^{+} \mathrm{L}$	Minimum Supply Voltage	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	\bullet	1.5			1.5			V
$\mathrm{V}^{+} \mathrm{H}$	Maximum Supply Voltage	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	\bullet			6			6	V
ROUT	Output Resistance	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}(\text { Note } 3) \\ & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \end{aligned}$	\bullet		27 27 60	$\begin{aligned} & 35 \\ & 45 \\ & 85 \end{aligned}$		27 27 60	$\begin{aligned} & 35 \\ & 50 \\ & 90 \end{aligned}$	Ω Ω Ω
$\mathrm{f}_{\text {OSC }}$	Oscillator Frequency	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}(\text { Note } 4) \\ & \mathrm{V}^{+}=2 \mathrm{~V} \end{aligned}$		$\begin{gathered} 20 \\ 4 \end{gathered}$	$\begin{aligned} & 30 \\ & 5.5 \end{aligned}$		$\begin{gathered} 20 \\ 4 \end{gathered}$	$\begin{aligned} & 30 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{P}_{\text {EfF }}$	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=2.4 \mathrm{k} \Omega$		95	97		95	97		\%
$\mathrm{V}_{\text {OUTEFF }}$	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$		97	99.9		97	99.9		\%
Iosc	Oscillator Sink or Source Current	$\begin{aligned} & \mathrm{V}_{\text {OSC }}=0 \mathrm{~V} \text { or } \mathrm{V}^{+} \\ & \operatorname{Pin} 1=0 \mathrm{~V} \\ & \text { Pin 1 }=\mathrm{V}^{+} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 4.2 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$		$\begin{aligned} & 4.2 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Connecting any input terminal to voltages greater than V^{+}or less than ground may cause destructive latch-up. It is recommended that no inputs from sources operating from external supplies be applied prior to power-up of the LTC1046.

Note 3: $R_{\text {OUT }}$ is measured at $T_{J}=25^{\circ} \mathrm{C}$ immediately after power-on.
Note 4: $\mathrm{f}_{\mathrm{OSC}}$ is tested with $\mathrm{C}_{0 S C}=100 \mathrm{pF}$ to minimize the effects of test fixture capacitance loading. The OpF frequency is correlated to this 100pF test point, and is intended to simulate the capacitance at pin 7 when the device is plugged into a test socket and no external capacitor is used.

Power Conversion Efficiency vs Load Current for $\mathrm{V}^{+}=2 \mathrm{~V}$

Output Voltage vs Load Current for $\mathrm{V}^{+}=2 \mathrm{~V}$

1046 G07

Output Resistance vs Supply Voltage

Power Conversion Efficiency vs
Load Current for $\mathrm{V}^{+}=5 \mathrm{~V}$

1046 G05

Output Voltage vs Load Current for $\mathrm{V}^{+}=5 \mathrm{~V}$

Output Resistance vs Temperature

Power Conversion Efficiency vs Oscillator Frequency

Oscillator Frequency as a Function of $\mathrm{C}_{\text {OSC }}$

TYPICAL PERFORMANCE CHARACTERISTICS

Oscillator Frequency as a
Function of Supply Voltage

Oscillator Frequency vs
Temperature

Figure 1

APPLICATIONS InFORMATION

Theory of Operation

To understand the theory of operation of the LTC1046, a review of a basic switched capacitor building block is helpful.

In Figure 2, when the switch is in the left position, capacitor C 1 will charge to voltage V 1 . The total charge on C 1 will be $q 1=\mathrm{C1V1}$. The switch then moves to the right, discharging C 1 to voltage V2. After this discharge time, the charge on C 1 is $\mathrm{q} 2=\mathrm{C} 1 \mathrm{~V} 2$. Note that charge has been transferred from the source, V1, to the output, V2. The amount of charge transferred is:

$$
\Delta q=q 1-q 2=C 1(V 1-V 2) .
$$

If the switch is cycled "f" times per second, the charge transfer per unit time (i.e., current) is:

$$
I=f \bullet \Delta q=f \bullet C 1(V 1-V 2)
$$

Figure 2. Switched Capacitor Building Block
Rewriting in terms of voltage and impedance equivalence,

$$
I=\frac{V 1-V 2}{(1 / f C 1)}=\frac{V 1-V 2}{R_{\text {EQUIV }}}
$$

A new variable, $\mathrm{R}_{\text {EQuIV, }}$ has been defined such that $R_{\text {EQUIV }}=1 / f C 1$. Thus, the equivalent circuit for the switched capacitor network is as shown in Figure 3.

Figure 3. Switched Capacitor Equivalent Circuit

Examination of Figure 4 shows that the LTC1046 has the same switching action as the basic switched capacitor building block. With the addition of finite switch ON resistance and output voltage ripple, the simple theory, although not exact, provides an intuitive feel for how the device works.

For example, if you examine power conversion efficiency as a function of frequency (see typical curve), this simple theory will explain how the LTC1046 behaves. The loss, and hence the efficiency, is set by the output impedance. As frequency is decreased, the output impedance will eventually be dominated by the 1/fC1 term and power efficiency will drop. The typical curves for power efficiency versus frequency show this effect for various capacitor values.

Note also that power efficiency decreases as frequency goes up. This is caused by internal switching losses which occur due to some finite charge being lost on each switching cycle. This charge loss per unit cycle, when multiplied by the switching frequency, becomes a current loss. At high frequency this loss becomes significant and the power efficiency starts to decrease.

Figure 4. LTC1046 Switched Capacitor Voltage Converter Block Diagram

APPLICATIONS InFORMATION

LV (Pin 6)

The internal logic of the LTC1046 runs between V^{+}and LV (Pin 6). For V^{+}greater than or equal to 3 V , an internal switch shorts LV to GND (Pin 3). For V^{+}less than 3V, the LV pin should be tied to ground. For V^{+}greater than or equal to 3 V , the LV pin can be tied to ground or left floating.

OSC (Pin 7) and BOOST (Pin 1)

The switching frequency can be raised, lowered or driven from an external source. Figure 5 shows a functional diagram of the oscillator circuit.

By connecting the BOOST (Pin 1) to V^{+}, the charge and discharge current is increased and, hence, the frequency is increased by approximately three times. Increasing the frequency will decrease output impedance and ripple for higher load currents.

Loading Pin 7 with more capacitance will lower the frequency. Using the BOOST pin in conjunction with external capacitance on Pin 7 allows user selection of the frequency over a wide range.
Driving the LTC1046 from an external frequency source can be easily achieved by driving Pin 7 and leaving the BOOST pin open, as shown in Figure 6. The output current from Pin 7 is small, typically $15 \mu \mathrm{~A}$, so a logic gate is capable of driving this current. The choice of using a

Figure 5. Oscillator

CMOS logic gate is best because it can operate over a wide supply voltage range (3 V to 15 V) and has enough voltage swing to drive the internal Schmitt trigger shown in Figure 5. For 5V applications, a TL logic gate can be used by simply adding an external pull-up resistor (see Figure 6).

Capacitor Selection

While the exact values of $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUt }}$ are noncritical, good quality, low ESR capacitors such as solid tantalum are necessary to minimize voltage losses at high currents. For $\mathrm{C}_{\text {IN }}$ the effect of the ESR of the capacitor will be multiplied by four, due to the fact that switch currents are approximately two times higher than output current, and losses will occur on both the charge and discharge cycle. This means that using a capacitor with 1Ω of ESR for $\mathrm{C}_{\text {IN }}$ will have the same effect as increasing the output impedance of the LTC1046 by 4Ω. This represents a significant increase in the voltage losses. For $\mathrm{C}_{\text {OUT }}$ the effect of ESR is less dramatic. $\mathrm{C}_{\text {OUT }}$ is alternately charged and discharged at a current approximately equal to the output current, and the ESR of the capacitor will cause a step function to occur, in the output ripple, at the switch transitions. This step function will degrade the output regulation for changes in output load current, and should be avoided. Realizing that large value tantalum capacitors can be expensive, a technique that can be used is to parallel a smaller tantalum capacitor with a large aluminum electrolytic capacitor to gain both low ESR and reasonable cost. Where physical size is a concern some of the newer chip type surface mount tantalum capacitors can be used. These capacitors are normally rated at working voltages in the 10 V to 20 V range and exhibit very low ESR (in the range of 0.1Ω).

Figure 6. External Clocking

TYPICAL APPLICATIONS

Negative Voltage Converter

Figure 7 shows a typical connection which will provide a negative supply from an available positive supply. This circuit operates over full temperature and power supply ranges without the need of any external diodes. The LV pin (Pin 6) is shown grounded, but for $\mathrm{V}^{+} \geq 3 \mathrm{~V}$, it may be floated, since LV is internally switched to GND (Pin 3) for $V^{+} \geq 3 \mathrm{~V}$.

The output voltage (Pin 5) characteristics of the circuit are those of a nearly ideal voltage source in series with an 27Ω resistor. The 27Ω output impedance is composed of two terms: 1) the equivalent switched capacitor resistance (see Theory of Operation), and 2) a term related to the ON resistance of the MOS switches.

At an oscillator frequency of 30 kHz and $\mathrm{C} 1=10 \mu \mathrm{~F}$, the first term is:

$$
\begin{aligned}
& R_{\text {EQUIV }}=\frac{1}{\left(\mathrm{f}_{\text {OSC }} / 2\right) \cdot \mathrm{C1}}= \\
& \frac{1}{15 \cdot 10^{3} \cdot 10 \cdot 10^{-6}}=6.7 \Omega .
\end{aligned}
$$

Notice that the equation for $R_{\text {EQUIV }}$ is not a capacitive reactance equation ($X_{C}=1 / \omega C$) and does not contain a 2π term.

The exact expression for output impedance is complex, but the dominant effect of the capacitor is clearly shown

Figure 7. Negative Voltage Converter
on the typical curves of output impedance and power efficiency versus frequency. For $\mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}$, the output impedance goes from 27Ω at $\mathrm{f}_{\text {OSC }}=30 \mathrm{kHz}$ to 225Ω at $\mathrm{f}_{\mathrm{OSC}}=1 \mathrm{kHz}$. As the $1 / \mathrm{fC}$ term becomes large compared to switch ON resistance term, the output resistance is determined by $1 / f \mathrm{f}$ only.

Voltage Doubling

Figure 8 shows a two diode, capacitive voltage doubler. With a 5 V input, the output is 9.1 V with no load and 8.2 V with a 10 mA load.

Figure 8. Voltage Doubler

Ultraprecision Voltage Divider

An ultraprecision voltage divider is shown in Figure 9. To achieve the 0.0002% accuracy indicated, the load current should be kept below 100 nA . However, with a slight loss in accuracy, the load current can be increased.

Figure 9. Ultrtaprecision Voltage Divider

TYPICAL APPLICATIONS

Battery Splitter

A common need in many systems is to obtain positive and negative supplies from a single battery or single power supply system. Where current requirements are small, the circuit shown in Figure 10 is a simple solution. It provides symmetrical positive or negative output voltages, both equal to one half the input voltage. The output voltages are both referenced to Pin 3 (output common). If the input voltage between Pin 8 and Pin 5 is less than 6V, Pin 6 should also be connected to Pin 3, as shown by the dashed line.

Paralleling for Lower Output Resistance

Additional flexibility of the LTC1046 is shown in Figures Figure 11 and Figure 12. Figure 11 shows two LTC1046s connected in parallel to provide a lower effective output resistance. If, however, the output resistance is dominated by $1 / f \mathrm{f} 1$, increasing the capacitor size (C1) or increasing the frequency will be of more benefit than the paralleling circuit shown.

Figure 12 makes use of "stacking" two LTC1046s to provide even higher voltages. In Figure 12, a negative voltage doubler or tripler can be achieved depending upon how Pin 8 of the second LTC1046 is connected, as shown schematically by the switch.

Figure 10. Battery Splitter

Figure 11. Paralleling for 100mA Load Current

Figure 12. Stacking for Higher Voltage

PACKAGE DESCRIPTION

$J 8$ Package
8-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

PACKAGE DESCRIPTION

N Package

8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510 Rev I)

NOTE:
INCHES

1. DIMENSIONS ARE $\frac{\text { IILLIMETERS }}{\text { MILI }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

PACKAGE DESCRIPTION

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610 Rev G)

REVISION HISTORY (Revision hisory beginina a Rev C)

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: | :---: |
| C | $05 / 19$ | Obsolete CERDIP package | 2,10 |

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1044A	12V CMOS Voltage Converter	Doubler or Inverter, 20mA Iout, 1.5V to 12V Input Range
LT®1054	Switched Capacitor Voltage Converter with Regulator	Doubler or Inverter, 100mA Iout, S0-8 Package
LTC1550	Low Noise, Switched Capacitor Regulated Inverter	$<$ < mV P-p Output Ripple, 900kHz Operation, S0-8 Package
LT1611	1.4MHz Inverting Switching Regulator	5 V to -5V at 150mA, Low Output Noise, S0T-23 Package
LT1617	Micropower Inverting Switching Regulator	5 V to -5V at 20 HA Supply Current, SOT-23 Package
LTC1754/LTC1755	Micropower Regulated 5V Charge Pump in SOT-23	$5 \mathrm{~V} / 50 \mathrm{~mA}, 13 \mu \mathrm{~A}$ Supply Current, 2.7V to 5.5V Input Range

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+

