feATURES

- $80 \mu \mathrm{~A}$ Maximum Supply Current
- 1nA Typical Supply Current in Shutdown
- 5V Operation (LTC1096/LTC1098)
- 3V Operation (LTC1096L/LTC1098L)(2.65V Min)
- Sample-and-Hold
- 16 $\mu \mathrm{s}$ Conversion Time
- 33kHz Sample Rate
- ± 0.5 LSB Total Unadjusted Error Over Temp
- Direct 3-Wire Interface to Most MPU Serial Ports and All MPU Parallel I/O Ports
- 8-Pin SO Plastic Package

APPLICATIONS

- Battery-Operated Systems
- Remote Data Acquisition
- Battery Monitoring
- Battery Gas Gauges
- Temperature Measurement
- Isolated Data Acquisition
$\boldsymbol{\mathcal { O }}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTIOn

The LTC ${ }^{\circledR 1096 / L T C 1096 L / L T C 1098 / L T C 1098 L ~ a r e ~}$ micropower, 8 -bit A/D converters that draw only $80 \mu \mathrm{~A}$ of supply current when converting. They automatically power down to 1nA typical supply current whenever they are not performing conversions. They are packaged in 8-pin SO packages and have both $3 \mathrm{~V}(\mathrm{~L})$ and 5 V versions. These 8-bit, switched-capacitor, successive approximation ADCs include sample-and-hold. The LTC1096/LTC1096L have a single differential analog input. The LTC1098/LTC1098L offer a software selectable 2-channel MUX.

On-chip serial ports allow efficient data transfer to a wide range of microprocessors and microcontrollers over three wires. This, coupled with micropower consumption, makes remote location possible and facilitates transmitting data through isolation barriers.
These circuits can be used in ratiometric applications or with an external reference. The high impedance analog inputs and the ability to operate with reduced spans (below 1 V full scale) allow direct connection to sensors and transducers in many applications, eliminating the need for gain stages.

TYPICAL APPLICATION

10 $\mu \mathrm{W}$, S8 Package, 8-Bit A/D
Samples at 200 Hz and Runs Off a 5 V Battery

Supply Current vs Sample Rate

absolute maximum ratings

(Notes 1 and 2)
Supply Voltage (VCC) to GND 12 V
Voltage
Analog and Reference -0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$
Digital Inputs \qquad -0.3 V to 12 V
Digital Outputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Power Dissipation \qquad .500 mW
Storage Temperature Range................... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Operating Temperature
LTC1096AC/LTC1096C/LTC1096LC/
LTC1098AC/LTC1098C/LTC1098LC $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC1096AI/LTC1096I/LTC1096LI/
LTC1098AI/LTC1098I/LTC1098LI $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$

PIn CONFIGURATION (Note 3)

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC1096ACN8\#PBF	LTC1096ACN8\#TRPBF	LTC1096ACN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096ACS8\#PBF	LTC1096ACS8\#TRPBF	1096A	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096AIN8\#PBF	LTC1096AIN8\#TRPBF	LTC1096AIN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096AIS8\#PBF	LTC1096AIS8\#TRPBF	1096AI	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096CN8\#PBF	LTC1096CN8\#TRPBF	LTC1096CN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096CS8\#PBF	LTC1096CS8\#TRPBF	1096	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096IN8\#PBF	LTC1096IN8\#TRPBF	LTC1096IN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096IS8\#PBF	LTC1096IS8\#TRPBF	10961	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096LCS8\#PBF	LTC1096LCS8\#TRPBF	1096L	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096LIS8\#PBF	LTC1096LIS8\#TRPBF	1096LI	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1098ACN8\#PBF	LTC1098ACN8\#TRPBF	LTC1098ACN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098ACS8\#PBF	LTC1098ACS8\#TRPBF	1098A	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098CN8\#PBF	LTC1098CN8\#TRPBF	LTC1098CN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098CS8\#PBF	LTC1098CS8\#TRPBF	1098	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098IN8\#PBF	LTC1098IN8\#TRPBF	LTC1098IN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1098IS8\#PBF	LTC1098IS8\#TRPBF	10981	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1098LCS8\#PBF	LTC1098LCS8\#TRPBF	1098L	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098LIS8\#PBF	LTC1098LIS8\#TRPBF	1098LI	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

ORDER INFORMATION

LEAD BASED FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC1096ACN8	LTC1096ACN8\#TR	LTC1096ACN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096ACS8	LTC1096ACS8\#TR	1096A	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096AIN8	LTC1096AIN8\#TR	LTC1096AIN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096AIS8	LTC1096AIS8\#TR	1096AI	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096CN8	LTC1096CN8\#TR	LTC1096CN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096CS8	LTC1096CS8\#TR	1096	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096IN8	LTC1096IN8\#TR	LTC1096IN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096IS8	LTC1096IS8\#TR	10961	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1096LCS8	LTC1096LCS8\#TR	1096L	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1096LIS8	LTC1096LIS8\#TR	1096LI	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1098ACN8	LTC1098ACN8\#TR	LTC1098ACN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098ACS8	LTC1098ACS8\#TR	1098A	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098CN8	LTC1098CN8\#TR	LTC1098CN8	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098CS8	LTC1098CS8\#TR	1098	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098IN8	LTC1098IN8\#TR	LTC1098IN8	8-Lead Plastic DIP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1098IS8	LTC1098IS8\#TR	1098	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1098LCS8	LTC1098LCS8\#TR	1098L	8-Lead Plastic SOIC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1098LIS8	LTC1098LIS8\#TR	1098LI	8-Lead Plastic SOIC	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/

RECOMMERDED OPERATING CONDITIONS

LTC1096/LTC1098

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{C C}$	Supply Voltage	$\begin{array}{\|l\|} \hline \text { LTC1096 } \\ \text { LTC1098 } \end{array}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 9 \\ & 6 \end{aligned}$	V
$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$ Operation						
${ }_{\text {f CLK }}$	Clock Frequency	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	25		500	kHz
$\mathrm{t}_{\text {cyc }}$	Total Cycle Time	$\begin{aligned} & \text { LTC1096, } \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz} \\ & \text { LTC1098, } \mathrm{f} \text { CLK }=500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \end{aligned}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$
$t_{\text {hDI }}$	Hold Time, $\mathrm{D}_{\text {IN }}$ After CLK \uparrow	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	150			ns
$\mathrm{t}_{\text {suCS }}$	Setup Time $\overline{\mathrm{CS}} \downarrow$ Before First CLK\uparrow (See Operating Sequence)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \text { LTC1096 } \\ & V_{C C}=5 \mathrm{~V}, \text { LTC1098 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$			ns ns
$\mathrm{t}_{\text {WAKEUP }}$	Wake-Up Time $\overline{C S} \downarrow$ Before First CLK \downarrow After First CLK \uparrow (See Figure 1 LTC1096 Operating Sequence)	$V_{\text {CC }}=5 \mathrm{~V}$, LTC1096	10			$\mu \mathrm{S}$
	Wake-Up Time $\overline{\text { CS }} \downarrow$ Before MSBF Bit CLK \downarrow (See Figure 2 LTC1098 Operating Sequence)	$V_{\text {CC }}=5 \mathrm{~V}$, LTC1098	10			$\mu \mathrm{s}$
$\mathrm{t}_{\text {suDI }}$	Setup Time, $\mathrm{D}_{\text {IN }}$ Stable Before CLK \uparrow	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	400			ns
twhCLK	CLK High Time	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	0.8			$\mu \mathrm{S}$
twLCLK	CLK Low Time	$\mathrm{V}_{C C}=5 \mathrm{~V}$	0.8			$\mu \mathrm{S}$

RECOMMENDED OPERATING CONDITIONS

LTC1096/LTC1098

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {WHCS }}$	$\overline{\text { CS }}$ High Time Between Data Transfer Cycles	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	1			$\mu \mathrm{S}$
twLCS	$\overline{\text { CS }}$ Low Time During Data Transfer	$\begin{aligned} & \text { LTC1096, } \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz} \\ & \text { LTC1098, } \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$

$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ Operation

${ }^{\text {f CLK }}$	Clock Frequency	$V_{C C}=3 \mathrm{~V}$	25	250	kHz
$\mathrm{t}_{\text {CYC }}$	Total Cycle Time	$\begin{aligned} & \text { LTC1096, } \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \\ & \text { LTC1098, } \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{s}$
$t_{\text {th }}$	Hold Time, $\mathrm{D}_{\text {IN }}$ After CLK \uparrow	$V_{C C}=3 \mathrm{~V}$	450		ns
$\mathrm{t}_{\text {suCs }}$	Setup Time $\overline{\mathrm{CS}} \downarrow$ Before First CLK \uparrow (See Operating Sequence)	$\begin{aligned} & V_{C C}=3 V, \text { LTC1096 } \\ & V_{C C}=3 V, \text { LTC1098 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$
$\mathrm{t}_{\text {WAKEUP }}$	Wake-Up Time $\overline{C S} \downarrow$ Before First CLK \downarrow After First CLK \uparrow (See Figure 1 LTC1096 Operating Sequence)	$V_{\text {CC }}=3 \mathrm{~V}$, LTC1096	10		$\mu \mathrm{S}$
	Wake-Up Time $\overline{\text { CS }} \downarrow$ Before MSBF Bit CLK \downarrow (See Figure 2 LTC1098 Operating Sequence)	$V_{\text {CC }}=3 \mathrm{~V}$, LTC1098	10		$\mu \mathrm{S}$
$\mathrm{t}_{\text {sudI }}$	Setup Time, $\mathrm{D}_{\text {IN }}$ Stable Before CLK \uparrow	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V}$	1		$\mu \mathrm{S}$
twhCLK	CLK High Time	$V_{\text {CC }}=3 \mathrm{~V}$	1.6		$\mu \mathrm{s}$
twLCLK	CLK Low Time	$V_{C C}=3 \mathrm{~V}$	1.6		$\mu \mathrm{s}$
	$\overline{\text { CS }}$ High Time Between Data Transfer Cycles	$V_{C C}=3 \mathrm{~V}$	2		$\mu \mathrm{S}$
twLCS	$\overline{\text { CS }}$ Low Time During Data Transfer	$\begin{aligned} & \text { LTC1096, f fLLK }=250 \mathrm{kHz} \\ & \text { LTC1098, } \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \hline 56 \\ & 56 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$

LTC1096L/LTC1098L

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {CC }}$	Supply Voltage		2.65		4.0	V
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	$\mathrm{V}_{\text {CC }}=2.65 \mathrm{~V}$	25		250	kHz
$\mathrm{t}_{\text {CYC }}$	Total Cycle Time	$\begin{aligned} & \text { LTC1096L, } \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \\ & \text { LTC1098L, } \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \end{aligned}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$
thDI	Hold Time, $\mathrm{D}_{\text {IN }}$ After CLK \uparrow	$\mathrm{V}_{\text {CC }}=2.65 \mathrm{~V}$	450			ns
$\mathrm{t}_{\text {suCs }}$	Setup Time $\overline{\mathrm{CS}} \downarrow$ Before First CLK \uparrow (See Operating Sequence)	$\begin{aligned} & V_{C C}=2.65 V, L T C 1096 L \\ & V_{C C}=2.65 V, \text { LTC1098L } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			$\mu \mathrm{s}$ $\mu \mathrm{s}$
twAKEUP	Wake-Up Time $\bar{S} \downarrow$ Before First CLK \downarrow After First CLK \uparrow (See Figure 1 LTC1096L Operating Sequence)	$V_{\text {CC }}=2.65 \mathrm{~V}, \mathrm{LTC1096L}$	10			$\mu \mathrm{s}$
	Wake-Up Time $\overline{C S} \downarrow$ Before MSBF Bit CLK \downarrow (See Figure 2 LTC1098L Operating Sequence)	$\mathrm{V}_{\text {CC }}=2.65 \mathrm{~V}, \mathrm{LTC1098} \mathrm{~L}$	10			$\mu \mathrm{S}$
$\mathrm{t}_{\text {suDI }}$	Setup Time, $\mathrm{D}_{\text {IN }}$ Stable Before CLK \uparrow	$\mathrm{V}_{\text {CC }}=2.65 \mathrm{~V}$	1			$\mu \mathrm{s}$
twhCLK	CLK High Time	$\mathrm{V}_{\text {CC }}=2.65 \mathrm{~V}$	1.6			$\mu \mathrm{S}$
twLCLK	CLK Low Time	$\mathrm{V}_{C C}=2.65 \mathrm{~V}$	1.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {WHCS }}$	$\overline{\text { CS }}$ High Time Between Data Transfer Cycles	$\mathrm{V}_{\text {CC }}=2.65 \mathrm{~V}$	2			$\mu \mathrm{S}$
twLCS	$\overline{\text { CS }}$ Low Time During Data Transfer	$\begin{aligned} & \text { LTC1096L, } \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \\ & \text { LTC1098L, } \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$

CONVERTER AND MULTIPLEXER CHARACTERISTICS

LTC1096/LTC1098

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
$V_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}$, unless otherwise noted.

PARAMETER	CONDITIONS		LTC1096A/LTC1098A		LTC1096/LTC1098			UNITS
			MIN	TYP MAX	MIN	TYP	MAX	
Resolution (No Missing Code)		\bullet	8		8			Bits
Offset Error		\bullet		± 0.5			± 0.5	LSB
Linearity Error	(Note 4)	\bullet		± 0.5			± 0.5	LSB
Full Scale Error		\bullet		± 0.5			± 1.0	LSB
Total Unadjusted Error (Note 5)	$V_{\text {REF }}=5.000 \mathrm{~V}$	\bullet		± 0.5			± 1.0	LSB
Analog Input Range	(Notes 6, 7)		-0.05 V to $\mathrm{V}_{\text {CC }}+0.05 \mathrm{~V}$					V
REF Input Range (Notes 6, 7)	$\begin{aligned} & \hline 4.5 \leq V_{C C} \leq 6 V \\ & 6 V<V_{C C} \leq 9 V, \text { LTC1096 } \\ & \hline \end{aligned}$		$\begin{gathered} -0.05 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}+0.05 \mathrm{~V} \\ -0.05 \mathrm{~V} \text { to } 6 \mathrm{~V} \end{gathered}$					V
Analog Input Leakage Current	(Note 8)	\bullet		± 1.0			± 1.0	$\mu \mathrm{A}$

LTC1096/LTC1098

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$, unless otherwise noted.

PARAMETER	CONDITIONS		LTC1096A/LTC1098A		LTC1096/LTC1098		UNITS
			MIN	TYP MAX	MIN	TYP MAX	
Resolution (No Missing Code)		\bullet	8		8		Bits
Offset Error		\bullet		± 0.75		± 1.0	LSB
Linearity Error	(Notes 4, 9)	\bullet		± 0.5		± 1.0	LSB
Full-Scale Error		\bullet		± 1.0		± 1.0	LSB
Total Unadjusted Error (Notes 5, 9)	$\mathrm{V}_{\text {REF }}=2.500 \mathrm{~V}$	\bullet		± 1.0		± 1.5	LSB
Analog Input Range	(Notes 6, 7)			-0.05 V to	+ 0.0		V
REF Input Range (Notes 6, 7, 9)	$3 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 6 \mathrm{~V}$			-0.05 V to	+ 0.0		V
Analog Input Leakage Current	(Notes 8, 9)	\bullet		± 1.0		± 1.0	$\mu \mathrm{A}$

LTC1096L/LTC1098L
The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{CC}}=2.65 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$, unless otherwise noted.

PARAMETER	CONDITIONS		LTC1096A/LTC1098A		UNITS
			MIN	TYP MAX	
Resolution (No Missing Code)		\bullet	8		Bits
Offset Error		\bullet		± 1.0	LSB
Linearity Error	(Note 4)	\bullet		± 1.0	LSB
Full-Scale Error		\bullet		± 1.0	LSB
Total Unadjusted Error (Note 5)	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	\bullet		± 1.5	LSB
Analog Input Range	(Notes 6, 7)			to $\mathrm{V}_{\text {CC }}+0.05 \mathrm{~V}$	V
REF Input Range (Note 6)	$2.65 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 4.0 \mathrm{~V}$			to $\mathrm{V}_{\text {CC }}+0.05 \mathrm{~V}$	V
Analog Input Leakage Current	(Note 8)	\bullet		± 1.0	$\mu \mathrm{A}$

DIGITAL AND DC ELECTRICAL CHARACTERISTICS

LTC1096/LTC1098

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{IH}	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$	\bullet	2.0			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$	\bullet			0.8	V
$\underline{\text { IH }}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	\bullet			2.5	$\mu \mathrm{A}$
${ }_{\text {ILL }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=4.75 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 4.5 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 4.74 \\ & 4.72 \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{0}=1.6 \mathrm{~mA}$	\bullet			0.4	V
$\underline{102}$	Hi-Z Output Leakage	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$	\bullet			± 3.0	$\mu \mathrm{A}$
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-25		mA
$\underline{I S I N K}^{\underline{1}}$	Output Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$			45		mA
$\mathrm{I}_{\text {REF }}$	Reference Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }} \\ & \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{CYC}}=29 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{array}{r} 0.001 \\ 3.500 \\ 35.000 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 7.5 \\ 50.0 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{I C C}$	Supply Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }}$	\bullet		0.001	3.0	$\mu \mathrm{A}$
		$\begin{aligned} & \text { LTC1096, } \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \text { LTC1096, } \mathrm{t}_{\mathrm{CYC}}=29 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	\bullet		$\begin{gathered} 40 \\ 120 \end{gathered}$	$\begin{gathered} 80 \\ 180 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
		$\begin{aligned} & \text { LTC1098, } \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \text { LTC1098, } \mathrm{t}_{\mathrm{CYC}}=29 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	\bullet		$\begin{gathered} 44 \\ 155 \end{gathered}$	$\begin{gathered} 88 \\ 230 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

LTC1096/LTC1098

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{IH}	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$	\bullet	1.9			V
V IL	Low Level Input Voltage	$V_{C C}=3 \mathrm{~V}$	\bullet			0.45	V
$\underline{\text { IH }}$	High Level Input Current (Note 9)	$V_{\text {IN }}=V_{C C}$	\bullet			2.5	$\mu \mathrm{A}$
IIL	Low Level Input Current (Note 9)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=3 V, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=3 V, I_{0}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 2.3 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.69 \\ & 2.64 \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\underline{V_{0 L}}$	Low Level Output Voltage	$V_{C C}=3 \mathrm{~V}, \mathrm{I}_{0}=400 \mu \mathrm{~A}$	\bullet			0.3	V
I0Z	Hi-Z Output Leakage (Note 9)	$\overline{C S} \geq \mathrm{V}_{\mathrm{IH}}$	\bullet			± 3.0	$\mu \mathrm{A}$
ISOURCE	Output Source Current (Note 9)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-10		mA
ISINK	Output Sink Current (Note 9)	$V_{\text {OUT }}=V_{\text {CC }}$			15		mA
$\mathrm{I}_{\text {REF }}$	Reference Current (Note 9)	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }} \\ & \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{CYC}}=58 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{array}{r} 0.001 \\ 3.500 \\ 35.000 \end{array}$	$\begin{array}{r} 2.5 \\ 7.5 \\ 50.0 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
ICC	Supply Current (Note 9)	$\overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }}$	\bullet		0.001	3.0	$\mu \mathrm{A}$
		$\begin{aligned} & \text { LTC1096, } \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \text { LTC1096, } \mathrm{t}_{\mathrm{CYC}}=58 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$	\bullet		$\begin{gathered} 40 \\ 120 \end{gathered}$	$\begin{gathered} 80 \\ 180 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
		$\begin{aligned} & \text { LTC1098, } \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \text { LTC1098, } \mathrm{t}_{\mathrm{CYC}}=58 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$	\bullet		$\begin{gathered} 44 \\ 155 \end{gathered}$	$\begin{gathered} 88 \\ 230 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

DIGITAL AND DC ELECTRICAL CHARACTERISTICS

LTC1096L/LTC1098L
The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{CC}}=2.65 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{\text {CC }}=3.6 \mathrm{~V}$	\bullet	1.9			V
VIL	Low Level Input Voltage	$V_{C C}=2.65 \mathrm{~V}$	\bullet			0.45	V
$\underline{\mathrm{I}_{\mathrm{H}}}$	High Level Input Current	$V_{\text {IN }}=V_{C C}$	\bullet			2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=2.65 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=2.65 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.3 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.64 \\ & 2.50 \end{aligned}$		V
$\mathrm{V}_{0 \mathrm{~L}}$	Low Level Output Voltage	$\mathrm{V}_{C C}=2.65 \mathrm{~V}, \mathrm{I}_{0}=400 \mu \mathrm{~A}$	\bullet			0.3	V
$\mathrm{I}_{0 Z}$	Hi-Z Output Leakage	$\overline{C S} \geq$ High	\bullet			± 3.0	$\mu \mathrm{A}$
I SOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-10		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$			15		mA
$\mathrm{I}_{\text {REF }}$	Reference Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{CYC}}=58 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{array}{r} 0.001 \\ 3.500 \\ 35.000 \end{array}$	$\begin{array}{r} 2.5 \\ 7.5 \\ 50.0 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$I_{C C}$	Supply Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }}$	\bullet		0.001	3.0	$\mu \mathrm{A}$
		$\begin{aligned} & \text { LTC1096L, } \mathrm{t}_{\text {CYC }} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \text { LTC1096L, } \mathrm{t} \text { CYC }=58 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & 40 \\ & 120 \end{aligned}$	$\begin{gathered} 80 \\ 180 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\begin{aligned} & \text { LTC1098L, } \mathrm{t}_{\mathrm{CYC}} \geq 200 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 50 \mathrm{kHz} \\ & \text { LTC1098L, } \mathrm{t} \text { CYC }=58 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$	\bullet		$\begin{gathered} 44 \\ 155 \end{gathered}$	$\begin{gathered} 88 \\ 230 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

AC CHARACTERISTICS

LTC1096/LTC1098

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sample Time	See Operating Sequence			1.5		CLK Cycles
$\mathrm{f}_{\text {SMPL(MAX) }}$	Maximum Sampling Frequency		\bullet	33			kHz
tconv	Conversion Time	See Operating Sequence			8		CLK Cycles
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, CLK \downarrow to Dout Data Valid	See Test Circuits	\bullet		200	450	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, $\overline{\mathrm{CS}} \uparrow$ to $\mathrm{D}_{\text {Out }} \mathrm{Hi}-\mathrm{Z}$	See Test Circuits	\bullet		170	450	ns
ten	Delay Time, CLK \downarrow to D ${ }_{\text {Out }}$ Enable	See Test Circuits	\bullet		60	250	ns
$\mathrm{thDO}^{\text {chen }}$	Time Output Data Remains Valid After CLK \downarrow	$C_{\text {LOAD }}=100 \mathrm{pF}$			180		ns
t_{f}	Dout Fall Time	See Test Circuits	\bullet		70	250	ns
tr_{r}	Dout Rise Time	See Test Circuits	\bullet		25	100	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Analog Inputs On Channel Analog Inputs Off Channel			$\begin{gathered} 25 \\ 5 \end{gathered}$		pF pF
		Digital Input			5		pF

aC CHARACTERISTICS

LTC1096/LTC1098

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$V_{C C}=3 V, V_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\dagger_{\text {SMPL }}$	Analog Input Sample Time	See Operating Sequence			1.5		CLK Cycles
$\mathrm{f}_{\text {SMPL(MAX) }}$	Maximum Sampling Frequency		\bullet	16.5			kHz
$\mathrm{t}_{\text {CONV }}$	Conversion Time	See Operating Sequence			8		CLK Cycles
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {Out }}$ Data Valid	See Test Circuits (Note 9)	\bullet		500	1000	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, $\overline{C S} \uparrow$ to $\mathrm{D}_{\text {OUT }} \mathrm{Hi}-\mathrm{Z}$	See Test Circuits (Note 9)	\bullet		220	800	ns
$\mathrm{t}_{\text {en }}$	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {Out }}$ Enable	See Test Circuits (Note 9)	\bullet		160	480	ns
thDo	Time Output Data Remains Valid After CLK \downarrow	$C_{\text {LOAD }}=100 \mathrm{pF}$			400		ns
t_{f}	Dout Fall Time	See Test Circuits (Note 9)	\bullet		70	250	ns
tr_{r}	Dout Rise Time	See Test Circuits (Note 9)	\bullet		50	150	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Analog Inputs On Channel Analog Inputs Off Channel			$\begin{gathered} 25 \\ 5 \end{gathered}$		pF pF
		Digital Input			5		pF

LTC1096L/LTC1098L
The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=2.65 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sample Time	See Operating Sequence			1.5		CLK Cycles
$\mathrm{f}_{\text {SMPL(MAX) }}$	Maximum Sampling Frequency		\bullet	16.5			kHz
$\mathrm{t}_{\text {CONV }}$	Conversion Time	See Operating Sequence			8		CLK Cycles
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, CLK \downarrow to Dout Data Valid	See Test Circuits	\bullet		500	1000	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, $\overline{\mathrm{CS}} \uparrow$ to $\mathrm{D}_{\text {Out }} \mathrm{Hi}-\mathrm{Z}$	See Test Circuits	\bullet		220	800	ns
$\mathrm{t}_{\text {en }}$	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {Out }}$ Enable	See Test Circuits	\bullet		160	480	ns
$\mathrm{thDO}^{\text {ctin }}$	Time Output Data Remains Valid After CLK \downarrow	$C_{\text {LOAD }}=100 \mathrm{pF}$			400		ns
t_{f}	Dout Fall Time	See Test Circuits	\bullet		70	250	ns
tr_{r}	Dout Rise Time	See Test Circuits	\bullet		50	200	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Analog Inputs On Channel Analog Inputs Off Channel			$\begin{gathered} 25 \\ 5 \end{gathered}$		pF
		Digital Input			5		pF

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: All voltage values are with respect to GND.
Note 3: For the 8-lead PDIP, consult the factory.
Note 4: Linearity error is specified between the actual and points of the A / D transfer curve.
Note 5: Total unadjusted error includes offset, full scale, linearity, multiplexer and hold step errors.
Note 6: Two on-chip diodes are tied to each reference and analog input which will conduct for reference or analog input voltages one diode drop below $G N D$ or one diode drop above V_{cc}. This spec allows 50 mV forward bias of either diode. This means that as long as the reference or
analog input does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute OV to 5 V input voltage range will therefore require a minimum supply voltage of 4.950 V over initial tolerance, temperature variations and loading. For $5.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 9 \mathrm{~V}$, reference and analog input range cannot exceed 5.55 V . If reference and analog input range are greater than 5.55 V , the output code will not be guaranteed to be correct.
Note 7: The supply voltage range for the LTC1096L/LC1098L is from 2.65 V to 4 V . The supply voltage range for the LTC1096 is from 3 V to 9 V , but the supply voltage range for the LTC1098 is only from 3 V to 6 V .
Note 8: Channel leakage current is measured after the channel selection.
Note 9: These specifications are either correlated from 5 V specifications or guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs Supply Voltage Active and Shutdown Modes

Change in Offset vs
Supply Voltage

Change in Gain vs
Reference Voltage LTC1096

TYPICAL PERFORMANCE CHARACTERISTICS

Wake-Up Time vs Supply Voltage

Minimum Clock Frequency for
O.1LSB Error ${ }^{\dagger}$ vs Temperature

Maximum Clock Frequency vs Supply Voltage

Minimum Wake-Up Time vs Source Resistance

Digital Input Logic Threshold vs Supply Voltage

Input Channel Leakage Current vs Temperature

FFT Plot

*Maximum CLK frequency represents the clock frequency at which a 0.1LSB shift in the error at any code transition from its 0.75 MHz value is first detected.
${ }^{\dagger}$ As the CLK frequency is decreased from 500 kHz , minimum CLK frequency (Δ error $\leq 0.1 \mathrm{LSB}$) represents the frequency at which a 0.1 LSB shift in any code transition from its 500 kHz value is first detected.

PIn fUnCTIOnS

LTC1096/LTC1096L

$\overline{\text { CS/SHDN (Pin 1): Chip Select Input. A logic low on this }}$ input enables the LTC1096/LTC1096L. A logic high on this input disables the LTC1096/LTC1096L and disconnects the power to the LTC1096/LTC1096L.
IN+ (Pin 2): Analog Input. This input must be free of noise with respect to GND.
$\mathbf{I N}^{-}$(Pin 3): Analog Input. This input must be free of noise with respect to GND.
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
$\mathbf{V}_{\text {REF }}$ (Pin 5): Reference Input. The reference input defines the span of the A / D converter and must be kept free of noise with respect to GND.
$D_{\text {OUT }}$ (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output.
CLK (Pin 7): Shift Clock. This clock synchronizes the serial data transfer.

VCC (Pin 8): Power Supply Voltage. This pin provides power to the A/D converter. It must be free of noise and ripple by bypassing directly to the analog ground plane.

LTC1098/LTC1098L

$\overline{\mathrm{CS}} /$ SHDN (Pin 1): Chip Select Input. A logic low on this input enables the LTC1098/LTC1098L. A logic high on this input disables the LTC1098/LTC1098L and disconnects the power to the LTC1098/LTC1098L.
CHO (Pin 2): Analog Input. This input must be free of noise with respect to GND.

CH1 (Pin 3): Analog Input. This input must be free of noise with respect to GND.
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
$\mathrm{D}_{\text {IN }}$ (Pin 5): Digital Data Input. The multiplexer address is shifted into this pin.
$D_{\text {OUT }}$ (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output.
CLK (Pin 7): Shift Clock. This clock synchronizes the serial data transfer.
$\mathbf{V}_{\text {CC }}\left(\mathbf{V}_{\text {REF }}\right)($ Pin 8$)$: PowerSupply Voltage. This pin provides power and defines the span of the A/D converter. It must be free of noise and ripple by bypassing directly to the analog ground plane.

BLOCK DIAGRAM

LTC1096/LTC1096L

TEST CIRCUITS

On and Off Channel Leakage Current

Load Circuit for $\mathrm{t}_{\mathrm{dDO}}, \mathrm{t}_{\mathrm{r}}$ and t_{f}

TEST CIRCUITS

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Delay Time, $\mathrm{t}_{\mathrm{dDO}}$

10968 TC03

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Voltage Waveforms for $\mathrm{t}_{\text {dis }}$

NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL.
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL.

LTC 1096/LTC1096L
LTC1098/LTC1098L
TEST CIRCUITS

Voltage Waveforms for t_{en}

APPLICATIONS INFORMATION

OVERVIEW

The LTC1096/LTC1096L/LTC1098/LTC1098L are 8-bit micropower, switched-capacitor A/D converters. These sampling ADCs typically draw $120 \mu \mathrm{~A}$ of supply current when sampling up to 33 kHz . Supply current drops linearly as the sample rate is reduced (see Supply Current vs Sample Rate on the first page of this data sheet). The ADCs automatically power down when not performing conversion, drawing only leakage current. They are packaged in 8-pin S0 packages. The LTC1096L/LTC1098L operate on a single supply ranging from 2.65 V to 4 V . The LTC1096 operates on a single supply ranging from 3 V to 9 V while the LTC1098 operates from 3 V to 6 V supplies.
The LTC1096/LTC1096L/LTC1098/LTC1098L comprise an 8-bit, switched-capacitor ADC, a sample-and-hold and a serial port (see Block Diagram). Although they share the same basic design, the LTC1096(L) and LTC1098(L) differ in some respects. The LTC1096(L) has a differential input and has an external reference input pin. It can measure signals floating on a DC common mode voltage and can operate with reduced spans down to 250 mV . Reducing the span allows it to achieve 1 mV resolution. The LTC1098(L) has a 2-channel input multiplexer and can convert either channel with respect to ground or the difference between the two.

SERIAL INTERFACE

The LTC1098(L) communicates with microprocessors and other external circuitry via a synchronous, half duplex, 4-wire serial interface while the LTC1096(L) uses a 3-wire interface (see Operating Sequence in Figures 1 and 2).

Power Down and Wake-Up Time

The LTC1096(L)/LTC1098(L) draw power when the $\overline{C S}$ pin is low and shut themselves down when that pin is high. In order to have a correct conversion result, a $10 \mu \mathrm{~s}$
wake-up time must be provided from $\overline{\mathrm{CS}}$ falling to the first falling clock (CLK) after the first rising CLK for the LTC1096(L) and from $\overline{\text { CS }}$ falling to the MSBF bit CLK falling for the LTC1098(L) (see Operating Sequence). If the LTC1096(L)/LTC1098(L) are running with clock frequency less than or equal to 100 kHz , the wake-up time is inherently provided.

Example

Two cases are shown at right to illustrate the relationship among wake-up time, setup time and CLK frequency for the LT1096(L).
In Case 1 the clock frequency is 100 kHz . One clock cycle is $10 \mu \mathrm{~s}$ which can be the wake-up time, while half of that can be the setup time. In Case 2 the clock frequency is 50 kHz , half of the clock cycle plus the setup time $(=1 \mu \mathrm{~s})$ can be the wake-up time. If the CLK frequency is higher than 100 kHz , Figure 1 shows the relationship between the wake-up time and setup time.

Case 2. Timing Diagram

APPLICATIONS InFORMATION

*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER CLOCKS ARE APPLIED WITH $\overline{C S}$ LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY.
Figure 1. LTC1096(L) Operating Sequence

The wake-up time is inherently provided for the LTC1098(L) with setup time $=1 \mu \mathrm{~s}$ (see Figure 2).

Data Transfer

The CLK synchronizes the data transfer with each bit being transmitted on the falling CLK edge and captured on the rising CLK edge in both transmitting and receiving systems. The LTC1098(L) first receives input data and then transmits back the A / D conversion result (half duplex). Because of the half duplex operation, D_{IN} and $\mathrm{D}_{\text {OUT }}$ may be tied together allowing transmission over just three wires: $\overline{C S}, \mathrm{CLK}$ and DATA ($\mathrm{D}_{\text {IN }} / \mathrm{D}_{\text {OUT }}$).
Data transfer is initiated by a falling chip select ($\overline{\mathrm{CS}}$) signal. After $\overline{\text { CS }}$ falls the LTC1098(L) looks for a start bit. After the start bit is received, the 3-bit input word is shifted into the $D_{\text {IN }}$ input which configures the LTC1098(L) and starts the conversion. After one null bit, the result of the conversion

is output on the $D_{\text {OUT }}$ line. At the end of the data exchange $\overline{\mathrm{CS}}$ should be brought high. This resets the LTC1098(L) in preparation for the next data exchange.
The LTC1096(L) does not require a configuration input word and has no $D_{\text {IN }}$ pin. A falling $\overline{C S}$ initiates data transferas shown in the LTC1096(L) operating sequence. After $\overline{\mathrm{CS}}$ falls, the first CLK pulse enables $\mathrm{D}_{\text {OUT }}$. After one null bit, the A / D conversion result is output on the $D_{0 u t}$ line. Bringing $\overline{\mathrm{CS}}$ high resets the LTC1096(L) for the next data exchange.

APPLICATIONS InFORMATION

MSB-FIRST DATA (MSBF = 0)

*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER CLOCKS ARE APPLIED WITH $\overline{C S}$ LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY.
Figure 2. LTC1098(L) Operating Sequence Example: Differential Inputs ($\mathrm{CH}^{+}, \mathrm{CH}^{-}$)

Input Data Word

The LTC1096(L) requires no $D_{\text {IN }}$ word. It is permanently configured to have a single differential input. The conversion result, in which output on the Dout line is MSB-first sequence, followed by LSB sequence providing easy interface to MSB- or LSB-first serial ports.
The LTC1098(L) clocks data into the $D_{\text {IN }}$ input on the rising edge of the clock. The input data words are defined as follows:

Start Bit

The first "logical one" clocked into the $D_{\text {IN }}$ input after $\overline{C S}$ goes low is the start bit. The start bit initiates the data transfer. The LTC1098(L) will ignore all leading zeros which precede this logical one. After the start bit is received, the remaining bits of the input word will be clocked in. Further inputs on the D_{IN} pin are then ignored until the next $\overline{C S}$ cycle.

APPLICATIONS INFORMATION

Multiplexer (MUX) Address

The bits of the input word following the START bit assign the MUX configuration for the requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the " + " and "-" signs in the selected row of the followintg tables. In single-ended mode, all input channels are measured with respect to GND.

LTC1098(L) Channel Selection

MSB-First/LSB-First (MSBF)

The output data of the LTC1098(L) is programmed for MSB-first or LSB-first sequence using the MSBF bit. When the MSBF bit is a logical one, data will appear on the Dout line in MSB-first format. Logical zeros will be filled in indefinitely following the last data bit. When the MSBF bit is a logical zero, LSB-first data will follow the normal MSB-first data on the Dout line. (see Operating Sequence)

Unipolar Transfer Curve

The LTC1096(L)/LTC1098(L) are permanently configured for unipolar only. The input span and code assignment for this conversion type are shown in the following figures for a 5 V reference.

Unipolar Transfer Curve

Unipolar Output Code

OUTPUT CODE	INPUT VOLTAGE	INPUT VOLTAGE $\left(V_{\text {REF }}=5.000 \mathrm{~V}\right)$
111111111	V $_{\text {REF }}-1$ LSB	4.9805 V
1111111110	V REF $^{2}-2 L S B$	4.9609 V
\vdots	\vdots	\vdots
000000001	\bullet	\vdots
000000000	1LSB	0.0195 V

Operation with D_{IN} and $\mathrm{D}_{\text {OUT }}$ Tied Together

The LTC1098(L) can be operated with $D_{\text {IN }}$ and $D_{\text {OUT }}$ tied together. This eliminates one of the lines required to communicate to the microprocessor (MPU). Data is transmitted in both directions on a single wire. The processor pin connected to this data line should be configurable as either an input or an output. The LTC1098(L) will take control of

APPLICATIONS InFORMATION

Figure 3. LTC1098(L) Operation with D_{IN} and $\mathrm{D}_{\text {OUT }}$ Tied Together
the data line and drive it low on the 4th falling CLK edge after the start bit is received (see Figure 3). Therefore the processor port line must be switched to an input before this happens, to avoid a conflict.
In the Typical Applications section, there is an example of interfacing the LTC1098(L) with $\mathrm{D}_{\text {IN }}$ and $\mathrm{D}_{\text {OUT }}$ tied together to the Intel 8051 MPU.

ACHIEVING MICROPOWER PERFORMANCE

With typical operating currents of $40 \mu \mathrm{~A}$ and automatic shutdown between conversions, the LTC1096/LTC1098 achieves extremely low power consumption over a wide range of sample rates (see Figure 4). In systems that convert continuously, the LTC1096/LTC1098 will draw

Figure 4. Automatic Power Shutdown Between Conversions Allows Power Consumption to Drop with Sample Rate
its normal operating power continuously. Figure 5 shows that the typical current varies from $40 \mu \mathrm{~A}$ at clock rates below 50 kHz to $100 \mu \mathrm{~A}$ at 500 kHz . Several things must be taken into account to achieve such a low power consumption.

Figure 5. After a Conversion, When the Microprocessor Drives CS High, the ADC Automatically Shuts Down Until the Next Conversion. The Supply Current, Which Is Very Low During cConversions, Drops to Zero in Shutdown

Shutdown

Figures 1 and 2 show the operating sequence of the LTC1096/LTC1098. The converter draws power when the $\overline{\mathrm{CS}}$ pin is low and powers itself down when that pin is high. If the $\overline{\mathrm{CS}}$ pin is not taken to ground when it is low and not taken to supply voltage when it is high, the input buffers

APPLICATIONS INFORMATION

of the converter will draw current. This current may be larger than the typical supply current. It is worthwhile to bring the $\overline{\mathrm{CS}}$ pin all the way to ground when it is low and all the way to supply voltage when it is high to obtain the lowest supply current.

When the $\overline{\mathrm{CS}}$ pin is high (= supply voltage), the converter is in shutdown mode and draws only leakage current. The status of the $D_{\text {IN }}$ and CLK input have no effect on supply current during this time. There is no need to stop $D_{\text {IN }}$ and CLK with $\overline{C S}=$ high, except the MPU may benefit.

Minimize $\overline{\text { CS }}$ Low Time

In systems that have significanttime between conversions, lowest power drain will occur with the minimum $\overline{\mathrm{CS}}$ low time. Bringing $\overline{\mathrm{CS}}$ low, waiting $10 \mu \mathrm{~s}$ for the wake-up time, transferring data as quickly as possible, and then bringing it back high will result in the lowest current drain. This minimizes the amount of time the device draws power. Even though the device draws more power at high clock rates, the net power is less because the device is on for a shorter time.

$D_{\text {Out }}$ Loading

Capacitive loading on the digital output can increase power consumption. A 100pF capacitor on the $D_{\text {OUT }}$ pin can more than double the 100μ A supply current drain at a 500 kHz clock frequency. An extra $100 \mu \mathrm{~A}$ or so of current goes into charging and discharging the load capacitor. The same goes for digital lines driven at a high frequency by any logic. The CxVxf currents must be evaluated and the troublesome ones minimized.

Lower Supply Voltage

For lower supply voltages, LTC offers the LTC1096L/ LTC1098L. These pin compatible devices offer specified performance to $2.65 \mathrm{~V}_{\text {MIN }}$ supply.

OPERATING ON OTHER THAN 5V SUPPLIES

The LTC1096 operates from 3V to 9V supplies and the LTC1098 operates from 3 V to 6 V supplies. To operate the LTC1096/LTC1098 on other than 5V supplies, a few things must be kept in mind.

Wake-Up Time

A $10 \mu \mathrm{~s}$ wake-up time must be provided for the ADCs to convert correctly on a 5 V supply. The wake-up time is typically less than $3 \mu \mathrm{~s}$ over the supply voltage range (see typical curve of Wake-Up Time vs Supply Voltage). With $10 \mu \mathrm{~s}$ wake-up time provided over the supply range, the ADCs will have adequate time to wake up and acquire input signals.

Input Logic Levels

The input logic levels of $\overline{C S}, C L K$ and $D_{I N}$ are made to meet TL on 5 V supply. When the supply voltage varies, the input logic levels also change. For the LTC1096/LTC1098 to sample and convert correctly, the digital inputs have to meet logic low and high levels relative to the operating supply voltage (see typical curve of Digital Input Logic Threshold vs Supply Voltage). If achieving micropower consumption is desirable, the digital inputs must go rail-to-rail between supply voltage and ground (see ACHIEVING MICROPOWER PERFORMANCE section).

Clock Frequency

The maximum recommended clock frequency is 500 kHz for the LTC1096/LTC1098 running off a 5V supply. With the supply voltage changing, the maximum clock frequency for the devices also changes (see the typical curve of Maximum Clock Rate vs Supply Voltage). If the maximum clock frequency is used, care must be taken to ensure that the device converts correctly.

Mixed Supplies

It is possible to have a microprocessor running off a 5 V supply and communicate with the LTC1096/LTC1098 operating on 3 V or 9 V supplies. The requirement to achieve this is that the outputs of $\overline{C S}, C L K$ and $D_{\text {IN }}$ from the MPU have to be able to trip the equivalent inputs of the ADCs and the output of $\mathrm{D}_{\text {OUT }}$ from the ADCs must be able to toggle the equivalent input of the MPU (see typical curve of Digital Input Logic Threshold vs Supply Voltage). With the LTC1096 operating on a 9 V supply, the output of $\mathrm{D}_{\text {OUT }}$ may go between 0 V and 9 V . The 9 V output may damage the MPU running off a 5 V supply. The way to get around this possibility is to have a resistor divider on $\mathrm{D}_{\text {OUT }}$

APPLICATIONS INFORMATION

(Figure 6) and connect the center point to the MPU input. It should be noted that to get full shutdown, the $\overline{\mathrm{CS}}$ input of the LTC1096/LTC1098 must be driven to the $V_{\text {CC }}$ voltage. This would require adding a level shift circuit to the $\overline{\mathrm{CS}}$ signal in Figure 6.

Figure 6. Interfacing a 9V Powered LTC1096 to a 5V System

BOARD LAYOUT CONSIDERATIONS

Grounding and Bypassing

The LTC1096(L)/LTC1098(L) should be used with an analog ground plane and single point grounding techniques. The GND pin should be tied directly to the ground plane.

The $V_{C C}$ pin should be bypassed to the ground plane with a $1 \mu \mathrm{~F}$ tantalum with leads as short as possible. If power supply is clean, the LTC1096(L)/LTC1098(L) can also operate with smaller $0.1 \mu \mathrm{~F}$ surface mount or ceramic bypass capacitors. All analog inputs should be referenced directly to the single point ground. Digital inputs and outputs should be shielded from and/or routed away from the reference and analog circuitry.

SAMPLE-AND-HOLD

Both the LTC1096(L) and the LTC1098(L) provide a built-in sample-and-hold (S\&H) function to acquire signals. The S\&H of the LTC1096(L) acquires input signals from " + " input relative to "-" input during the twakeup time (see Figure 1). However, the S\&H of the LTC1098(L) can sample input signals in the single-ended mode or in the differential inputs during the $\mathrm{t}_{\mathrm{SMPL}}$ time (see Figure 7).

Single-Ended Inputs

The sample-and-hold of the LTC1098(L) allows conversion of rapidly varying signals. The input voltage is sampled during the tsMPL time as shown in Figure 7. The sampling interval begins as the bit preceding the MSBF bit is shifted

Figure 7. LTC1098(L) "+" and "-" Input Settling Windows

APPLICATIONS INFORMATION

in and continues until the falling CLK edge after the MSBF bit is received. On this falling edge, the S\&H goes into hold mode and the conversion begins.

Differential Inputs

With differential inputs, the ADC no longer converts just a single voltage but rather the difference between two voltages. In this case, the voltage on the selected " + " input is still sampled and held and therefore may be rapidly time varying just as in single-ended mode. However, the voltage on the selected "-" input must remain constant and be free of noise and ripple throughout the conversion time. Otherwise, the differencing operation may not be performed accurately. The conversion time is 8 CLK cycles. Therefore, a change in the "-" input voltage during this interval can cause conversion errors. For a sinusoidal voltage on the "-" input this error would be:

$$
V_{\text {ERROR }(M A X)}=V_{\text {PEAK }} \bullet 2 \bullet \pi \bullet f("-") \bullet 8 / f_{\text {CLK }}
$$

Where $f($ " - ") is the frequency of the "-" input voltage, $V_{\text {PEAK }}$ is its peak amplitude and $\mathrm{f}_{\text {CLK }}$ is the frequency of the CLK. In most cases $V_{\text {ERROR }}$ will not be significant. For a 60 Hz signal on the "-" input to generate a $1 / 4 \mathrm{LSB}$ error $(5 \mathrm{mV})$ with the converter running at $\mathrm{CLK}=500 \mathrm{kHz}$, its peak value would have to be 750 mV .

ANALOG INPUTS

Because of the capacitive redistribution A / D conversion techniques used, the analog inputs of the LTC1096(L)/ LTC1098(L)have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem. However, if large source resistances are used or if slow settling op amps drive the inputs, care must be taken to ensure that the transients caused by the current spikes settle completely before the conversion begins.

" + " Input Settling

The input capacitor of the LTC1096(L) is switched onto " + " input during the wake-up time (see Figure 1) and samples the input signal within that time. However, the input capacitor of the LTC1098(L) is switched onto " + " input during the sample phase ($\mathrm{t}_{\text {SMPL }}$, see Figure 7). The sample phase is 1.5 CLK cycles before conversion starts. The voltage on the " + " input must settle completely within
$t_{\text {WAKEUP }}$ or $t_{\text {SMPL }}$ for the LTC1096(L) or the LTC1098(L) respectively. Minimizing RSOURCE ${ }^{+}$and C 1 will improve the input settling time. If a large " + " input source resistance must be used, the sample time can be increased by using a slower CLK frequency.

"-" Input Settling

At the end of the $t_{\text {WAKEUP }}$ or $\mathrm{t}_{\text {SMPL }}$, the input capacitor switches to the "-" input and conversion starts (see Figures 1 and 7). During the conversion the " + " input voltage is effectively "held" by the sample-and-hold and will not affect the conversion result. However, it is critical that the "-" input voltage settles completely during the first CLK cycle of the conversion time and be free of noise. Minimizing RSOURCE ${ }^{-}$and C2 will improve settling time. If a large "-" input source resistance must be used, the time allowed for settling can be extended by using a slower CLK frequency.

Input Op Amps

When driving the analog inputs with an op amp it is important that the op amp settle within the allowed time (see Figure 7). Again, the " + " and "-" input sampling times can be extended as described above to accommodate slower op amps. Most op amps, including the LT1006 and LT1413 single supply op amps, can be made to settle well even with the minimum settling windows of $3 \mu \mathrm{~s}$ (" + " input) which occur at the maximum clock rate of 500 kHz .

Source Resistance

The analog inputs of the LTC1096/LTC1098 look like a25pF capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ in series with a 500Ω resistor (R_{ON}) as shown in Figure 8. CIn gets switched between the selected " + " and "-" inputs once during each conversion cycle.

Figure 8. Analog Input Equivalent Circuit

APPLICATIONS InFORMATION

Large external source resistors and capacitances will slow the settling of the inputs. It is important that the overall RC time constants be short enough to allow the analog inputs to completely settle within the allowed time.

RC Input Filtering

It is possible to filter the inputs with an RC network as shown in Figure 9. For large values of $\mathrm{C}_{\mathrm{F}}(\mathrm{e} . \mathrm{g} ., 1 \mu \mathrm{~F})$, the capacitive input switching currents are averaged into a net DC current. Therefore, a filter should be chosen with a small resistor and large capacitor to prevent DC drops across the resistor. The magnitude of the DC current is approximately $I_{D C}=25 \mathrm{pF}\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{t}_{\mathrm{CYC}}\right)$ and is roughly proportional to $\mathrm{V}_{\text {IN }}$. When running at the minimum cycle time of $29 \mu \mathrm{~s}$, the input current equals $4.3 \mu \mathrm{~A}$ at $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$. In this case, a filter resistor of 390Ω will cause 0.1 LSB of fullscale error. If a larger filter resistor must be used, errors can be eliminated by increasing the cycle time.

Figure 9. RC Input Filtering

Input Leakage Current

Input leakage currents can also create errors if the source resistance gets too large. For instance, the maximum input leakage specification of $1 \mu \mathrm{~A}$ (at $125^{\circ} \mathrm{C}$) flowing through a source resistance of 3.9 k will cause a voltage drop of 3.9 mV or 0.2LSB. This error will be much reduced at lower temperatures because leakage drops rapidly (see typical curve of Input Channel Leakage Current vs Temperature).

REFERENCE INPUTS

The voltage on the reference input of the LTC1096 defines the voltage span of the A / D converter. The reference input transient capacitive switching currents due to the switched-capacitor conversion technique (see Figure 10). During each bit test of the conversion (every CLK cycle), a
capacitive current spike will be generated on the reference pin by the ADC. These current spikes settle quickly and do not cause a problem.

Using a slower CLK will allow more time for the reference to settle. Even at the maximum CLK rate of 500 kHz most references and op amps can be made to settle within the

Figure 10. Reference Input Equivalent Circuit
$2 \mu \mathrm{~s}$ bit time.

Reduced Reference Operation

The minimum reference voltage of the LTC1098 is limited to 3 V because the $\mathrm{V}_{\text {CC }}$ supply and reference are internally tied together. However, the LTC1096 can operate with reference voltages below 1 V .
The effective resolution of the LTC1096 can be increased by reducing the input span of the converter. The LTC1096 exhibits good linearity and gain over a wide range of reference voltages (see typical curves of Linearity and Full Scale Error vs Reference Voltage). However, care must be taken when operating at low values of $\mathrm{V}_{\text {REF }}$ because of the reduced LSB step size and the resulting higher accuracy requirement placed on the converter. The following factors must be considered when operating at low $\mathrm{V}_{\text {REF }}$ values.

1. Offset
2. Noise
3. Conversion speed (CLK frequency)

Offset with Reduced V $V_{\text {REF }}$

The offset of the LTC1096 has a larger effect on the output code when the ADC is operated with reduced reference voltage. The offset (which is typically a fixed voltage) becomes a larger fraction of an LSB as the size of the LSB is reduced. The typical curve of Unadjusted Offset Error vs Reference Voltage shows how offset in LSBs is

APPLICATIONS InFORMATION

related to reference voltage for a typical value of $\mathrm{V}_{0 s}$. For example, $\mathrm{a} \mathrm{V}_{0 \mathrm{~S}}$ of 2 mV which is 0.1 LSB with a 5 V reference becomes 0.5 LSB with a 1 V reference and 2.5 LSBs with a 0.2 V reference. If this offset is unacceptable, it can be corrected digitally by the receiving system or by offsetting the "-" input of the LTC1096.

Noise with Reduced $V_{\text {REF }}$

The total input referred noise of the LTC1096 can be reduced to approximately 1 mV peak-to-peak using a ground plane, good bypassing, good layout techniques and minimizing noise on the reference inputs. This noise is insignificant with a 5 V reference but will become a larger fraction of an LSB as the size of the LSB is reduced.

For operation with a 5 V reference, the 1 mV noise is only 0.05LSB peak-to-peak. In this case, the LTC1096 noise will contribute virtually no uncertainty to the output code. However, for reduced references, the noise may become a significant fraction of an LSB and cause undesirable jitter in the output code. For example, with a 1 V reference, this same 1 mV noise is 0.25 LSB peak-to-peak. This will reduce the range of input voltages over which a stable output code can be achieved by 1LSB. If the reference is further reduced to 200 mV , the 1 mV noise becomes equal to 1.25LSBs and a stable code may be difficult to achieve. In this case averaging readings may be necessary.

This noise data was taken in a very clean setup. Any setupinduced noise (noise or ripple on $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {REF }}$ or $\mathrm{V}_{\text {IN }}$) will add to the internal noise. The lower the reference voltage to be used, the more critical it becomes to have a clean, noise free setup.

Conversion Speed with Reduced $V_{\text {REF }}$

With reduced reference voltages the LSB step size is reduced and the LTC1096 internal comparator overdrive is reduced. Therefore, it may be necessary to reduce the maximum CLK frequency when low values of $\mathrm{V}_{\text {REF }}$ are used.

Input Divider

It is OK to use an input divider on the reference input of the LTC1096 as long as the reference input can be made
to settle within the bit time at which the clock is running. When using a larger value resistor divider on the reference input the "-" input should be matched with an equivalent resistance.

Bypassing Reference Input with Divider

Bypassing the reference input with a divider is also possible. However, care must be taken to make sure that the DC voltage on the reference input will not drop too much below the intended reference voltage.

AC PERFORMANCE

Two commonly used figures of merit for specifying the dynamic performance of the ADCs in digital signal processing applications are the signal-to-noise ratio (SNR) and the effective number of bits (ENOBs).

Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is the ratio between the RMS amplitude of the fundamental input frequency to the RMS amplitude of all other frequency components at the A/D output. This includes distortion as well as noise products and for this reason it is sometimes referred to as signal-to-noise + distortion [S/(N + D)]. The output is band limited to frequencies from DC to one half the sampling frequency. Figure 11 shows spectral content from DC to 15.625 kHz which is $1 / 2$ the 31.25 kHz sampling rate.

Figure 11. This Clean FFT of an 11.8 kHz Input Shows Remarkable Performance for an ADC That Draws Only 100 A When Sampling at the 31.25 kHz Rate

APPLICATIONS INFORMATION

Effective Number of Bits

The effective number of bits (ENOBs) is a measurement of the resolution of an A / D and is directly related to the $S /(N+D)$ by the equation:

$$
\text { ENOB }=[\mathrm{S} /(\mathrm{N}+\mathrm{D})-1.76] / 6.02
$$

where $S /(N+D)$ is expressed in $d B$. At the maximum sampling rate of 33 kHz the LTC1096 maintains 7.5 ENOBs or better to 40 kHz . Above 40kHz the ENOB gradually decline, as shown in Figure 12, due to increasing second harmonic distortion. The noise floor remains approximately 70 dB .

Figure 12. Dynamic Accuracy Is Maintained Up to an Input Frequency of 40 kHz

TYPICAL APPLICATIONS

MICROPROCESSOR INTERFACES

The LTC1096(L)/LTC1098(L) can interface directly (without external hardware to most popular microprocessor (MPU) synchronous serial formats (see Table 1). If an MPU without a dedicated serial port is used, then three or four of the MPU's parallel port lines can be programmed to form the serial link to the LTC1096(L)/LTC1098(L). Included here is one serial interface example and one example showing a parallel port programmed to form the serial interface.

Motorola SPI (MC68HCO5C4,CM68HC11)

The MC68HCO5C4 has been chosen as an example of an MPU with a dedicated serial port. This MPU transfer data MSB-first and in 8-bit increments. With two 8-bit transfers, the A/D result is read into the MPU. The first 8-bit transfer sends the $D_{\text {IN }}$ word to the LTC1098(L) and clocks into the processor. The second 8-bit transfer clocks the A / D conversion result, $B 7$ through B0, into the MPU.
ANDing the first MUP received byte with OOHex clears the first byte. Notice how the position of the start bit in the first MPU transmit word is used to position the A/D result right-justified in two memory locations.

Table 1. Microprocessor with Hardware Serial Interfaces Compatible with the LTC1096(L)/LTC1098(L)

PART NUMBER	TYPE OF INTERFACE
Motorola	
MC6805S2,S3	SPI
MC68HC11	SPI
MC68HC05	SPI
RCA	
CDP68HC05	SPI
Hitachi	
HD6305	SCI Synchronous
HD63705	SCI Synchronous
HD6301	SCI Synchronous
HD63701	SCI Synchronous
HD6303	SCI Synchronous
HD64180	CSI/O
National Semiconductor	
COP400 Family	MICROWIRETM
COP800 Family	MICROWIRE/PLUS ${ }^{\text {TM }}$
NS8050U	MICROWIRE/PLUS
HPC16000 Family	MICROWIRE/PLUS
Texas Instruments	
TMS7002	Serial Port
TMS7042	Serial Port
TMS70C02	Serial Port
TMS70C42	Serial Port
TMS32011*	Serial Port
TMS32020	Serial Port

* Requires external hardware

MICROWIRE and MICROWIRE/PLUS are trademarks of National Semiconductor Corp.

LTC 1096/LTC 1096L
 LTC 1098/LTC1098L

TYPICAL APPLICATIONS

Data Exchange Between LTC1098(L) and MC68HCO5C4

Hardware and Software Interface to Motorola MC68HCO5C4

Dout from LTC1098(L) Stored in MC68HCO5C4

LABEL	MNEMONIC	COMMENTS
START	BCLRn	Bit 0 Port C goes low ($\overline{C S}$ goes low)
	LDA	Load LTC1098(L) D $\mathrm{IN}^{\text {w }}$ word into Acc.
	STA	Load LTC1098(L) Din word into SPI from Acc. Transfer begins.
	TST	Test status of SPIF
	BPL	Loop to previous instruction if not done with transfer
	LDA	Load contents of SPI data register into Acc. (Dout MSBs)
	STA	Start next SPI cycle
	AND	Clear the first $\mathrm{D}_{\text {Out }}$ word
	STA	Store in memory location A (MSBs)
	TST	Test status of SPIF
	BPL	Loop to previous instruction if not done with transfer
	BSETn	Set BO of Port C ($\overline{C S}$ goes high)
	LDA	Load contents of SPI data register into Acc. (Dout LSBs)
	STA	Store in memory location A + 1 (LSBS)

TYPICAL APPLICATIONS

Interfacing to the Parallel Port of the Intel 8051 Family

The Intel 8051 has been chosen to demonstrate the interface between the LTC1098(L) and parallel port microprocessors. Normally the $\overline{\mathrm{CS}}, \mathrm{CLK}$ and D_{IN} signals would be generated on three port lines and the $\mathrm{D}_{\text {OUT }}$ signal read on a fourth port line. This works very well. However, we will demonstrate here an interface with the $D_{\text {IN }}$ and $\mathrm{D}_{\text {OUT }}$ of the LTC1098(L) tied together as described in the SERIAL INTERFACE section. This saves one wire.

The 8051 first sends the start bit and MUX address to the LTC1098(L) over the data line connected to P1.2. Then P1.2 is reconfigured as an input (by writing to it a one) and the 8051 reads back the 8 -bit A / D result over the same data line.

$D_{\text {OUT }}$ from LTC1098(L) Stored in 8051 RAM

A "Quick Look" Circuit for the LTC1096

Users can get a quick look at the function and timing of the LT1096 by using the following simple circuit (Figure 13). $V_{\text {REF }}$ is tied to $V_{\text {CC }} . V_{\text {IN }}$ is applied to the + IN input and the $-\operatorname{IN}$ input is tied to the ground. $\overline{\mathrm{CS}}$ is driven at $1 / 16$ the clock rate by the 74 C 161 and $\mathrm{D}_{\text {OUT }}$ outputs the data. The output data from the $D_{\text {Out }}$ pin can be viewed on an oscilloscope that is set up to trigger on the falling edge of $\overline{C S}$ (Figure 14). Note the LSB data is partially clocked out before $\overline{C S}$ goes high.

Figure 13. "Quick Look" Circuit for the LTC1096
Figure 15 shows a temperature measurement system. The LTC1096 is connected directly to the low cost silicon temperature sensor. The voltage applied to the $\bigvee_{\text {REF }}$ pin adjusts the full scale of the A/D to the output range of the sensor. The zero point of the converter is matched to the zero output voltage of the sensor by the voltage on the LTC1096's negative input.

Figure 14. Scope Trace the LTC1096 "Quick Look" Circuit Showing A/D Output 10101010 (AA HEX)

Figure 15. The LTC1096's High Impedance Input Connects Directly to This Temperature Sensor, Eliminating Signal Conditioning Circuitry in This $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Thermometer

Remote or Isolated Systems

Figure 16 shows a floating system that sends data to a grounded host system. The floating circuitry is isolated by two optoisolators and powered by a simple capacitor diode charge pump. The system has very low power requirements because the LTC1096 shuts down between conversions
and the optoisolators draw power only when data is being transferred. The system consumes only $50 \mu \mathrm{~A}$ at a sample rate of 10 Hz (1ms on-time and 99ms off-time). This is easily within the current supplied by the charge pump running at 5 MHz . If a truly isolated system is required, the system's low power simplifies generating an isolated supply or powering the system from a battery.

Figure 16. Power for This Floating A/D System Is Provided by a Simple Capacitor Diode Charge Pump. The Two Optoisolators Draw No Current Between Samples, Turning On Only to Send the Clock and Receive Data

N8 Package
8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254 mm)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

TYPICAL APPLICATION

A/D Conversion for 3V Systems

The LTC1096/LTC1098 are ideal for 3V systems. Figure 17 shows a 3 V to 6 V battery current monitor that draws only $70 \mu \mathrm{~A}$ from the battery it monitors. The battery current is sensed with the 0.02Ω resistor and amplified by the LT1178. The LTC1096 digitizes the amplifier output
and sends it to the microprocessor in serial format. The LT1004 provides the full-scale reference for the ADC. The other half of the LTC1178 is used to provide low battery detection. The circuit's $70 \mu \mathrm{~A}$ supply current is dominated by the op amps and the reference. The circuit can be located near the battery and data transmitted serially to the microprocessor.

Figure 17. This 0A to 2A Battery Current Monitor Draws Only 70 1 A from a 3V Battery

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1196/LTC1198	8-Pin S0, 1Msps, 8-Bit ADCs	Low Power, Small Size, Low Cost
LTC1286/LTC1298	8-Pin S0, 5V Micropower, 12-Bit ADCs	1- or 2-Channel, Auto Shutdown
LTC1285/LTC1298	8-Pin S0, 3V Micropower, 12-Bit ADCs	1- or 2-Channel, Auto Shutdown
LTC1400	5V High Speed,Serial 12-Bit ADC	400ksps, Complete with V REF, CLK, Sample-and-Hold
LTC1594/LTC1598	4- and 8-Channel, 5V Micropower, 12-Bit ADCs	Low Power, Small Size, Low Cost
LTC1594L/LTC1598L	4- and 8-Channel, 3V Micropower, 12-Bit ADCs	Low Power, Small Size, Low Cost

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP33141-10T-E/MS MCP33141D-05T-E/MS MCP33151D-05T-E/MS MCP3202T-CI/MS MCP33141-05T-E/MS MCP33141D-10T-E/MS MCP33151-05T-E/MS MCP33151-10T-E/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN LTC1605IG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW MCP3422A0E/MS MCP3426A2-E/MC MCP3426A3-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3423-E/UN MCP3422A0-E/MC AD9220AR MAX11123ATI+ MAX11212AEUB+ MAX11135ATI+ TLV1570CDW TLC3574IDWR TLC0838CDWR AD7714ARZ-5REEL AD7914BRUZ-REEL7

