features

- Pin Selectable Butterworth or Bessel Response
- 4 mA Supply Current with $\pm 5 \mathrm{~V}$ Supplies
- f CUTOFF up to 20 kHz
- $100 \mu \mathrm{~V}_{\text {RMS }}$ Wideband Noise
- $\mathrm{THD}<0.02 \%\left(50: 1, \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}_{\mathrm{RMS}}\right)$
- Operates with a Single 5V Supply ($1 \mathrm{~V}_{\text {RMS }}$ Input Range)
- $60 \mu \mathrm{~V}_{\text {RMS }}$ Clock Feedthrough (Single 5V Supply)
- Operates up to $\pm 8 \mathrm{~V}$ Supplies
- TTL/CMOS-Compatible Clock Input
- No External Components
- Available in 14-Pin DIP and 16-Pin SO Wide Packages

APPLICATIONS

- Anti-Aliasing Filters
- Battery-Operated Instruments
- Telecommunications Filters
- Smoothing Filters
$\overline{\mathbf{L T}}$, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter

DESCRIPTIOn

The LTC ${ }^{\circledR} 1164-5$ is a monolithic 8th order filter; it approximates either a Butterworth or a Bessel Iowpass response. The LTC1164-5 features clock-tunable cutoff frequency and low power consumption (4.5 mA with $\pm 5 \mathrm{~V}$ supplies and 2.5 mA with single 5 V supply).

Low power operation is achieved without compromising noise or distortion performance. With $\pm 5 \mathrm{~V}$ supplies and 10 kHz cutoff frequency, the operating signal-to-noise ratio is 86 dB and the THD throughout the passband is 0.015%. Under the same conditions, a 77 dB signal-tonoise ratio and distortion is obtained with a single 5 V supply while the clock feedthrough is kept below the noise level. The maximum signal-to-noise ratio is 92dB.

The LTC1164-5 approximates an 8th order Butterworth response with a clock-to-cutoff frequency ratio of 100:1 (Pin 10 to V^{-}) or $50: 1$ double-sampled (Pin 10 to V^{+}and Pin 1 shorted to Pin 13). Double-sampling allows the input signal frequency to reach the clock frequency before any aliasing occurrence. An 8th order Bessel response can also be approximated with a clock-to-cutoff frequency ratio of 140:1 (Pin 10 to ground). With $\pm 7.5 \mathrm{~V}$ supply, $\pm 5 \mathrm{~V}$ supply and single 5 V supply, the maximum clock frequency of the LTC1164-5 is $1.5 \mathrm{MHz}, 1 \mathrm{MHz}$ and 1 MHz respectively. The LTC1164-5 is pin-compatible with the LTC1064-2 and LTC-1064-3.

TYPICAL APPLICATION

Butterworth 20kHz Anti-Aliasing Filter

Frequency Response

ABSOLUTE MAXIMUM RATINGS
 (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 16 V	Operating Temperature Range
Input Voltage (Note 2) ($\left.\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to ($\mathrm{V}^{-}-0.3 \mathrm{~V}$)	LTC1164-5C $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Output Short-Circuit Duration Indefinite	LTC1164-5M (OBSOLETE) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Power Dissipation 400mW	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Burn-In Voltage ... 16V	Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range. $\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{f}_{\mathrm{CLK}}=400 \mathrm{kHz}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Passband Gain 0.1 Hz at $0.25 \mathrm{f}_{\text {cutoff }}$ (Note 3)	$\begin{aligned} & \mathrm{f}_{\text {IN }}=1 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1 \\ & \mathrm{f}_{\text {IN }}=1 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLL}} / \mathrm{f}_{\mathrm{C}}\right)=50: 1 \end{aligned}$	\bullet	$\begin{aligned} & \hline-0.5 \\ & -0.5 \end{aligned}$	$\begin{array}{r} -0.10 \\ 0.10 \end{array}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	dB dB
Gain at 0.50f cutoff (Note 3)	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1 \\ & \mathrm{f} I \mathrm{IN}=4 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=50: 1 \end{aligned}$	\bullet	$\begin{array}{r} -0.45 \\ -0.35 \\ \hline \end{array}$	$\begin{aligned} & -0.20 \\ & -0.10 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.40 \end{aligned}$	dB dB
Gain at 0.90f ${ }_{\text {CuToFF }}$ (Note 3)	$\mathrm{f}_{\mathrm{IN}}=3.6 \mathrm{kHz},\left(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}\right)=100: 1$	\bullet	-2.50	-1.90	-1.0	dB
Gain at 0.95fCutoff (Note 3)	$\mathrm{f}_{\text {IN }}=3.8 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1$			-2.60		dB
Gain at flutoff (Note 3)	$\begin{aligned} & \mathrm{f}_{\text {IN }}=4 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1 \\ & \mathrm{f}_{\text {IN }}=8 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLL}} / \mathrm{f}_{\mathrm{C}}\right)=50: 1 \end{aligned}$	\bullet	$\begin{aligned} & -4.10 \\ & -4.20 \end{aligned}$	$\begin{aligned} & \hline-3.40 \\ & -3.80 \end{aligned}$	$\begin{aligned} & -2.75 \\ & -2.75 \end{aligned}$	dB dB
Gain at 1.44f CUTOFF (Note 3)	$\mathrm{f}_{\text {IN }}=5.76 \mathrm{kHz},\left(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}\right)=100: 1$	\bullet	-20.5	-19.0	-17.0	dB
Gain at 2.0f ${ }_{\text {CUTOFF }}$ (Note 3)	$\mathrm{f}_{\text {IN }}=8 \mathrm{kHz},\left(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}\right)=100: 1$	\bullet	-45.0	-43.0	-41.0	dB
Gain with $\mathrm{CLLK}=20 \mathrm{kHz}$ (Note 3)	$\mathrm{f}_{\mathrm{IN}}=200 \mathrm{~Hz}$, ($\left.\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1$	\bullet	-4.50	-3.40	-2.75	dB
Gain with $\mathrm{V}_{\mathrm{S}}=2.375 \mathrm{~V}$ (Note 3)	$\begin{aligned} & \mathrm{f}_{\mathrm{INN}_{2}}=400 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLL}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1 \\ & \mathrm{f}_{\mathrm{IN}}=400 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}}=4 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{CLLK}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1 \end{aligned}$		$\begin{aligned} & -0.50 \\ & -4.20 \end{aligned}$	$\begin{aligned} & \hline-0.10 \\ & -3.40 \end{aligned}$	$\begin{array}{r} 0.35 \\ -2.00 \end{array}$	dB $d B$
Input Frequency Range	$\begin{aligned} & \left(f_{C L K} / f_{C}\right)=100: 1 \\ & \left(f_{C L K} / f_{C}\right)=50: 1 \end{aligned}$			$\begin{gathered} 0-<\mathrm{f}_{\mathrm{CLK}} / 2 \\ 0-<\mathrm{f}_{\mathrm{CLK}} \\ \hline \end{gathered}$		kHz kHz
						11645fc

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range. $\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{f}_{\mathrm{CLK}}=400 \mathrm{kHz}$, unless otherwise specified.| PARAMETER | CONDITIONS | | LTC1164-5C | | | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MIN | TYP | MAX | |
| Maximum flek | $\begin{aligned} & V_{S} \geq \pm 7.5 \mathrm{~V} \\ & V_{S}= \pm 5.0 \mathrm{~V} \\ & V_{S}=\text { Single } 5 \mathrm{~V}(\mathrm{GND}=2 \mathrm{~V}) \end{aligned}$ | | | $\begin{aligned} & 1.5 \\ & 1.0 \\ & 1.0 \end{aligned}$ | | MHz
 MHz
 MHz |
| Clock Feedthrough | $\begin{aligned} & \text { Input at GND, } f=f_{\text {CLK }} \text {, Square Wave } \\ & \pm 5 \mathrm{~V},\left(\mathrm{f}_{\text {CLK }} / f_{\mathrm{C}}\right)=100: 1 \\ & \pm 5 \mathrm{~V},\left(\mathrm{f}_{\text {CLK }} / f_{\mathrm{C}}\right)=50: 1 \end{aligned}$ | | | $\begin{aligned} & 200 \\ & 100 \end{aligned}$ | | $\mu V_{\text {RMS }}$
 $\mu V_{\text {RMS }}$ |
| Wideband Noise | $\begin{aligned} & \text { Input at GND, } 1 \mathrm{~Hz} \geq \mathrm{f}<\mathrm{f}_{\mathrm{CLK}} \\ & \pm 5 \mathrm{~V},\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=100: 1 \\ & \pm 5 \mathrm{~V},\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}\right)=50: 1 \end{aligned}$ | | | $\begin{aligned} & 00 \pm 5 \% \\ & 15 \pm 5 \% \end{aligned}$ | | $\mu V_{\text {RMS }}$
 $\mu \mathrm{V}_{\text {RMS }}$ |
| Input Impedance | | | 70 | 100 | 160 | k Ω |
| Output DC Voltage Swing | $\begin{aligned} & V_{S}= \pm 2.375 \mathrm{~V} \\ & V_{S}= \pm 5.0 \mathrm{~V} \\ & V_{S}= \pm 7.5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & \pm 1.25 \\ & \pm 3.70 \\ & \pm 5.40 \end{aligned}$ | $\begin{aligned} & \pm 1.50 \\ & \pm 4.10 \\ & \pm 5.90 \end{aligned}$ | | V V V |
| Output DC Offset | $V_{S}= \pm 5 \mathrm{~V},\left(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}\right)=100: 1$ | | | ± 50 | ± 160 | mV |
| Output DC Offset TempCo | $V_{S}= \pm 5 \mathrm{~V},\left(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}\right)=100: 1$ | | | ± 100 | | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Power Supply Current | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C} \end{aligned}$ | | | 2.5
 4.5
 7.0 | $\begin{array}{r} \hline 4.0 \\ 4.5 \\ 7.0 \\ 8.0 \\ 11.0 \\ 12.5 \\ \hline \end{array}$ | mA mA mA mA mA mA |
| Power Supply Range | | | ± 2.375 | | ± 8 | V |

Note 1: Absolute Maximum Ratings are those values beyond which life of the device may be impaired.

Note 3: All gains are measured relative to passband gain. The filter cutoff frequency is abbreviated as $f_{\text {CutOFF }}$ or f_{C}.

Note 2: Connecting any pin to voltages greater than V^{+}or less than V^{-} may cause latch-up. It is recommended that no sources operating from external supplies be applied prior to power-up of the LTC1164-5.

TYPICAL PERFORMANCE CHARACTERISTICS

Gain vs Frequency

Passband Gain and Phase vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

1164-5 G03
Group Delay vs Frequency

1164-5 G05
A. $f_{C L K}=500 \mathrm{kHz}$ (BUTTERWORTH 100:1) $\mathrm{f}_{\text {CUUTOFF }}=5 \mathrm{kHz}$
B. $\mathrm{f}_{\mathrm{CLK}}=750 \mathrm{kHz}$ (BESSEL 140:1) $\mathrm{f}_{\text {CUTOFF }}=5.36 \mathrm{kHz}$

Maximum Passband over
Temperature for $V_{S}= \pm 7.5 \mathrm{~V}, 50: 1$

Passband Gain and Phase
vs Frequency

1164-5 G04
Passband vs Frequency and flLK

A. $\mathrm{f}_{\mathrm{CLK}}=200 \mathrm{kHz}$ $\mathrm{f}_{\text {CUTOFF }}=4 \mathrm{kHz}$
B. $\mathrm{f}_{\mathrm{CLK}}=300 \mathrm{kHz}$ $\mathrm{f}_{\text {CuTOFF }}=6 \mathrm{kHz}$
C. $\mathrm{f} C L K=500 \mathrm{kHz}$ $\mathrm{f}_{\text {CUTOFF }}=10 \mathrm{kHz}$
D. $\mathrm{fCLK}=750 \mathrm{kHz}$ $\mathrm{f}_{\text {CUTOFF }}=15 \mathrm{kHz}$
E. $\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}$ $\mathrm{f}_{\text {CUTOFF }}=20 \mathrm{kHz}$
F. $\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{MHz}$ fCUTOFF $=30 \mathrm{kHz}$

1164-5 G06

Passband vs Frequency and $\mathrm{f}_{\text {CLK }}$

TYPICAL PERFORMAOCE CHARACTERISTICS

Maximum Passband over
Temperature for $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 50: 1$

Maximum Passband over
Temperature for $\mathrm{V}_{\mathrm{S}}= \pm \mathbf{5 V}$, 100:1

Passband vs Frequency and $\mathrm{f}_{\text {LLK }}$

Passband vs Frequency and fclk

Passband vs Frequency and $\mathrm{f}_{\mathrm{cLK}}$

TYPICAL PGRFORMAOCG CHARACTERISTICS

Maximum Passband over

Temperature for Single 5V, 50:1*

1164-5 G15
THD + Noise vs Frequency

THD + Noise vs Frequency

THD + Noise vs RMS Input, 50:1

THD + Noise vs Frequency

THD + Noise vs Frequency

THD + Noise vs RMS Input, 100:1

THD + Noise vs Frequency

THD + Noise vs Frequency

* See also Passband vs Frequency and $\mathrm{f}_{\mathrm{CLK}}$ for Single 5V, 50:1; THD + Noise vs RMS Input for Single 5V, 50:1; and Maximum Passband for Single 5V, 50:1, for Two Ground Bias Levels.

TYPICAL PERFORMANCG CHARACTERISTICS

PIn functions

Power Supply (Pins 4, 12)

The V^{+}(Pin 4) and the V^{-}(Pin 12) should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to an adequate analog ground. The filter's power supplies should be isolated from other digital or high voltage analog supplies. A low noise linear supply is recommended. Using a switching power supply will lower the signal-to-noise ratio of the filter. The supply during power-up should have a slew rate less than $1 \mathrm{~V} / \mu \mathrm{s}$. When V^{+}is applied before V^{-}, and V^{-}can be more positive than ground, a signal diode must be used to clamp V^{-}. Figures 1 and 2 show typical connections for dual and single supply operation.

Figure 1. Dual Supply Operation for $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {Cutoff }}=\mathbf{1 0 0 : 1}$

Figure 2. Single Supply Operation for $\mathrm{f}_{\mathrm{CLK}} / \mathrm{I}_{\text {Cutoff }}=100: 1$

Clock Input (Pin 11)

Any TTL or CMOS clock source with a square-wave output and 50% duty cycle ($\pm 10 \%$) is an adequate clock source for the device. The power supply for the clock source should not be the filter's power supply. The analog ground for the filter should be connected to clock's ground at a single point only. Table 1 shows the clock's low and high level threshold value for a dual or single supply operation. A pulse generator can be used as a clock source provided the high level $0 N$ time is greater than $0.5 \mu \mathrm{~s}$. Sine waves are not recommended for clock input frequencies less than 100 kHz , since excessively slow clock rise or fall times generate internal clock jitter (maximum clock rise or fall time $\leq 1 \mu \mathrm{~s}$). The clock signal should be routed from the right side of the IC package to avoid coupling into any input or output analog signal path. A 1k resistor between clock source and Pin 11 will slow down the rise and fall times of the clock to further reduce charge coupling, Figures 1 and 2.

Table 1. Clock Source High and Low Threshold Levels

POWER SUPPLY	HIGH LEVEL	LOW LEVEL
Dual Supply $> \pm 3.4 \mathrm{~V}$	$\geq \mathrm{V}^{+} / 3$	$\leq 0.5 \mathrm{~V}$
Dual Supply $\leq \pm 3.4 \mathrm{~V}$	$\geq \mathrm{V}^{+} / 3$	$\leq \mathrm{V}^{-}+0.5 \mathrm{~V}$
Single Supply $\mathrm{V}^{+}>6.8 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	$\geq \mathrm{V}^{+} \bullet 0.65$	$\leq 0.5 \mathrm{~V}+1 / 2 \mathrm{~V}^{+}$
Single Supply $\mathrm{V}^{+}<6.8 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	$\geq \mathrm{V}^{+} / 3$	$\leq 0.5 \mathrm{~V}$

Analog Ground (Pins 3, 5)

The filter performance depends on the quality of the analog signal ground. For either dual or single supply operation, an analog ground plane surrounding the package is recommended. The analog ground plane should be connected to any digital ground at a single point. For dual supply operation, Pins 3 and 5 should be connected to the analog ground plane. For single supply operation Pins 3 and 5 should be biased at $1 / 2$ supply and they should be bypassed to the analog ground plane with at least a $1 \mu \mathrm{~F}$ capacitor (Figure 2). For single 5V operation at the highest $\mathrm{f}_{\text {CLK }}$ of 1 MHz , Pins 3 and 5 should be biased at 2 V . This minimizes passband gain and phase variations (see Typical Performance Characteristics curves: Maximum Passband for Single 5V, 50:1; and THD + Noise vs RMS Input for Single 5V, 50:1).

PIn functions

Butterworth/Bessel (Pin 10)

The DC level at Pin 10 determines the ratio of the clock frequency to the cutoff frequency of the filter. Pin 10 at V^{+} gives a $50: 1$ ratio and a Butterworth response (pins 1 to 13 are shorted for $50: 1$ only). Pin 10 at V^{-}gives a $100: 1$ Butterworth response. Pin 10 at ground gives a Bessel response and a ratio of 140:1. For single supply operation the ratio is $50: 1$ when Pin 10 is at V^{+}(Pins 1 to 13 shorted), 100:1 when Pin 10 is at ground, and $140: 1$ when at $1 / 2$ supply. When Pin 10 is not tied to ground, it should be bypassed to analog ground with a $0.1 \mu \mathrm{~F}$ capacitor. If the DC level at Pin 10 is switched mechanically or electrically at slew rates greater than $1 \mathrm{~V} / \mu \mathrm{S}$ while the device is operating, a 10k resistor should be connected between Pin 10 and the DC source.

Filter Input (Pin 2)

The input pin is connected internally through a 100k resistor tied to the inverting input of an op amp.

Filter Output (Pins 9, 6)

Pin 9 is the specified output of the filter; it can typically source or sink 1mA. Driving coaxial cables or resistive loads less than 20k will degrade the total harmonic distortion of the filter. When evaluating the device's distortion an output buffer is required. A noninverting buffer, Figure 3, can be used provided that its input common mode range
is well within the filter's output swing. Pin 6 is an intermediate filter output providing an unspecified 6th order lowpass filter. Pin 6 should not be loaded.

Figure 3. Buffer for Filter Output

External Connection (Pins 7, 14 and 1, 13)

Pins 7 and 14 should be connected together. In a printed circuit board the connection should be done under the IC package through a short trace surrounded by the analog ground plane. When the clock to cutoff frequency ratio is set at 50:1, Pin 1 should be shorted to Pin 13; if not, the passband will exhibit 1 dB of gain peaking and it will deviate from a Butterworth response. Pin 1 is the inverting input of an internal op amp and it should preferably be 0.2 inches away from any other circuit trace.

NC (Pin 8)

Pin 8 is not connected to any internal circuit point on the device and should be preferably tied to analog ground.

APPLICATIONS INFORMATION

Clock Feedthrough

Clock feedthrough is defined as, the RMS value of the clock frequency and its harmonics that are present at the filter's output pin (Pin 9). The clock feedthrough is tested with the input pin (Pin 2) grounded and, it depends on PC board layout and on the value of the power supplies. With proper layouttechniques the values of the clock feedthrough are shown in Table 2.

Table 2. Output Clock Feedthrough

V_{S}	$\mathbf{5 0 : 1}$	$\mathbf{1 0 0 : 1}$
$\pm 2.5 \mathrm{~V}$	$60 \mu \mathrm{~V}_{\text {RMS }}$	$60 \mu \mathrm{~V}_{\text {RMS }}$
$\pm 5 \mathrm{~V}$	$100 \mu \mathrm{~V}_{\text {RMS }}$	$200 \mu \mathrm{~V}_{\text {RMS }}$
$\pm 7.5 \mathrm{~V}$	$150 \mu \mathrm{~V}_{\text {RMS }}$	$500 \mu \mathrm{~V}_{\text {RMS }}$

Note: The clock feedthrough at $\pm 2.5 \mathrm{~V}$ supplies is imbedded in the wideband noise of the filter. The clock waveform is a square wave.

APPLICATIONS InFORMATION

Any parasitic switching transients during the rise and fall edges of the incoming clock are not part of the clock feedthrough specifications. Switching transients have frequency contents much higher than the applied clock; their amplitude strongly depends on scope probing techniques as well as grounding and power supply bypassing. The clock feedthrough, if bothersome, can be greatly reduced by adding a simple R/C lowpass network at the output of the filter pin (Pin 9). This R/C will completely eliminate any switching transient.

Wideband Noise

The wideband noise of the filter is the total RMS value of the device's noise spectral density and it is used to determine the operating signal-to-noise ratio. Most of its frequency contents lie within the filter passband and it cannot be reduced with post filtering. For instance, the LTC1164-5 wideband noise at $\pm 2.5 \mathrm{~V}$ supply is $100 \mu \mathrm{~V}_{\mathrm{RMS}}$, $95 \mu \mathrm{~V}_{\mathrm{RMS}}$ of which have frequency contents from DC up to the filter's cutoff frequency. The total wideband noise ($\mu \mathrm{RMS}$) is nearly independent of the value of the clock. The clock feedthrough specifications are not part of the wideband noise.

Speed Limitations

The LTC1164-5 optimizes AC performance versus power consumption. To avoid op amp slew rate limiting at maximum clock frequencies, the signal amplitude should be kept below a specified level as shown in Table 3.

Table 3. Maximum $V_{\text {IN }}$ vs V_{S} and $f_{\text {CLK }}$

POWER SUPPLY	MAXIMUM f ${ }_{\text {cLK }}$	MAXIMUM $\mathrm{V}_{\text {IN }}$
$\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$	1.5MHz	$\begin{gathered} 1 V_{\text {RMS }}\left(f_{I N}>35 \mathrm{kHz}\right) \\ 0.5 \mathrm{~V}_{\text {RMS }}\left(\mathrm{f}_{\mathrm{IN}}>250 \mathrm{kHz}\right) \end{gathered}$
$\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$	1.0MHz	$\begin{gathered} 3 V_{\text {RMS }}\left(f_{\text {IN }}>25 \mathrm{kHz}\right) \\ 0.7 \mathrm{~V}_{\text {RMS }}\left(\mathrm{f}_{\mathrm{IN}}>250 \mathrm{kHz}\right) \end{gathered}$
$\mathrm{V}_{S}= \pm 5.0 \mathrm{~V}$	1.0MHz	$\begin{aligned} & 2.5 \mathrm{~V}_{\text {RMS }}\left(\mathrm{f}_{\mathrm{IN}}>25 \mathrm{kHz}\right) \\ & 0.5 \mathrm{~V}_{\text {RMS }}\left(\mathrm{f}_{\mathrm{IN}}>100 \mathrm{kHz}\right) \end{aligned}$
Single 5V	1.0 MHz	$\begin{aligned} & 0.7 \mathrm{~V}_{\text {RMS }}\left(\mathrm{f}_{\mathrm{INN}}>25 \mathrm{kHz}\right) \\ & 0.5 \mathrm{~V}_{\text {RMS }}\left(\mathrm{f}_{\mathrm{IN}}>100 \mathrm{kHz}\right) \end{aligned}$

Aliasing

Aliasing is an inherent phenomenon of sampled data systems and it occurs when input frequencies close to the sampling frequency are applied. For the LTC1164-5 case at 100:1, an input signal whose frequency is in the range of $\mathrm{f}_{\text {CLK }} \pm 2.5 \%$ will be aliased back into the filter's passband. If, for instance, an LTC1164-5 operating with a 100 kHz clock and 1 kHz cutoff frequency receives a 98 kHz 10 mV input signal, a $2 \mathrm{kHz} 56 \mu \mathrm{~V}$ alias signal will appear at its output. When the LTC1164-5 operates with a clock-tocutoff frequency of $50: 1$, aliasing occurs at twice the clock frequency. Table 4 shows details.

Table 4. Aliasing Data ($\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$)

INPUT FREQUENCY $\left(V_{\mathbb{N N}}=1 V_{\text {RMS }}\right)$	OUTPUT LEVEL (Relative to Input)	OUTPUT FREQUENCY (Aliased Frequency)
$\left(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}\right)=100: 1, \mathrm{f}_{\text {CUTOFF }}=1 \mathrm{kHz}$		
97.0 kHz	-102.0dB	3.0 kHz
97.5 kHz	-65.0dB	2.5 kHz
98.0 kHz	-45.0dB	2.0 kHz
98.5 kHz	-23.0dB	1.5 kHz
99.0 kHz	-4.0dB	1.0 kHz
99.5 kHz	-0.3dB	0.5 kHz
$\left(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\mathrm{C}}\right)=50: 1, \mathrm{f}_{\text {CUTOFF }}=2 \mathrm{kHz}$		
197.0 kHz	-23.0dB	3.0kHz
197.5 kHz	-12.0dB	2.5 kHz
198.0 kHz	-5.0dB	2.0 kHz
198.5 kHz	-1.8dB	1.5 kHz
199.0 kHz	-1.0dB	1.0 kHz
199.5 kHz	-0.8dB	0.5 kHz

Table 5. Transient Response of LTC Lowpass Filters

LOWPASS FILTER	DELAY TIME* (SEC)	$\begin{aligned} & \text { RISE } \\ & \text { TIME** } \\ & \text { (SEC) } \end{aligned}$	SETTLING TIME*** (SEC)	OVERSHOOT (\%)
LTC1064-3 Bessel	0.50/f ${ }_{\text {c }}$	0.34/f. ${ }_{\text {c }}$	0.80/fc	0.5
LTC1164-5 Bessel	0.43/f C	0.34/f ${ }_{\text {c }}$	0.85/fc	0
LTC1164-6 Bessel	0.43/f ${ }_{\text {c }}$	0.34/f. ${ }_{\text {c }}$	$1.15 / \mathrm{fc}$	1
LTC1264-7 Linear Phase	1.15/f ${ }_{\text {c }}$	0.36/f ${ }_{\text {c }}$	2.05/fc	5
LTC1164-7 Linear Phase	1.20/f C	0.39/f ${ }_{\text {c }}$	2.20/fc	5
LTC1064-7 Linear Phase	$1.20 / \mathrm{f}_{\mathrm{C}}$	0.39/f ${ }_{\text {c }}$	2.20/fc	5
LTC1164-5 Butterworth	0.80/f ${ }_{\text {c }}$	0.48/f. ${ }_{\text {c }}$	2.40/fc	11
LTC1164-6 Elliptic	0.85/f ${ }_{\text {c }}$	0.54/f ${ }_{\text {c }}$	4.30/fc	18
LTC1064-4 Elliptic	0.90/f ${ }_{\text {c }}$	0.54/f. ${ }_{\text {c }}$	4.50/fc	20
LTC1064-1 Elliptic	0.85/f ${ }_{\text {c }}$	$0.54 / f_{C}$	6.50/f ${ }_{C}$	20

[^0]
TYPICAL APPLICATIONS

Single 5V, IS = 5.2mA, 16th Order Clock-Tunable Lowpass Filter, $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {Cutoff }}=60: 1,-75 \mathrm{~dB}$ Attenuation at $2.3 \mathrm{f}_{\text {Cutoff }}$

LTC1164-5

TYPICAL APPLICATIONS

8th Order Butterworth Lowpass Filter $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}=100: 1$

PACKAGE DESCRIPTION

J Package
14-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG \# 05-08-1110)

OBSOLETE PACKAGE

LTC 1164-5

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

SW Package

16-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG \# 05-08-1620)

S16 (WIDE) 0502
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS

THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

LTC1164-5

TYPICAL APPLICATION

8th Order Linear Phase Lowpass Filter $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}=140: 1$

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1069-1	Low Power, 8th Order Elliptic Lowpass Filter	Operates from a Single 3.3V to $\pm 5 \mathrm{~V}$ Supply
LTC1069-6	Very Low Power, 8th Order Elliptic Lowpass Filter	Optimized for 3V/5V Single Supply Operation, Consumes 1 mA at 3V

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Active Filters category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
VEMI256A-SD2-G4-08 HMC894LP5ETR HMC896LP4ETR HMC891LP5ETR MAX7491CEE+ MAX7413CUA+ MAX7411CUA+ MAX281AEWE + MAX280EPA+ MAX274AENG + LTC1064-3CSW\#PBF LTC1060ACN\#PBF LTC1069-1IS8\#PBF LTC11646CSW\#PBF LTC1064-2CSW\#PBF LTC1569CS8-7\#PBF LTC1164ACSW\#PBF LTC1067-50CS\#PBF LTC1164-6CN\#PBF
LTC1059CN\#PBF LTC1069-1CN8\#PBF LTC1069-7IS8\#PBF LTC1069-6CS8\#PBF LTC1562IG-2\#PBF LTC1164-5CSW\#PBF LTC1566-
1CS8\#PBF LTC1064-7CN\#PBF LTC1063CN8\#PBF LTC1062CN8\#PBF LTC6603IUF\#PBF LTC1061ACN\#PBF LTC1061CN\#PBF
LTC1264CN\#PBF LTC1562ACG\#PBF LTC1562AIG\#PBF LTC1064-3CN\#PBF HMC890ALP5E HMC892ALP5E HMC891ALP5E
HMC882ALP5E HMC881ALP5E ADMV8420ACPZ ADMV8432ACPZ HMC881LP5ETR HMC882LP5ETR HMC1000LP5ETR
LTC1068IN\#PBF LTC1566-1IS8\#PBF LTC1569IS8-6\#PBF LTC1069-1CS8\#PBF

[^0]: * To $50 \% \pm 5 \%$, ** 10% to $90 \% \pm 5 \%$, *** To $1 \% \pm 0.5 \%$

