

Y 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 2 Receivers Active in Shutdown

FEATURES

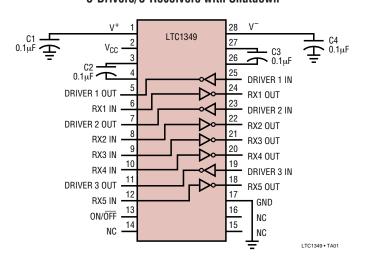
- Low Supply Current: 300µA
- Two Receivers Kept Alive in Shutdown
- ESD Protection Over ±10kV
- Operates from a Single 5V Supply
- Uses Small Capacitors: 0.1µF
- Operates to 120k Baud
- Three-State Outputs Are High Impedance When Off
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1137A and LT1237
- Flowthrough Architecture

APPLICATIONS

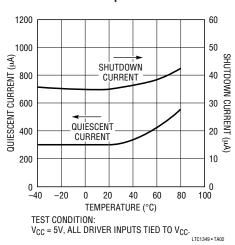
- Notebook Computers
- Palmtop Computers

DESCRIPTION

The LTC®1349 is a 3-driver/5-receiver RS232 transceiver with very low supply current. In the no load condition, the supply current is only $300\mu A$. The charge pump only requires four $0.1\mu F$ capacitors.

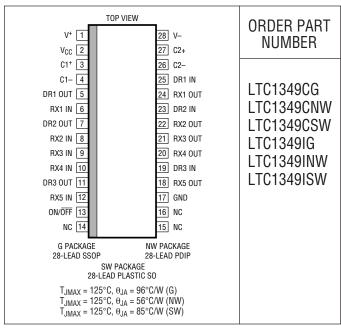

In Shutdown mode, two receivers are kept alive and the supply current is $35\mu A$. All RS232 outputs assume a high impedance state in Shutdown and with the power off.

The LTC1349 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120k baud with a 2500pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage, and can survive multiple $\pm 10kV$ ESD strikes.


LT, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

3-Drivers/5-Receivers with Shutdown


Quiescent and Shutdown Supply Current vs Temperature

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 6V
Input Voltage
Driver $-0.3V$ to $V_{CC} + 0.3V$
Receiver –25V to 25V
On/ $\overline{\text{Off}}$ Pin -0.3V to V_{CC} + 0.3V
Output Voltage
Driver – 25V to 25V
Receiver $-0.3V$ to $V_{CC} + 0.3V$
Short Circuit Duration
V ⁺
V ⁻ 30 sec
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range
Commercial (LTC1349C) 0°C to 70°C
Industrial (LTC1349I)40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

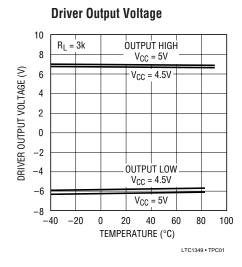
DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless noted.

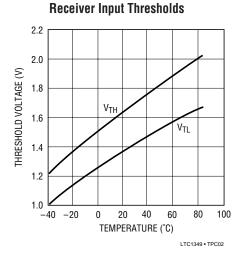
PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Any Driver							-
Output Voltage Swing	3k to GND	Positive Negative	•	5.0 -5.0	7.0 -6.5		V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2.0	1.4 1.4	0.8	V
Logic Input Current	V _{IN} = 5V V _{IN} = 0V		•			5 -5	μΑ μΑ
Output Short-Circuit Current	V _{OUT} = 0V			±9	±12		mA
Output Leakage Current	Shutdown, V _{OUT} = ±20V (Note 3)		•		±10	±500	μА
Any Receiver							
Input Voltage Thresholds	Input Low Threshold Input High Threshold		•	0.8	1.3 1.7	2.4	V
Hysteresis			•	0.1	0.4	1.0	V
Input Resistance	$-10V \le V_{\text{IN}} \le 10V$			3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 5V$) Output High, $I_{OUT} = 160\mu$ A ($V_{CC} = 5V$)		•	3.5	0.2 4.8	0.4	V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC}			-15	-40		mA
Output Leakage Current	Shutdown, $0 \le V_{OUT} \le V_{CC}$ (Note 3)		•		1	10	μА
Power Supply Generator							
V ⁺ Output Voltage	I _{OUT} = 0mA I _{OUT} = 12mA				8.0 7.5		V
V ⁻ Output Voltage	I _{OUT} = 0mA I _{OUT} = -12mA				-8.0 -7.0		V
Supply Rise Time	Shutdown to Turn-On				0.2		ms

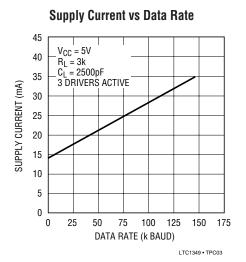
DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply						
V _{CC} Supply Current	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), $0^{\circ}C \le T_A \le 70^{\circ}C$	•		0.3	0.8	mA
	No Load (All Drivers $V_{IN} = 0V$)(Note 2), $0^{\circ}C \le T_A \le 70^{\circ}C$	•		0.5	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), $0^{\circ}C \le T_A \le 85^{\circ}C$	•		0.3	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), $-40^{\circ}C \le T_A \le 0^{\circ}C$	•		0.3	1.5	mA
	No Load (All Drivers $V_{IN} = 0V$)(Note 2), $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		0.5	1.5	mA
Supply Leakage Current (V _{CC})	Shutdown (Note 3)	•		35	50	μА
On/Off Threshold Low		•		1.4	0.8	V
On/Off Threshold High		•	2.0	1.4		V

AC CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC}=5V,\ C1=C2=C3=C4=0.1\mu F,\ unless\ noted.$

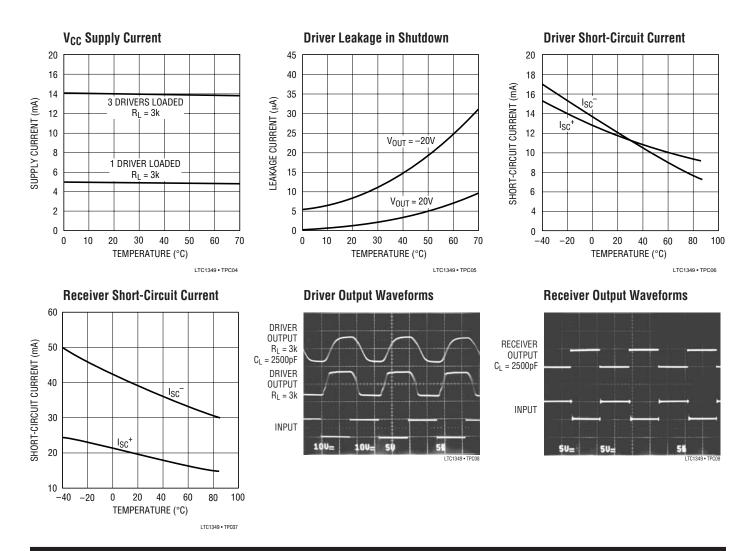

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$ $R_L = 3k, C_L = 2500pF$		3	8 5	30	V/µs V/µs
Driver Propagation Delay (TTL to RS232)	t _{HLD} (Figure 1) t _{LHD} (Figure 1)	•		2 2	3.5 3.5	μS μS
Receiver Propagation Delay (RS232 to TTL)	t _{HLR} (Figure 2) t _{LHR} (Figure 2)	•		0.3 0.2	0.8 0.8	μS μS


Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.


Note 2: Supply current is measured with driver and receiver outputs unloaded.

Note 3: Supply current and leakage current measurements in Shutdown are performed with $V_{ON/\overline{OFF}} = 0V$.

TYPICAL PERFORMANCE CHARACTERISTICS



/ TLINEAR

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

 V_{CC} : 5V Input Supply Pin. Supply current is typically $35\mu A$ in the Shutdown mode. This pin should be decoupled with a $0.1\mu F$ ceramic capacitor.

GND: Ground Pin.

 ON/\overline{OFF} : TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in Shutdown mode, with receivers 4 and 5 kept alive and the supply current equal to 35μ A. All driver outputs and other receiver outputs are in high impedance state. This pin can not float.

V+: Positive Supply Output (RS232 Drivers). $V^+ \approx 2V_{CC} - 1V$. This pin requires an external capacitor $C = 0.1\mu F$ for charge storage. The capacitor may be tied to ground or 5V.

With multiple devices, the V⁺ and V⁻ pins may be paralleled into common capacitors. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). $V^- \approx 2V_{CC} - 1.5V$. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu F$: one from C1+ to C1-, and another from C2+ to C2-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 20Ω .

LINEAR

PIN FUNCTIONS

DRIVER IN: RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

DRIVER OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in Shutdown mode or $V_{CC} = 0V$. The driver outputs are protected against ESD to $\pm 10kV$ for human body model discharges.

RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Receiver 1, 2 and 3 outputs are in a high impedance state when in Shutdown mode to allow data line sharing. Receivers 4 and 5 are kept alive in Shutdown.

SWITCHING TIME WAVEFORMS

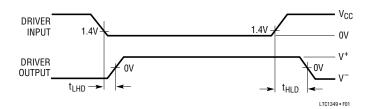
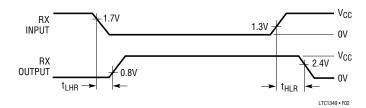
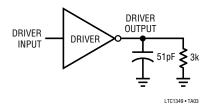
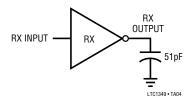


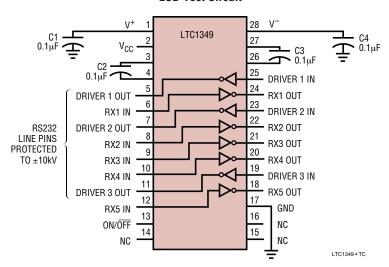
Figure 1. Driver Propagation Delay Timing

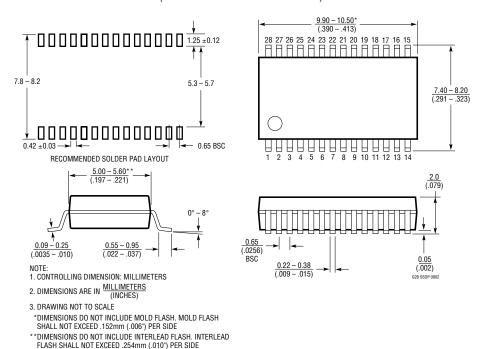

Figure 2. Receiver Propagation Delay Timing

TEST CIRCUITS

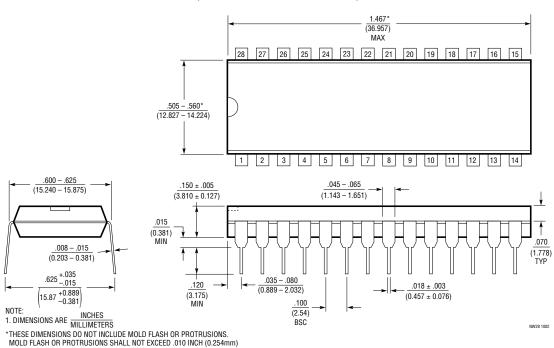
Driver Timing Test Load


Receiver Timing Test Load

TEST CIRCUITS


ESD Test Circuit

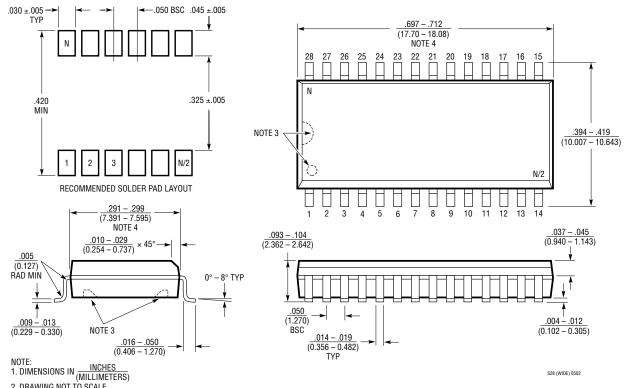
PACKAGE DESCRIPTION


G Package 28-Lead Plastic SSOP (5.3mm)

(Reference LTC DWG # 05-08-1640)

NW Package 28-Lead PDIP (Wide .600 Inch)

(Reference LTC DWG # 05-08-1520)



PACKAGE DESCRIPTION

SW Package 28-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)

- 2. DRAWING NOT TO SCALE
 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
 THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.
- 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT®1137A	5V, 3 Driver, 5 Receiver RS232 Transceiver	±15kV ESD per IEC 1000-4
LTC1327	3.3V, 3 Driver, 5 Receiver RS562 Transceiver	300μA Supply Current, 0.2μA in Shutdown
LTC1337	5V, 3 Driver, 5 Receiver RS232 Transceiver	300μA Supply Current, 1μA in Shutdown
LTC1348	3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver	True RS232 on 3.3V, 5 Receivers Active in Shutdown

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-232 Interface IC category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

062191EB CH438L LT1039CN LTC1327CNW LTC1327CSW MAX3386ECPWR TRS222IDWR MAX232INE4 MAX3232CPW
MAX204CWE+ TRS3243EIDWR TRS3232EIDWR SN65C3232EDWR ADM208ARZ-REEL LT1780CSW#PBF LT1237CSW#PBF
LT1281AISW#PBF LTC1337CSW#PBF LT1180ACN#PBF LT1237CNW#PBF LT1039CN#PBF LT1032CSW#PBF LT1130ACSW#PBF
LTC1349ISW#PBF LT1032ISW#PBF LTM2882IY-3#PBF LT1140ACN#PBF LTC1384IG#PBF LTC1383CS#PBF LT1280AIN#PBF
LT1080ISW#PBF LTC2845IG#PBF LTC1383CN#PBF LTC2845CG#PBF LTC2846CG#PBF LTC1384CG#PBF LT1781IS#PBF
LT1081IN#PBF LT1131ACNW LT1131ACSW SN75188DE4 LTC1350CNW MAX3209EEUU+T AD7306AR AD7306ARZ AD7306JNZ
AD7306JRZ ADM3311EARSZ-REEL ADM3202ARUZ-REEL7 ADM101EARMZ-REEL7