

3.3V Low Power EIA/TIA-562 Transceiver

FEATURES

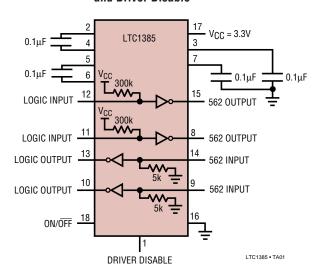
- Operates from a Single 3.3V Supply
- Low Supply Current: Icc = 200µA
- I_{CC} = 35µA in Driver Disable Mode
- Icc = 0.2µA in Shutdown Mode
- ESD Protection Over ±10kV
- Uses Small Capacitors: 0.1µF
- Operates to 120kBaud
- Output Overvoltage Does Not Force Current Back into Supplies
- EIA/TIA-562 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1180A

APPLICATIONS

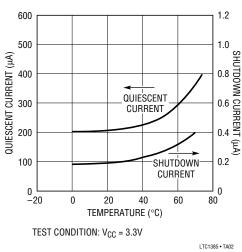
- Notebook Computers
- Palmtop Computers

DESCRIPTION

The LTC®1385 is an ultra-low power, 2-driver/2-receiver EIA/TIA-562 transceiver which operates from a single 3.3V supply. The charge pump requires only four space-saving 0.1µF capacitors.


The transceiver operates in one of three modes: Normal, Driver Disable or Shutdown. In the Normal mode, I_{CC} is only $200\mu\text{A}$ in the unloaded condition. In the Driver Disable mode, the charge pump is turned off, the driver outputs are forced into three-state, both receivers are kept active, and I_{CC} drops to $35\mu\text{A}$. In the Shutdown mode, everything is turned off and I_{CC} drops to $0.2\mu\text{A}$.

The LTC1385 is fully compliant with all data rate and overvoltage EIA/TIA-562 specifications. The transceiver can operate up to 120kbaud with a 1000pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage, and can survive multiple $\pm 10kV$ FSD strikes

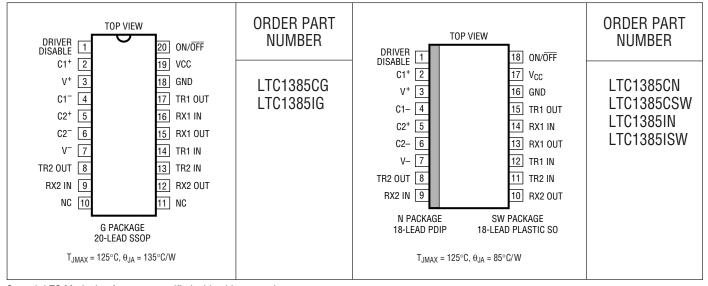

7, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

2-Drivers/2-Receivers with Shutdown and Driver Disable

Quiescent and Shutdown Supply Current vs Temperature

sn1385 1385fas



ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})	5V
Input Voltage	
Driver0.3V to V _{CC}	+ 0.3V
Receiver25V	to 25V
Digital Input0.3V to V _{CC}	+ 0.3V
Output Voltage	
Driver – 25V	to 25V
Receiver0.3V to V _{CC}	+ 0.3V

Short-Circuit Duration	
V ⁺	30 sec
V ⁻	30 sec
Driver Output	Indefinite
Receiver Output	Indefinite
Operating Temperature Range	
LTC1385C	0°C to 70°C
LTC1385I	40°C to 85°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 s	ec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC} = 3.3V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, $V_{ON/\overline{OFF}} = V_{CC}$, Driver Disable = V_{CC} , unless noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Any Driver						
Output Voltage Swing	3k to GND Positi		3.7 -3.7	4.5 -4.5		V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)	•	2.0	1.4 1.4	0.8	V
Logic Input Current	$V_{IN} = V_{CC}$ $V_{IN} = 0V$	•		-20	5 -40	μA μA
Output Short-Circuit Current	V _{OUT} = 0V			±10		mA
Output Leakage Current	Shutdown or Driver Disable or $V_{CC} = 0V$ (Note 3. $V_{OUT} = \pm 20V$	4),		±10	±500	μА

LINEAR

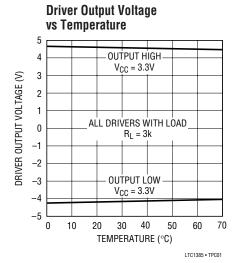
DC ELECTRICAL CHARACTERISTICS The ullet denotes specifications which apply over the full operating temperature range. $V_{CC}=3.3V$, $C1=C2=C3=C4=0.1\mu F$, $V_{ON/\overline{OFF}}=V_{CC}$, Driver Disable = V_{CC} , unless noted.

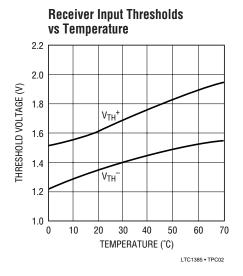
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Any Receiver	,					
Input Voltage Thresholds	Input Low Threshold	•	0.8	1.3		V
	Input High Threshold	•		1.7	2.4	V
Hysteresis		•	0.1	0.4	1.0	V
Input Resistance	$-10V \le V_{IN} \le 10V$		3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 3.3$ V)	•		0.2	0.4	V
	Output High, $I_{OUT} = 160\mu A (V_{CC} = 3.3V)$	•	3.0	3.2		V
Output Short-Circuit Current	Sinking Current, $V_{OUT} = V_{CC}$		-5	-20		mA
	Sourcing Current, V _{OUT} = 0V		2	7		mA
Output Leakage Current	Shutdown (Note 4), $0V \le V_{OUT} \le V_{CC}$	•		1	10	μΑ
Power Supply Generator						
V ⁺ Output Voltage	I _{OUT} = 0mA			5.7		V
	I _{OUT} = 5mA			5.5		V
V ⁻ Output Voltage	I _{OUT} = 0mA			-5.3		V
	$I_{OUT} = -5mA$			-5.0		V
Supply Rise Time	Shutdown or Driver Disable to Turn-On			0.2		ms
Power Supply						
V _{CC} Supply Current	No Load (Note 2), 0°C to 70°C	•		0.2	0.5	mA
	No Load (Note 2), -40°C to 85°C	•		3.5	1.0	mA
Supply Leakage Current (V _{CC})	Shutdown (Note 4)	•		0.2	10	μА
	Driver Disable (Note 3)	•		35	50	μΑ
Digital Input Threshold Low		•		1.4	0.8	V
Digital Input Threshold High		•	2.0	1.4		V

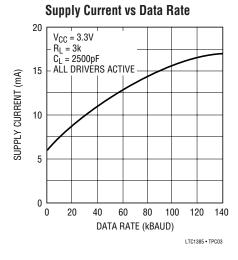
AC CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC}=3.3V,\,C1=C2=C3=C4=0.1\mu F,\,unless\,noted.$

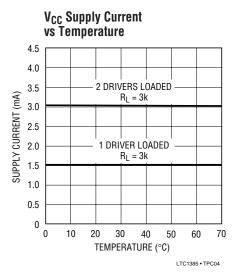
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$			8	30	V/µs
	$R_L = 3k, C_L = 1000pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to EIA/TIA-562)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(EIA/TIA-562 to TTL)	t _{LHR} (Figure 2)	•		0.2	0.8	μs

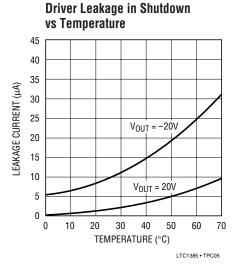
Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

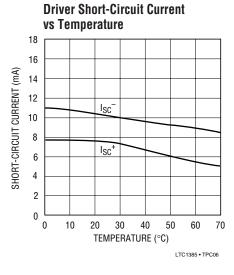

Note 2: Supply current is measured with driver and receiver outputs unloaded.

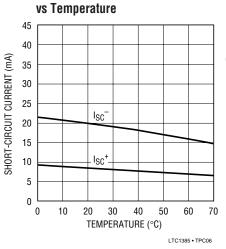

Note 3: Measurements made in the Driver Disable mode are performed with $V_{DRIVER\ DISABLE} = GND$ and $V_{ON/\overline{OFF}} = V_{CC}$.

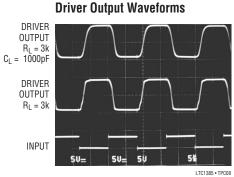

Note 4: Measurements made in the Shutdown mode are performed with $V_{ON/\overline{OFF}} = 0V$.

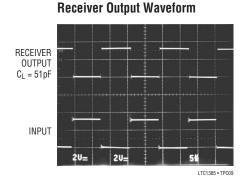



TYPICAL PERFORMANCE CHARACTERISTICS









Receiver Short-Circuit Current

sn1385 1385fas

PIN FUNCTIONS

 V_{CC} : 3.3V Input Supply Pin. This pin should be decoupled with a 0.1 μ F ceramic capacitor.

GND: Ground Pin.

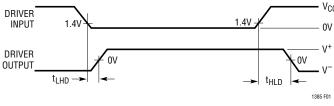
ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in the Shutdown mode independent of the Driver Disable pin. The supply current drops to 0.2µA and all driver and receiver outputs are forced into three-state.

DRIVER DISABLE: TTL/CMOS Compatible Input Pin. With the ON/OFF pin held high, a logic low forces the part into the Driver Disable mode with the charge pump turned off and the driver outputs forced into three-state. Both receivers remain active and the supply current drops to $35\mu A$. A logic high forces the part into the Normal mode.

V⁺: Positive Supply Output (EIA/TIA-562 Drivers). $V^+ \cong 2V_{CC} - 1V$. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage. The capacitor may be tied to ground or V_{CC} . With multiple devices, the V^+ and V^- pins may share a common capacitor. For a large number of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (EIA/TIA-562 Drivers). $V^- \cong -(2V_{CC}-1.3V)$. This pin requires an external capacitor $C=0.1\mu F$ for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu F$: one from C1+ to C1-, and another from C2+ to C2-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω .

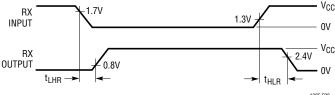

TR IN: EIA/TIA-562 Driver Input Pins. Inputs are TTL/CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to V_{CC} are included on chip. To minimize power consumption, the internal driver pull-up resistors are disconnected from V_{CC} in the Shutdown mode.

TR OUT: Driver Outputs at EIA/TIA-562 Voltage Levels. Outputs are in a high impedance state when in the Shutdown or Driver Disable mode or $V_{CC} = 0V$. The driver outputs are protected against ESD to $\pm 10 kV$ for human body model discharges.

RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Outputs are in a high impedance state when in the Shutdown mode.

SWITCHING TIME WAVEFORMS



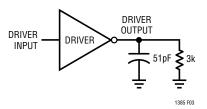
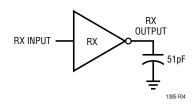
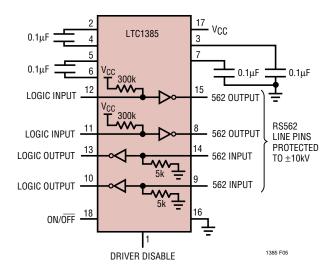

Figure 1. Driver Propagation Delay Timing

Figure 2. Receiver Propagation Delay Timing



TEST CIRCUITS


Driver Timing Test Load

Receiver Timing Test Load

ESD Test Circuit

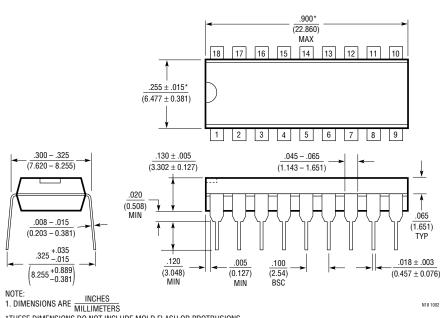
 $\frac{7.40 - 8.20}{(.291 - .323)}$

0.05 (.002)

6 7 8 9 10

PACKAGE DESCRIPTION

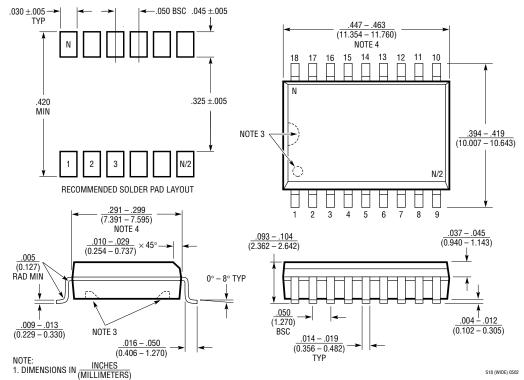
G Package 20-Lead Plastic SSOP (5.3mm)


(Reference LTC DWG # 05-08-1640)

- 2. DIMENSIONS ARE IN MILLIMETERS (INCHES)
- 3. DRAWING NOT TO SCALE
- *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .152mm (.006") PER SIDE **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE

N Package 18-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)


*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. LINEAR However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

PACKAGE DESCRIPTION

SW Package 18-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)

- 2. DRAWING NOT TO SCALE

- DHAWING NOT 10 SCALE
 PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
 THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
 THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1780/LT1781	5V, 2 Driver, 2 Receiver RS232 Transceivers	±15kV ESD per IEC 1000-4
LTC1327	3.3V, 3 Driver, 5 Receiver RS562 Transceiver	300μA Supply Current, 0.2μA in Shutdown
LTC1348	3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver	True RS232 on 3.3V, 5 Receivers Active in Shutdown
LTC1382	5V, 2 Driver, 2 Receiver RS232 Transceiver	200μA Supply Current, 0.2μA in Shutdown
LTC1383	5V, 2 Driver, 2 Receiver RS232 Transceiver	200μA Supply Current, Narrow 16-Pin SO
LTC1384	5V, 2 Driver, 2 Receiver RS232 Transceiver	200μA Supply Current, 2 Receivers Active in Shutdown
LTC1386	3.3V, 2 Driver, 2 Receiver RS562 Transceiver	200μA Supply Current, Narrow 16-Pin SO

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-232 Interface IC category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

062191EB CH438L LT1039CN LTC1327CNW LTC1327CSW MAX3386ECPWR TRS222IDWR MAX232INE4 MAX3232CPW
MAX204CWE+ TRS3243EIDWR TRS3232EIDWR SN65C3232EDWR ADM208ARZ-REEL LT1780CSW#PBF LT1237CSW#PBF
LT1281AISW#PBF LTC1337CSW#PBF LT1180ACN#PBF LT1237CNW#PBF LT1039CN#PBF LT1032CSW#PBF LT1130ACSW#PBF
LTC1349ISW#PBF LT1032ISW#PBF LTM2882IY-3#PBF LT1140ACN#PBF LTC1384IG#PBF LTC1383CS#PBF LT1280AIN#PBF
LT1080ISW#PBF LTC2845IG#PBF LTC1383CN#PBF LTC2845CG#PBF LTC2846CG#PBF LTC1384CG#PBF LT1781IS#PBF
LT1081IN#PBF LT1131ACNW LT1131ACSW SN75188DE4 LTC1350CNW MAX3209EEUU+T AD7306AR AD7306ARZ AD7306JNZ
AD7306JRZ ADM3311EARSZ-REEL ADM3202ARUZ-REEL7 ADM101EARMZ-REEL7