1A Synchronous Buck-Boos High Current LED Driver

feATURES

- High Efficiency: >90\% Typical in Torch Mode, $>80 \%$ in Flash Mode
- Wide V_{IN} Range: 2.7 V to 5.5 V
- Up to 1A Continuous Output Current
- 3.5\% LED Current Programming Accuracy
- Internal Soft-Start
- Open/Shorted LED Protection
- Constant Frequency 1MHz Operation
- Zero Shutdown Current
- Overtemperature Protection
- Small Thermally Enhanced 10 -Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) DFN Package

APPLICATIOOS

- Cell Phone Camera Flash
- Cell Phone Torch Lighting
- Digital Cameras
- PDAs
- Misc Li-Ion LED Drivers

DESCRIPTIOn

The LTC®3454 is a synchronous buck-boost DC/DC converter optimized for driving a single high power LED at currents up to 1 A from a single cell Li-lon battery input. The regulator operates in either synchronous buck, synchronous boost, or buck-boost mode depending on input voltage and LED forward voltage. $\mathrm{P}_{\text {Led }} / \mathrm{P}_{\text {IN }}$ efficiency greater than 90% can be achieved over the entire usable range of a Li-lon battery (2.7 V to 4.2 V).
LED current is programmable to one of four levels, including shutdown, with dual external resistors and dual enable inputs. In shutdown no supply current is drawn.

A high constant operating frequency of 1 MHz allows the use of small external components. The LTC3454 is offered in a low profile $(0.75 \mathrm{~mm})$ thermally enhanced 10 -lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ DFN package.
$\boldsymbol{\mathcal { O }}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

High Efficiency Torch/Flash LED Driver

absolute maximum ratings

(Note 1)

$\mathrm{V}_{\text {IN }}$, SW1, SW2, $\mathrm{V}_{\text {OUT }}$ Voltage \qquad -0.3 V to 6 V
V_{C}, EN1, EN2, $I_{\text {SET1 }}, I_{S E T 2}$ Voltage. .-0.3 V to $\left(\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$ or 6 V
LED Peak Current..1.25A
Storage Temperature Range................... $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature Range (Note 2).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature (Note 3) $125^{\circ} \mathrm{C}$

PIn COnfiGURATIOn

10-LEAD $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ PLASTIC DFN
$T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=40^{\circ} \mathrm{C} / \mathrm{W}$
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC3454EDD\#PBF	LTC3454EDD\#TRPBF	LBQX	$10-$ Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{R}_{\text {ISET }}=20.5 \mathrm{k}$ unless otherwise noted. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Supply Voltage ($\mathrm{V}_{\text {IN }}$)		\bullet	2.7		5.5	V
Input DC Supply Current Normal Operation Shutdown UVLO	$\begin{aligned} & \text { (Typicals at } \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{R}_{\text {ISET1 }}=\mathrm{R}_{\text {ISET2 }}=20.5 \mathrm{k} \text {) } \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V} \text { (Note 4) } \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\text {EN1 }}=\mathrm{V}_{\text {EN2 }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}<\text { UVLO Threshold, } \mathrm{V}_{\text {EN1 }}=\mathrm{V}_{\text {EN2 }}=\mathrm{V}_{\text {IN }} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 825 \\ 0 \\ 5 \end{gathered}$	$\begin{gathered} 1200 \\ 1 \\ 10 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Undervoltage Lockout Threshold	$V_{\text {IN }}$ Rising $V_{\text {IN }}$ Falling	\bullet	1.75	$\begin{aligned} & 2.05 \\ & 1.90 \end{aligned}$	2.3	V
$\mathrm{V}_{\text {EN1 }}, \mathrm{V}_{\text {EN2 }}$ DC Threshold for Normal Operation ($\mathrm{V}_{\text {IH }}$)		\bullet		0.68	1.2	V
$\mathrm{V}_{\text {EN1 } 1}, \mathrm{~V}_{\text {EN2 }}$ DC Threshold for Shutdown (VIL)		\bullet	0.2	0.66		V
$\mathrm{V}_{\text {EN1 }}, \mathrm{V}_{\text {EN2 }}$ Input Current		\bullet	-1		1	$\mu \mathrm{A}$
$I_{\text {SET1 }}$ and ISET2 Servo Voltage	$3.08 \mathrm{k} \leq \mathrm{R}_{\text {ISET1 }} \mid$ R $\mathrm{R}_{\text {ISET2 }} \leq 20.5 \mathrm{k}$	\bullet	$\begin{aligned} & \hline 780 \\ & 788 \end{aligned}$	$\begin{aligned} & \hline 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 812 \\ & 812 \end{aligned}$	mV mV
LED Output Current to Programming Current Ratio	$\mathrm{I}_{\text {LED }} /\left(\mathrm{I}_{\text {SET } 1}+\mathrm{I}_{\text {ISET2 }}\right), \mathrm{I}_{\text {LED }}=500 \mathrm{~mA}$ (Note 5)	\bullet	$\begin{aligned} & 3725 \\ & 3775 \end{aligned}$	$\begin{aligned} & 3850 \\ & 3850 \end{aligned}$	$\begin{aligned} & 3975 \\ & 3925 \end{aligned}$	$\mathrm{mA} / \mathrm{mA}$ $\mathrm{mA} / \mathrm{mA}$
LED Pin Voltage	$\mathrm{L}_{\text {LED }}=1 \mathrm{~A}$			105		mV
Regulated Maximum V ${ }_{\text {OUT }}$	LED Pin Open, Programmed $\mathrm{I}_{\text {LED }}=1 \mathrm{~A}$	\bullet	4.95	5.15	5.35	V
PMOS Switch R ${ }_{\text {ON }}$	Switches A and D ($\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$)			170		$\mathrm{m} \Omega$
NMOS Switch R ${ }_{\text {ON }}$	Switches B and C			130		$\mathrm{m} \Omega$
Forward Current Limit	Switch A		2.5	3.4		A
Reverse Current Limit	Switch D (VOUT $=3.6 \mathrm{~V}$)			275		mA
PMOS Switch Leakage	Switches A, D		-1		1	$\mu \mathrm{A}$
NMOS Switch Leakage	Switches B, C		-1		1	$\mu \mathrm{A}$
						3454 fa

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{R}_{\text {ISET }}=20.5 \mathrm{k}$ unless otherwise noted. (Note 2)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Oscillator Frequency | | 0.9 | 1.0 | 1.15 | MHz |
| Soft-Start Time | | | 200 | | $\mu \mathrm{~S}$ |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC3454 is guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: T_{j} is calculated from the ambient temperature T_{A} and power dissipation PD according to the following formula:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{PD} \cdot \theta_{\mathrm{JA}}{ }^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

Note 4: Dynamic supply current is higher due to the gate charge being delivered at the switching frequency.
Note 5: This parameter is tested using a feedback loop which servos V_{C} to 1.8 V .

TYPICAL PERFORMANCE CHARACTERISTICS

LTC3454

TYPICAL PERFORMANCE CHARACTERISTICS

3454 G07

3454 G 10

LED Current Programming Ratio
vs V_{IN}

3454 G08
Maximum Regulated $\mathrm{V}_{\text {OUt }}$ vs Temperature

3454 G11
$\mathrm{V}_{\text {LED }}$ vs Temperature

3454 G09
Maximum Regulated $V_{\text {OUT }}$ vs $V_{I N}$

Maximum Regulated $V_{\text {OUT }}$

 vs Programmed LED Current

PMOS $\mathrm{R}_{\mathrm{DS}(\text { ON })}$ vs Temperature

NMOS $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

Oscillator Frequency vs Temperature

3454 G16

> Output Voltage Ripple Back Page Application

LED Power Efficiency vs LED Current

Start-Up Transient
Back Page Application

PIn functions

EN1 (Pin 1): Enable Input Pin for $I_{\text {SET1 }}$ Current.
EN2 (Pin 2): Enable Input Pin for ISET2 Current.
ISET1 (Pin 3): LED Current Programming Pin. A resistor to ground programs the current through the LED to ILED $=3850\left(0.8 \mathrm{~V} / \mathrm{R}_{\text {ISET1 }}\right)$. This amount of current adds to any amount set by EN2/ISET2 if used.
$I_{\text {SET2 }}$ (Pin 4): LED Current Programming Pin. A resistor to ground programs the current through the LED to ILED $=3850\left(0.8 \mathrm{~V} / \mathrm{R}_{\text {ISET2 }}\right)$. This amount of current adds to any amount set by EN1/ISET1 if used.
LED (Pin 5): Low Dropout Output for LED Current Biasing. Connect the LED between $\mathrm{V}_{\text {OUT }}$ and the LED pin.
SW2 (Pin 6): Switching Node. External inductor connects between SW1 and SW2. Recommended value is $4.7 \mu \mathrm{H} / 5 \mu \mathrm{H}$.
$\mathrm{V}_{\text {OUt }}$ (Pin7): Buck-Boost Output Rail. Bypass to GND with a ceramic capacitor. Recommended value is $10 \mu \mathrm{~F}$.
V_{C} (Pin 8): Compensation Point for the Internal Error Amplifier Output. Connect a ceramic capacitor from V_{C} to GND. Recommended value is $0.1 \mu \mathrm{~F}$.
$\mathrm{V}_{\text {IN }}$ (Pin 9): Voltage Input Supply Pin ($2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$). Bypass to GND with a ceramic capacitor. Recommended value is $10 \mu \mathrm{~F}$.
SW1 (Pin 10): Switching Node. External inductor connects between SW1 and SW2. Recommended value is $4.7 \mu \mathrm{H} / 5 \mu \mathrm{H}$.
Exposed Pad (Pin 11): Ground Pin. Solder to PCB ground for electrical contact and optimal thermal performance.

LTC3454

BLOCK DIAGRAM

OPERATION

Buck-Boost DC/DC Converter

The LTC3454 employs an LTC proprietary buck-boost DC/DC converter to generate the output voltage required to drive a high current LED. This architecture permits highefficiency, low noise operation at input voltages above, below or equal to the output voltage by properly phasing four internal power switches. The error amp output voltage on the V_{C} pin determines the duty cycle of the switches. Since the V_{C} pin is a filtered signal, it provides rejection of frequencies well below the factory trimmed switching frequency of 1 MHz . The low $R_{D S(0 N)}$, low gate charge synchronous switches provide high frequency pulse width modulation control at high efficiency. Schottky diodes across synchronous rectifier switch B and synchronous rectifier switch D are not required, but if used do provide a lower voltage drop during the break-before-make time (typically 20ns), which improves peak efficiency by typically 1% to 2% at higher loads.
Figure 1 shows a simplified diagram of how the four internal power switches are connected to the inductor, $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ and GND. Figure 2 shows the regions of operation of the buck-boost as a function of the control voltage V_{C}. The output switches are properly phased so transitions between regions of operation are continuous, filtered and transparent to the user. When $\mathrm{V}_{\text {IN }}$ approaches $\mathrm{V}_{\text {OUT }}$, the buck-boost region is reached where the conduction time of the four switch region is typically 150 ns. Referring to Figures 1 and 2, the various regions of operation encountered as V_{C} increases will now be described.

Buck Mode ($\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUT }}$)

In buck mode, switch D is always on and switch C is always off. Referring to Figure 2, when the control voltage V_{C} is above voltage V 1 , switch A begins to turn on

Figure 1. Simplified Diagram of Internal Power Switches
each cycle. During the off time of switch A, synchronous rectifier switch B turns on for the remainder of the cycle. Switches A and B will alternate conducting similar to a typical synchronous buck regulator. As the control voltage increases, the duty cycle of switch A increases until the maximum duty cycle of the converter in buck mode reaches $\mathrm{DC}_{\text {BUCK }} \mid$ Max given by:

$$
D C_{\text {Buck }} \mid \operatorname{Max}=100 \%-\mathrm{DC}_{4 S W}
$$

where $\mathrm{DC}_{4 \mathrm{SW}}$ equals the duty cycle in \% of the "four switch" range.

$$
D C_{4 S W}=(150 \mathrm{~ns} \cdot f) \cdot 100 \%
$$

where f is the operating frequency in Hz .
Beyond this point the "four switch" or buck-boost region is reached.

Buck-Boost or 4-Switch Mode ($\mathrm{V}_{\text {IN }} \sim \mathrm{V}_{\text {OUT }}$)

Referring to Figure 2, when the control voltage V_{C} is above voltage V2, switch pair AD continue to operate for duty cycle $\mathrm{DC}_{\text {BUCK }} \mid \max$, and the switch pair AC begins to phase in. As switch pair AC phases in, switch pair BD phases out accordingly. When the V_{C} voltage reaches the edge of the buck-boost range at voltage V 3 , switch pair AC completely phases out switch pair BD and the boost region begins at duty cycle $\mathrm{DC}_{4 S W}$. The input voltage V_{IN} where the four switch region begins is given by:

$$
V_{\text {IN }}=V_{\text {OUT }} /[1-(150 \mathrm{~ns} \bullet f)]
$$

and the input voltage $\mathrm{V}_{\text {IN }}$ where the four switch region ends is given by
$V_{\text {IN }}=V_{\text {OUT }} \cdot\left(1-D C_{\text {ASW }}\right)=V_{\text {OUT }} \bullet[1-(150 \mathrm{~ns} \bullet f)]$

Figure 2. Switch Control vs Control Voltage, V_{C}

APPLICATIONS INFORMATION

Boost Mode ($\mathrm{V}_{\text {IN }}$ < $\mathrm{V}_{\text {OUT }}$)

In boost mode, switchA is always on and switch B is always off. Referring to Figure 2, when the control voltage V_{C} is above voltage V 3 , switches C and D will alternate conducting similar to a typical synchronous boost regulator. The maximum duty cycle of the converter is limited to 88% typical and is reached when V_{C} is above V 4 .

Forward Current Limit

If the current delivered from $\mathrm{V}_{\text {IN }}$ through PMOS switch A exceeds 3.4 A (typical), switch A is shut off immediately. Switches B and D are turned on for the remainder of the cycle in order to safely discharge the forward inductor current at the maximum rate possible.

Reverse Current Limit

If the current delivered from $\mathrm{V}_{\text {OUT }}$ backwards through PMOS switch D exceeds 275 mA (typical), switch D is shut off immediately. Switches A and C are turned on for the remainder of the cycle in order to safely discharge the reverse inductor current at the maximum rate possible.

Undervoltage Lockout

To prevent operation of the power switches at high $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, an undervoltage lockout is incorporated on the LTC3454. When the input supply voltage drops below approximately 1.90 V , the four power switches and all control circuitry are turned off except for the undervoltage block, which draws a few microamperes.

Overtemperature Protection

If the junction temperature of the LTC3454 exceeds $130^{\circ} \mathrm{C}$ for any reason, all four switches are shut off immediately. The overtemperature protection circuit has a typical hysteresis of $11^{\circ} \mathrm{C}$.

Soft-Start

The LTC3454 includes an internally fixed soft-start which is active when powering up or coming out of shutdown. The soft-start works by clamping the voltage on the V_{C} node and gradually releasing it such that it requires 200 $\mu \mathrm{s}$ to linearly slew from 0.9 V to 2.1 V . This has the effect of
limiting the rate of duty cycle change as V_{C} transitions from the buck region through the buck-boost region into the boost region. Once the soft-start times out, it can only be reset by entering shutdown, or by an undervoltage or overtemperature condition.

Autozero Error Amp

The error amplifier is an autozeroing transconductance amp with source and sink capability. The output of this amplifier drives a capacitor to GND at the V_{C} pin. This capacitor sets the dominant pole for the regulation loop. (See the Applications Information section for selecting the capacitor value). The feedback signal to the error amp is developed across a resistor through which LED current flows.

Safety Error Amp

The safety error amplifier is a transconductance amplifier with sink only capability. In normal operation, it has no effect on the loop regulation. However, if the LED pin opencircuits, the output voltage will keep rising, and the safety error amp will eventually take over control of the regulation loop to prevent $\mathrm{V}_{\text {OUT }}$ runaway. The $\mathrm{V}_{\text {OUT }}$ threshold at which this occurs is approximately 5.15 V .

LED Current Programming and Enable Circuit

Two enable pins work in conjunction with dual external resistors to program LED current to one of three nonzero settings. The table below explains how the current can be set.

EN1	EN2	$l_{\text {LOAD }}(A)$
GND	GND	$0(S H U T D O W N)$
$V_{\text {IN }}$	$G N D$	$3850 \cdot 0.8 \mathrm{~V} / R_{\text {ISET1 }}$
$G N D$	$V_{I N}$	$3850 \cdot 0.8 \mathrm{~V} / \mathrm{R}_{\text {ISET2 }}$
$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	$3850 \cdot\left(0.8 \mathrm{~V} / \mathrm{R}_{\text {ISET1 }}+0.8 \mathrm{~V} / \mathrm{R}_{\text {ISET2 }}\right)$

With either enable pin pulled high, the buck-boost will regulate the output voltage at the current programmed by RISET1 and/or RISET2.
With both enable pins pulled to GND, the LTC3454 is in shutdown and draws zero current. The enable pins are high impedance inputs and should not be floated.

APPLICATIONS INFORMATION

COMPONENT SELECTION

Inductor Selection

The high frequency operation of the LTC3454 allows the use of small surface mount inductors. The inductor current ripple is typically set to 20% to 40% of the maximum average inductor current. For a given ripple the inductance term in boost mode is:

$$
\mathrm{L}>\frac{\mathrm{V}_{\text {IN(MIN })}{ }^{2} \cdot\left(\mathrm{~V}_{\text {OUT }}-\mathrm{V}_{\text {IN(MIN })}\right) \cdot 100 \%}{\mathrm{f}_{\boldsymbol{\mathrm { I }}}^{\text {OUT(MAX })}} \cdot \% \text { Ripple } \cdot \mathrm{V}_{\text {OUT }}{ }^{2}
$$

and in buck mode is:

$$
\text { L }>\frac{\left(V_{\text {IN(MAX })}-V_{\text {OUT }}\right) \cdot V_{\text {OUT }} \bullet 100 \%}{f \cdot V_{\text {IN(MAX })} \cdot \% \text { Ripple } \bullet \boldsymbol{l}_{\text {OUT }}}
$$

where $\mathrm{f}=$ operating frequency, Hz
\%Ripple = allowable inductor current ripple, \%
$\mathrm{V}_{\operatorname{IN}(\text { MIN })}=$ minimum input voltage, V
$\mathrm{V}_{\operatorname{IN}(\operatorname{MAX})}=$ maximum input voltage, V
$\mathrm{V}_{\text {OUT }}=$ output voltage, V
$I_{\text {OUT(MAX) }}=$ maximum output load current
For high efficiency, choose an inductor with a high frequency core material, such as ferrite, to reduce core loses. The inductor should have low ESR (equivalent series resistance) to reduce the $I^{2} R$ losses, and must be able to handle the peak inductor current without saturating. Molded chokes or chip inductors usually do not have enough core to support peak inductor currents $>1 \mathrm{~A}$. To minimize radiated noise, use a toroid, pot core or shielded bobbin inductor. For white LED application, a $4.7 \mu \mathrm{H} / 5 \mu \mathrm{H}$ inductor value is recommended. See Table 1 for a list of component suppliers.
Table 1. Inductor Vendor Information

SUPPLIER	WEB SITE
Coilcraft	www.coilcraft.com
Cooper/Coiltronics	www.cooperet.com
Murata	www.murata.com
Sumida	www.japanlink.com/sumida
Toko	www.toko.com
Vishay-Dale	www.vishay.com

Input Capacitor Selection

Since the $\mathrm{V}_{\text {IN }}$ pin is the supply voltage for the IC it is recommended to place at leasta $2.2 \mu \mathrm{~F}$, low ESR bypass capacitor to ground. See Table 2 for a list of component suppliers.

Table 2. Capacitor Vendor Information

SUPPLIER	WEB SITE
AVX	www.avxcorp.com
Sanyo	www.sanyovideo.com
Taiyo Yuden	www.t-yuden.com
TDK	www.component.tdk.com

Output Capacitor Selection

The bulk value of the capacitor is set to reduce the ripple due to charge into the capacitor each cycle. The steadystate ripple due to charge is given by:
$\%$ Ripple_Boost $=\frac{I_{\text {OUT(MAX })} \cdot\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN(MIIN })}\right) \cdot 100 \%}{\mathrm{C}_{\text {OUT }} \cdot \mathrm{V}_{\text {OUT }} \cdot{ }^{2} \mathrm{f}}$
$\%$ Ripple_Buck $=\frac{\left(V_{\text {IN(MAX })}-V_{\text {OUT }}\right) \cdot 100 \%}{8 \cdot V_{\text {IN(MAX })} \bullet f^{2} \cdot L \cdot C_{\text {OUT }}}$
where $\mathrm{C}_{\text {OUt }}=$ output filter capacitor, F
The output capacitance is usually many times larger in order to handle the transient response of the converter. For a rule of thumb, the ratio of operating frequency to unitygain bandwidth of the converter is the amount the output capacitance will have to increase from the above calculations in order to maintain desired transient response.

The other component of ripple is due to ESR (equivalent series resistance) of the output capacitor. Low ESR capacitors should be used to minimize output voltage ripple. For surface mount applications, Taiyo Yuden, TDK, AVX ceramic capacitors, AVX TPS series tantalum capacitors or Sanyo POSCAP are recommended. For the white LED application, a $10 \mu \mathrm{~F}$ capacitor value is recommended. See Table 2 for a list of component suppliers.

Optional Schottky Diodes

Schottky diodes across the synchronous switches B and D are not required, but provide a lower drop during the break-before-make time (typically 20ns) of the NMOS to PMOS transition, improving efficiency. Use a Schottky

TYPICAL APPLICATIONS

diode such as an MBRM120T3 or equivalent. Do not use ordinary rectifier diodes, since the slow recovery times will compromise efficiency.

In applications in which $\mathrm{V}_{\text {IN }}$ is greater than 4 V and $\mathrm{V}_{\text {OUT }}$ to GND short-circuit protection is needed, a Schottky diode such as MBRM120T3 or equivalent may be used from GND to SW1 and/or a $2 \Omega / 1 \mathrm{nF}$ series snubber from SW1 to GND. The Schottky diode should be added as close to the pins as possible. Neither of these is required for shorted LED protection.
In applications in which $\mathrm{V}_{\text {IN }}$ is greater than 4.5 V , a Schottky diode such as MBRM120T3 or equivalent may be required from SW1 to $\mathrm{V}_{\text {IN }}$ if the LTC3454 is enabled with an output voltage already present. The Schottky diode should be added as close to the pins as possible.

Closing the Feedback Loop

The LTC3454 incorporates voltage mode PWM control. The control to output gain varies with operation region (buck, boost, buck/boost), but is usually no greater than 15. The output filter exhibits a double pole response given by:

$$
\mathrm{f}_{\text {FLLTER_POLE }}=\frac{1}{2 \cdot \pi \cdot \sqrt{\text { L•C } C_{O U T}}} \mathrm{~Hz}
$$

where $\mathrm{C}_{\text {OUT }}$ is the output filter capacitor.
The output filter zero is given by:

$$
\mathrm{f}_{\text {FILTER_ZERO }}=\frac{1}{2 \bullet \pi \bullet \mathrm{R}_{\text {ESR }} \bullet \mathrm{C}_{O U T}} \mathrm{~Hz}
$$

where $R_{E S R}$ is the capacitor equivalent series resistance.
A troublesome feature in boost mode is the right-half plane zero (RHP), and is given by:

$$
\mathrm{f}_{\mathrm{RHPZ}}=\frac{\mathrm{V}_{\text {IN }}{ }^{2}}{2 \bullet \pi \bullet \mathrm{I}_{\mathrm{OUT}} \bullet L \bullet \mathrm{~V}_{\mathrm{OUT}}} \mathrm{~Hz}
$$

The loop gain is typically rolled off before the RHP zero frequency.

A simple Type I compensation network can be incorporated to stabilize the loop but at a cost of reduced bandwidth
and slower transient response. To ensure proper phase margin, the loop is required to be crossed over a decade before the LC double pole.

The unity-gain frequency of the error amplifier with the Type I compensation is given by:

$$
f_{U G}=\frac{g_{m}}{2 \cdot \pi \cdot C_{V C}}
$$

where g_{m} is the error amp transconductance (typically $1 / 5.2 \mathrm{k}$) and C_{VC} is the external capacitor to GND at the V_{C} pin. For the white LED application, a $0.1 \mu \mathrm{~F}$ or greater capacitor value is recommended.

Maximum LED Current

As described in the Operation section, the output LED current with both enable pins logic high is equal to

$$
I_{\text {LED }}=3850\left[0.8 \mathrm{~V} /\left(\mathrm{R}_{\text {ISET1 }}| | \mathrm{R}_{\text {ISET2 }}\right)\right]
$$

Since the maximum continuous output current is limited to 1 A, this sets a minimum limit on the parallel combination of $\mathrm{R}_{\text {ISET1 }}$ and $\mathrm{R}_{\text {ISET2 }}$ equal to

$$
\begin{aligned}
R_{\text {MIN }} & =\left.\left(R_{\text {ISET1 }}| | R_{\text {ISET2 }}\right)\right|_{\text {MIN }}=3850(0.8 \mathrm{~V} / 1 \mathrm{~A}) \\
& =3080 \Omega
\end{aligned}
$$

Although the LTC3454 can safely provide this current continuously, the external LED may not be rated for this high a level of continuous current. Higher current levels are generally reserved for pulsed applications, such as LED camera flash. This is accomplished by programming a high current with one of the $R_{\text {ISET }}$ resistors and pulsing the appropriate enable pin.

Varying LED Brightness

Continuously variable LED brightness control can be achieved by interfacing directly to one or both of the I ${ }_{\text {SET }}$ pins. Figure 3 shows four such methods employing a voltage DAC, a current DAC, a simple potentiometer or a PWM input. It is not recommended to control brightness by PWMing the enable pins directly as this will toggle the LTC3454 in and out of shutdown and result in erratic operation.

APPLICATIONS INFORMATION

LED Failure Modes

If the LED fails as an open circuit, the safety amplifier takes control of the regulation loop to prevent $\mathrm{V}_{\text {OUT }}$ runaway. The $V_{\text {Out }}$ threshold at which this occurs is about 5.15 V . The safety amplifier has no effect on loop regulation at $V_{\text {OUT }}$ less than 5.15 V .

(3c)

If the LED fails as a short-circuit, the current limiting circuitry detects this condition and limits the peak input current to a safe level.

(3b)

(3d)
354 FO

Figure 3. Brightness Control Methods: (a) Using Voltage DAC, (b) Using Current DAC, (c) Using Potentiometer, (d) Using PWM Input

PACKAGE DESCRIPTION

DD Package
10-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1699)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

LTC3454

TYPICAL APPLICATION

500mA LED Flashlight Driver

RELATED PARTS

PART NUMBER	DESCRIPTION	COMIMENTS
LT1618	Constant Current, Constant Voltage 1.4MHz, High Efficiency Boost Regulator	$\mathrm{V}_{\text {IN }}: 1.6 \mathrm{~V} \text { to } 18 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ MS10 Package/EDD Package
LT1930/LT1930A	1A (Isw), 1.2MHz/2.2MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN: }} 2.6 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=4.2 \mathrm{~mA} / 5.5 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, ThinSOT Package
LT1932	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	$\mathrm{V}_{\text {IN: }} \text { IV to } 10 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ ThinSOT Package
LT1937	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	$\mathrm{V}_{\text {IN: }}: 2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT Package/SC70 Package
LTC3205	High Efficiency, Multi-Display LED Controller	$\mathrm{V}_{\mathrm{IN}}: 2.8 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, QFN-24 Package
LTC3215	700mA Low Noise Charge Pump LED Driver	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 2.9 \mathrm{~V} \text { to } 4.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=300 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<2.5 \mu \mathrm{~A}, \\ & \text { DFN Package } \end{aligned}$
LTC3216	1A Low Noise High Current Charge Pump LED Driver with Independent Flash/Torch Current	$\mathrm{V}_{\text {IN: }}: 2.9 \mathrm{~V} \text { to } 4.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=300 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<2.5 \mu \mathrm{~A},$ DFN Package
$\begin{aligned} & \hline \text { LTC3440/ } \\ & \text { LTC3441 } \end{aligned}$	$600 \mathrm{~mA} / 1.2 \mathrm{~A} \mathrm{I}_{\text {Out }}$, 2MHz/1MHz, Synchronous Buck-Boost DC/DC Converter	$\mathrm{V}_{\text {IN: }}: 2.4 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=25 \mu \mathrm{~A} / 50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ MS-10 Package/DFN Package
LTC3443	$600 \mathrm{~mA} / 1.2 \mathrm{~A}$ I Out, 600 kHz , Synchronous Buck-Boost DC/DC Converter	$\mathrm{V}_{\text {IN: }}: 2.4 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=28 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ DFN Package
LTC3490	Single Cell 350mA LED Driver	$\mathrm{V}_{\mathrm{IN}:}: 1 \mathrm{~V} \text { to } 3.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=20 \mu \mathrm{~A},$ DFN Package
LTC3453	Synchronous Buck-Boost High Power White LED Driver	V_{IN} : 2.7 V to 5.5 V , Up to 500 mA Continuous Output Current, QFN-16 Package
LT3465/LT3465A	Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED Boost Regulator with Integrated Schottky Diode	$\mathrm{V}_{\text {IN }}: 2.7 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ ThinSOT Package
LT3466	Dual Constant Current, 2MHz, High Efficiency White LED Boost Regulator with Integrated Schottky Diode	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 2.7 \mathrm{~V} \text { to } 24 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<16 \mu \mathrm{~A}, \\ & \text { DFN Package } \end{aligned}$
LT3479	3A, Full Featured DC/DC Converter with Soft-Start and Inrush Current Protection	$\mathrm{V}_{\text {IN: }}: 2.5 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=6.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, DFN Package/TSOPP Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ KTD2027EWE-TR AS3688 IS31LT3172-GRLS4TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P MPQ4425AGQB-AEC1-Z

