LTC4316

Single $1^{2} \mathrm{C} / \mathrm{SMBus}$ Address Translator

feATURES

- Allows Multiple Slaves with the Same Address to Coexist on the Same Bus
- Resistor Configurable Address Translation
- No Software Programming Required
- Compatible with SMBus, $I^{2} \mathrm{C}$ and $I^{2} \mathrm{C}$ Fast Mode
- Pass-Through Mode Allows General Call Addressing
- $\pm 4 \mathrm{kV}$ HBM ESD Ruggedness
- Level Translation for 2.5V, 3.3V and 5V Buses
- Stuck Bus Timeout
- Prevents SDA and SCL Corruption During Live Board Insertion and Removal
- Support Bus Hot Swap
- 10-Lead MSOP and DFN $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Packages

APPLICATIONS

- $I^{2} \mathrm{C}$, SMBus Address Expansion
- Address Translation
- Servers
- Telecom

DESCRIPTIOn

The LTC ${ }^{\circledR} 4316$ enables the hardwired address of one or more $I^{2} \mathrm{C}$ or SMBus slave devices to be translated to a different address. This allows slaves with the same hardwired address to coexist on the same bus. Only discrete resistors are needed to select the new address and no software programming is required. Up to 127 different address translations are available.

The LTC4316 incorporates a pass-through mode which disables the address translation and allows general call addressing by the master. The LTC4316 is designed to automatically recover from abnormal bus conditions like bus stuck low or premature STOP bits.

PART NUMBER	NUMBER OF INPUT CHANNELS	NUMBER OF OUTPUT CHANNELS
LTC4316	1	1
LTC4317	1	2
LTC4318	2	2
$\boldsymbol{\Omega T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear		

©T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents, including 6356140, 6650174, 7032051, 7478286. Patent pending.

TYPICAL APPLICATION

ABSOLUTE MAXIMUUM RATINGS (Notes 1,2)

Input Supply Voltage VCC -0.3 V to 6 V
Input Voltages
ENABLE... 0.3 V to to 6 V
CO +0.3 V
XORL, XORH
Output Voltage
READY.. -0.3 V to 6 V
Output Currents
READY, SDAOUT .. 50 mA

Input/Output Voltages
SCLIN, SCLOUT, SDAIN, SDAOUT................ -0.3 V to 6V
Operating Temperature Range LTC4316C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC4316I ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

PIn COnfiGURATIOn

DD PACKAGE
10-LEAD ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN
$\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=43^{\circ} \mathrm{C} / \mathrm{W}$ EXPOSED PAD (PIN 11) IS GND, PCB CONNECTION OPTIONAL

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC4316CDD\#PBF	LTC4316CDD\#TRPBF	LGSW	10 -Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC4316IDD\#PBF	LTC4316IDD\#TRPBF	LGSW	10 -Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC4316CMS\#PBF	LTC4316CMS\#TRPBF	LTGSV	10 -Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC4316IMS\#PBF	LTC4316IMS\#TRPBF	LTGSV	10 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some Packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.

ELECTRICAL CHARACTERISTICS The \bullet denotes the speciifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Supply							
$\mathrm{V}_{\text {CC }}$	Input Supply Range		\bullet	2.25		5.5	V
$I_{C C}$	Input Supply Current	ENABLE $=3.3 \mathrm{~V}, \mathrm{SCLIN}=$ SDAIN $=0 \mathrm{~V}$	\bullet		0.6	2	mA
		ENABLE $=0 \mathrm{~V}, \mathrm{SCLIN}=$ SDAIN $=0 \mathrm{~V}$	\bullet		350	800	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC(UVLO) }}$	$V_{\text {CC }}$ Supply Undervoltage Lockout	$V_{\text {CC }}$ Rising	\bullet	1.9	2.1	2.2	V
$\mathrm{V}_{\text {CC(HYST) }}$	VCC Supply Undervoltage Lockout Hysteresis				100		mV

ENABLE and READY

$V_{\text {ENABLE(TH) }}$	ENABLE Threshold Voltage	ENABLE Rising	\bullet	1	1.4
$V_{\text {ENABLE(HYST) }}$	ENABLE Hysteresis		1.8	V	
$I_{\text {ENABLE(LEAK) }}$	ENABLE Input Current		\bullet	50	mV
$V_{\text {READY(OL) }}$	READY Output Low Voltage	$\mathrm{I}=3 \mathrm{~mA}$	\bullet	± 1	$\mu \mathrm{~A}$
$I_{\text {READY }(0 H)}$	READY Off Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {READY }}=5.5 \mathrm{~V}$	\bullet	0.4	V

SCLIN, SDAIN, SCLOUT, SDAOUT

$\mathrm{V}_{\text {SCL,SDA(TH) }}$	Threshold Voltage	SDA, SCL Pins Rising	\bullet	1.5	1.8	2.0	V
$\mathrm{V}_{\text {SCL,SDA(HYST) }}$	Hysteresis				50		mV
ISCL,SDA(LEAK)	Leakage Current	SDA, SCL Pins $=5.5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.5 \mathrm{~V}, 0 \mathrm{~V}$	\bullet			± 10	$\mu \mathrm{A}$
ISCL,SDA(LEAK-INOUT)	Input to Output Leakage Current	SDAIN, SCLIN Pins $=5.5 \mathrm{~V}, \mathrm{~V}_{C C}=5.5 \mathrm{~V}$, SDAOUT, SCLOUT Pins $=4.5 \mathrm{~V}$	\bullet			± 10	$\mu \mathrm{A}$
CSCL,SDA	Pin Capacitance	Note 3	\bullet			10	pF
$\mathrm{V}_{\text {SCL, SDA (PRE) }}$	Precharge Voltage		\bullet	0.8	1	1.2	V
$\mathrm{V}_{\text {SDAOUT(OL) }}$	SDAOUT Output Low Voltage	$\mathrm{I}=4 \mathrm{~mA}$	\bullet			0.4	V
$\mathrm{R}_{\mathrm{DS} \text { (0N) }}$	Pass Switch On Resistance	$\begin{aligned} & V_{C C}=2.25 \mathrm{~V}, \text { SCLIN }=\text { SDAIN }=0.4 \mathrm{~V} \\ & \mathrm{~V}_{C C}=3.3 \mathrm{~V}, \text { SCLIN }=\text { SDAIN }=0.4 \mathrm{~V} \\ & \mathrm{~V}_{C C}=5 \mathrm{~V}, \text { SCLIN }=\text { SDAIN }=0.4 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		3 2.2 1.8	$\begin{gathered} \hline 12 \\ 8 \\ 6 \end{gathered}$	Ω Ω Ω

XORH, XORL

XORH/XORL	XORH and XORL Input Current		\bullet	± 100	nA

1^{2} C Interface Timing

$\mathrm{f}_{\text {SCL (MAX) }}$	Maximum SCLIN Clock Frequency	Note 3	\bullet	400			$\frac{\mathrm{kHz}}{\mathrm{~ns}}$
tpdHL(SDAOUT)	SDAOUT Fall Delay	$\mathrm{C}=100 \mathrm{pF}, \mathrm{R}_{\text {PULLU }}=10 \mathrm{k}$	\bullet		170	300	
$\mathrm{t}_{\text {f(SDAOUT) }}$	SDAOUT Fall Time	$C=100 \mathrm{pF}, \mathrm{R}$ PULLUP $=10 \mathrm{k}$	\bullet	20	60	300	ns
$\mathrm{t}_{\text {TIMEOUT }}$	Stuck Bus Timeout	SCLIN Held Low or High	\bullet	25	30	35	ms
$\mathrm{t}_{\text {IDLE }}$	Bus Idle Time		\bullet	80	120	160	$\mu \mathrm{S}$
$\mathrm{t}_{\text {GLITCH }}$	SCLIN and SDAIN Glitch Filter		\bullet	50	100		ns

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All currents into pins are positive and all voltages are referenced to GND unless otherwise indicated.
Note 3: Guaranteed by design and not tested.

TYPICAL PERFORMANCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{Cc}}=3.3 \mathrm{~V}$ unless otherwise noted.

Pass Switch On Resistance vs Temperature

Standby Supply Current vs

Temperature

READY Output Low Voltage vs Current

Pass Switch On Resistance vs $V_{\text {cc }}$

SDAOUT Fall Delay vs Temperature

TYPICAL PGRFORMAOC CHARACTGRISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{cc}}=3.3 \mathrm{~V}$ unless otherwise noted.

PIn fUnCTIOnS

XORL: Translator XOR Lower Nibble Configuration Input. The DC voltage at this pin configures the lower 4-bit nibble of the address translation byte. Tie the pin to an external resistive divider connected between $V_{C C}$ and GND to set the desired DC voltage.
XORH: Translator XOR Upper Nibble Configuration Input. The DC voltage at this pin configures the upper 3-bit nibble of the address translation byte. Tie the pin to an external resistive divider connected between VCc and GND to set the desired DC voltage. Connect this pin to $V_{C C}$ to activate pass-through mode. See Application Information section for more details.

ENABLE: Enable Input. If ENABLE pin is low, the address translation is disabled, SDAIN is disconnected from SDAOUT, and SCLIN is disconnected from SCLOUT. A low to high transition on ENABLE restarts the configuration of the address translation byte and also enables the address translation. Connect to $V_{\text {CC }}$ if unused.

Exposed Pad (DFN Package Only): Exposed pad may be left open or connected to device GND.
GND: Device Ground.
READY: Ready Status Output. This is an open drain output to indicate that the device is ready for address translation.

The pin releases high when the LTC4316 has completed configuration of the address translation byte, SDAIN is connected to SDAOUT and SCLIN is connected to SCLOUT. Connect a pull-up resistor, typically 10k, from this pin to the bus pull-up supply. Leave open or tie to GND if unused.

SCLIN: Input Bus Clock Input and Output. Connect this pin to the SCL line on the master side. An external pull-up resistor or current source is required.

SCLOUT: Output Bus Clock Input and Output. Connect this pin to the SCL line on the slave side. An external pull-up resistor or current source is required.
SDAIN: Input Bus Data Input and Output. Connect this pin to the SDA line on the master side. An external pull-up resistor or current source is required.
SDAOUT: Output Bus Data Input and Output. Connect this pin to the SDA line on the slave side. An external pull-up resistor or current source is required.
$V_{\text {cc: }}$ Power Supply Input (2.25 V to 5.5 V). If the supply voltages for the input and output buses are different, connect this pin to the lower supply. If the input and output supplies have the same nominal value and with tolerance less than or equal to $\pm 10 \%$, connect $V_{\text {CC }}$ to either supply. Bypass with at least $0.1 \mu \mathrm{~F}$ to GND.

bLOCK DIAGRAM

operation

The LTC4316 is an ${ }^{2} \mathrm{C} /$ SMBus address translator. It bridges two segments of an $I^{2} \mathrm{C}$ bus, reading incoming addresses on the master side and retransmitting them to the slave side with the 7 -bit $\mathrm{I}^{2} \mathrm{C}$ addresses translated in real time. This allows multiple $I^{2} \mathrm{C}$ devices with the same address to be connected to the same bus without interference.

The translated addresses are configured with external resistors, and no extra software is required. An ENABLE pin allows bus segments to be enabled and disabled, and the LTC4316 allows hot swapping isolated bus segments together.

OPERATION

Figure 1 shows an $I^{2} \mathrm{C}$ master connected to the input bus of the LTC4316 (SCLIN and SDAIN). The slave devices requiring address translation are connected to the output bus of the LTC4316 (SCLOUT and SDAOUT). Any other slave devices that do not require address translation are placed together with the master on the input bus of the LTC4316. Two switches (N1 and N2) inside the LTC4316 connect the input bus to the output bus. N1 connects SCLIN to SCLOUT while N2 connects SDAIN to SDAOUT. In most conditions, N1 and N2 stay on so that the input and output buses are connected.
Translation starts when the master issues a START bit (SDAIN goes low while SCLIN is high). The LTC4316 turns off N2 to disconnect SDAIN from SDAOUT. As the master sends the address byte, the LTC4316 translates the incoming address at the SDAIN pin to a new address at the SDAOUT pin by XORing each incoming bit with a user-configurable translation byte, one bit at a time. N3 turns on and off to send out the new address to the

SDAOUT pin. Once all 7 bits of the address are processed, the LTC4316 turns on N2 again to reconnect SDAIN to SDAOUT. The master then transmits the R/W bit directly to the slave. If the new, translated address on SDAOUT matches the slave's address, the slave pulls SDAOUT Iow to acknowledge (ACK bit). N2 remains on and the rest of the data bytes are transmitted unmodified between the master and slave. The address translation process restarts when the master issues a new START bit.

Figure 2 shows typical waveforms for the circuit on the front page. In this example, the master transmits address 0×34 while the slave is configured to respond to address 0×36. The resistive dividers at the XORL and XORH pins are configured to generate an address translation byte of 0×02.
Note that in this example, the 8-bit hexadecimal address format (with $\mathrm{R} / \mathrm{W}=0$) is used. 7-bit addresses are also commonly found in ${ }^{2} \mathrm{C}$ device documentation. Make sure to use the correct format when calculating the address translation byte. Table 1 shows examples of both formats.

Figure 1. Basic Functions of the LTC4316

Figure 2. Basic Address Translation Waveforms

operation

Table 1.

DESCRIPTION	BINARY ADDRESS								7-BIT HEX ADDRESS WITHOUT R/W	8-BIT HEX ADDRESS WITH R/W=0
	a6	a5	a4	a3	a2	a1	a0	R/W		
Input Address from SDAIN	0	0	1	1	0	1	0	0	$0 \times 1 \mathrm{~A}$	0x34
Translation Byte	0	0	0	0	0	0	1	0	0×01	0×02
Output Address to SDAOUT	0	0	1	1	0	1	1	0	$0 \times 1 \mathrm{~B}$	0×36

System Configurations

There are several ways that individual slaves or banks of slaves can be connected to an LTC4316. In Figure 3, each slave is paired with an LTC4316. This configuration allows for maximum flexibility in allocating the bus addresses. Both read and write operations and all protocols supported by the LTC4316 are allowed. Figure 4 shows two slaves with different hardwired addresses translated to two different addresses using a single LTC4316 and a common translation byte. A program is available to help the user visualize an I ${ }^{2}$ C bus with the LTC4316; this program can be found in the following link:
www.linear.com/TranslatorTool

Figure 3. Two Independent Address Translation

Setting the Translation Byte

When the LTC4316 is first powered up or any time a rising edge is detected on the ENABLE pin, the LTC4316 reads the voltages at XORH and XORL pins to determine the 7-bit translation byte. These voltages are referenced to $V_{C C} S O$ a resistive divider at each of these pins is the most convenient way to set the voltages. The required translation byte can be determined by taking the bitwise XOR of the slave's original address and the desired input address.
The voltages at the XORH and XORL pins configure the translation byte. The XORL voltage configures the lower 4 translation bits (excluding the R/W bit), while the XORH voltage configures the upper 3 translation bits. Tables 2 and 3 show the recommended resistive divider values. $R_{L T}$ and $R_{L B}$ are the top and bottom resistors connected to XORL, while $R_{H T}$ and $R_{H B}$ are the top and bottom resistors connected to XORH (Figure 5). Use 1\% tolerance resistors for $R_{L T}, R_{L B}, R_{H T}$ and $R_{H B}$.

Figure 4. Two Slaves Sharing One LTC4316

OPGRATION

Table 2. Setting the Resistive Divider at XORL

LOWER4-BIT OFTRANSLATIONBYTE				$\mathrm{V}_{\text {XORL }} / N_{\text {CC }}$	RECOMMENDED $\mathrm{R}_{\mathrm{LT}}[\mathrm{k} \Omega$]	$\begin{gathered} \text { RECOMMENDED } \\ R_{L B}[k \Omega] \\ \hline \end{gathered}$
a3	a2	a1	a0			
0	0	0	0	≤ 0.03125	Open	Short
0	0	0	1	0.09375 ± 0.015	976	102
0	0	1	0	0.15625 ± 0.015	976	182
0	0	1	1	0.21875 ± 0.015	1000	280
0	1	0	0	0.28125 ± 0.015	1000	392
0	1	0	1	0.34375 ± 0.015	1000	523
0	1	1	0	0.40625 ± 0.015	1000	681
0	1	1	1	0.46875 ± 0.015	1000	887
1	0	0	0	0.53125 ± 0.015	887	1000
1	0	0	1	0.59375 ± 0.015	681	1000
1	0	1	0	0.65625 ± 0.015	523	1000
1	0	1	1	0.71875 ± 0.015	392	1000
1	1	0	0	0.78125 ± 0.015	280	1000
1	1	0	1	0.84375 ± 0.015	182	976
1	1	1	0	0.90625 ± 0.015	102	976
1	1	1	1	≥ 0.96875	Short	Open

Table 3. Setting the Resistive Divider at XORH

UPPER 3-BIT OF TRANSLATION BYTE					
a6	a5	a4	$V_{\text {XORH }} / V_{\text {CC }}$	RECOMMENDED $\mathbf{R}_{\mathrm{HT}}[k \Omega]$	RECOMMENDED $\mathbf{R}_{\mathrm{HB}}[k \Omega]$
0	0	0	≤ 0.03125	0 Open	Short
0	0	1	0.09375 ± 0.015	976	102
0	1	0	0.15625 ± 0.015	976	182
0	1	1	0.21875 ± 0.015	1000	280
1	0	0	0.28125 ± 0.015	1000	392
1	0	1	0.34375 ± 0.015	1000	523
1	1	0	0.40625 ± 0.015	1000	681
1	1	1	0.46875 ± 0.015	1000	887

For example, if $R_{L T}=976 k, R_{L B}=102 k, R_{H T}=1000 \mathrm{k}$, and $R_{H B}=280 \mathrm{k}$, the lower 4 translation bits are 0001b and the upper 3 bits are 011b. The 8-bit hexadecimal address translation byte is obtained by adding a 0 as the LSB, which gives 01100010 b or 0×62. If the configuration voltages at XORL and XORH pins are the same, they can be tied together and connected to a single resistive divider. Alter-
natively, three resistors can be used to configure the XORL and XORH pins (Figure 6). Use the following procedure to calculate the value of the three resistors:

Figure 5. Address Translation Byte Configuration Resistors

Figure 6. Address Translation Byte Configuration Using Three Resistors

First choose a total resistance value $\mathrm{R}_{\text {TOTAL }}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A} 3}=\mathrm{R}_{\text {TOTAL }} \cdot\left(\mathrm{V}_{\mathrm{XORH}} / V_{\mathrm{CC}}\right) \\
& \mathrm{R}_{\mathrm{A} 2}=\left(\mathrm{R}_{\text {TOTAL }} \cdot \mathrm{V}_{\mathrm{XORL}} / V_{\mathrm{CC}}\right)-\mathrm{R}_{\mathrm{A} 3} \\
& \mathrm{R}_{\mathrm{A} 1}=\mathrm{R}_{\mathrm{TOTAL}}-\mathrm{R}_{\mathrm{A} 3}-\mathrm{R}_{\mathrm{A} 2}
\end{aligned}
$$

Use 1% tolerance resistors for $R_{A 1}, R_{A 2}$ and $R_{A 3}$.
Once the XORL and XORH pins are read, the LTC4316 turns on switches N1 and N2, connecting the input and output, and the READY pin goes high to indicate that the LTC4316 is ready to start address translation.
The address translation byte can be changed during operation by changing the XORH and XORL voltages and toggling the ENABLE pin (high-low-high). This triggers the LTC4316 to re-read the XORL and XORH voltages.

Enable/UVLO

If the ENABLE pin is driven below $\mathrm{V}_{\text {ENABLE(TH) }}$ or if V_{CC} is below the UVLO threshold, the LTC4316 shuts down. The internal shift register storing the address translation byte is cleared, address translation is disabled, switches

operation

N1, N2 and N3 are off, the READY pin is pulled low and the quiescent current drops to $350 \mu \mathrm{~A}$.

Precharge and Hot Swap

When the LTC4316 is first powered on, switches N1 and N2 are initially off. This allows a LTC4316 and its connected slaves to be hot swapped onto an active $\mathrm{I}^{2} \mathrm{C}$ bus. Internal precharge circuitry initially sets the bus lines to 1 V through a 200k resistor, minimizing disturbance to an active bus when the LTC4316 is connected. The LTC4316 keeps N1 and N2 off until ENABLE goes high, the XORL/ XORH pins are read, and both sides of the $I^{2} \mathrm{C}$ bus are idle (indicated either by a STOP bit or all bus pins high for longer than $120 \mu \mathrm{~s})$. Once these conditions are met, N1 and N2 turn on, and the READY pin goes high to indicate that the LTC4316 is ready to start address translation.

Pass-Through Mode

If the master wants to communicate with the slave using the general call address, it can temporarily disable address translation by pulling XORH high. This disables address translation and keeps N1 and N2 on regardless of the activity on the buses. Any translation that may be in progress is stopped immediately when XORH goes high.

Extra Transitions on SDAOUT

In an I ${ }^{2} \mathrm{C} / \mathrm{SMB}$ us system, the master changes the state of the SDA line when SCL is low. The LTC4316 also advances the address translation byte shift register when the SCLIN is low. The translation byte transitions occurapproximately 100 ns after the falling edge of SCLIN. If the SDAIN transitions sent by the master do not coincide exactly with the LTC4316 address translation bit transitions, an extra transition on SDAOUT may appear (Figure 7). These extra SDA transitions are like glitches similar to those occurring during normal Acknowledge bit transitions and do not pose problems in the system because devices on the bus latch SDA data only when SCL is high.

Level Translation and Supply Voltage Matching

The LTC4316 can operate with different supply voltages on the input and output bus, and it will level shift the voltages on the SCLIN, SDAIN, SCLOUT, and SDAOUT

Figure 7. Extra Transitions on SDAOUT While SCL Is Low
pins to match the supply voltage at each side. $V_{\text {CC }}$ must be powered from the lower of the two supply voltages for level shifting to operate correctly. For example, if the input bus is powered by a 5 V supply and the output bus is powered by a 3.3 V supply, the LTC4316 $\mathrm{V}_{\text {CC }}$ pin must be connected to the 3.3 V supply as shown in Figure 8.

Figure 8. A 5V to 3.3V Level Translation Application
If the LTC4316 supply pin is connected to the higher bus supply, current may flow through the switches N1 and N2 to the bus with lower supply. If the voltage difference is less than 1 V , this current is limited to less than $10 \mu \mathrm{~A}$. This allows the input and output buses to be connected to nominally identical supplies that may have up $\pm 10 \%$ tolerance, and the LTC4316 $\mathrm{V}_{\text {CC }}$ pin can be connected to either supply.

Extra START and STOP Bits

During normal operation, an $I^{2} \mathrm{C}$ master should not issue a START or STOP bit within a data byte. $I^{2} \mathrm{C}$ slave behavior when such a command is received can be unpredictable. The LTC4316 will recover automatically when an unexpected START or STOP is received during the address byte; however, depending on the state of the translating bits,

OPERATION

it may convert START bits to STOP bits and vice versa, causing unexpected slave behavior.
If an START bit is received during the address byte when the active translating bit is a 1 , the slave device will see a STOP bit. This will typically reset the slave and cause it to miss the remainder of the transmission. If the START bit is received while the active translating bit is a 0 , the START passes through the LTC4316 unchanged. The slave will react in the same way it would if the LTC4316 was not present, and will typically reset when the master next issues a STOP bit. In both cases, the LTC4316 automatically resets at the next STOP bit and the next message will be transmitted normally.
If an STOP bit is received during the address byte, the LTC4316 will abort the address translation and ensure that a STOP bit is issued at SDAOUT to reset the slave. If the active translating bit is a 0 when the STOP arrives, it is not modified, and the slave will see the STOP and typically reset. If the active translating bit is a 1 when the STOP arrives, the slave device will see a START bit. This might leave the slave in an indeterminate state, so the LTC4316 briefly disconnects the slave from the master, adds a short delay, and then generates a STOP bit at the SDAOUT pin (Figure 9). It then reconnects the busses and waits for a START bit to begin the next transmission. Again, in both cases, the LTC4316 automatically resets and the next message will be transmitted normally.

Figure 9. Stop Bit within Address Byte when Address Translation Byte Is 1

Stuck Bus Timeout

During the address translation, if SCLIN stays low or high for more than 30ms without any transitions, the LTC4316 will abort the address translation and reconnect SDAIN to SDAOUT. It will then wait for a START bit to start a new address translation. This prevents any bus stuck low/ high conditions from permanently disconnecting SDAIN from SDAOUT.

Supported Protocols

The LTC4316 is designed to support most $I^{2} \mathrm{C}$ and SMBus message protocols. The only exceptions are protocols that use pre-assigned addresses on the slave side of the bus.
Supported ${ }^{2} \mathrm{C}$ and SMBus Protocols

- Send/Receive Byte
- Write Byte/Word
- Read Byte/Word
- Process Call
- Block Write/Read
- Block Write-Block Read Process Call
- Extended Read and Write Commands
- General Call (${ }^{2} \mathrm{C}$ only)
- Start Byte ($1^{2} \mathrm{C}$ only)
- PMBus (without PEC)

Unsupported $I^{2} \mathrm{C}$ Protocols

- 10-Bit Addressing
- Device ID
- Ultra Fast-Mode ${ }^{2}$ C Bus Protocol

Unsupported SMBus Protocols

- SMBus Host Notify
- Address Resolution Protocol (ARP)
- Parity Error Code (PEC)
- Alert Response Address (ARA)
- PMBus (with PEC)

TYPICAL APPLICATIONS

Figure 10. Application with Option for Pass-Through Mode

Figure 11. LTC4316 in an $I^{2} \mathrm{C}$ Hot Swap Application with a Staggered Connector

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product//tc4316\#packaging for the most recent package drawings.

DD Package

10-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1699 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION
Please refer to http://www.linear.com/product/Itc4316\#packaging for the most recent package drawings.
MS Package
10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661 Rev F)

revision history

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: | :---: |
| A | $10 / 15$ | Minor edits. | 4,5 |

TYPICAL APPLICATION

Figure 12. Comparison Between LTC4316/LTC4317/LTC4318

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
$\begin{aligned} & \text { LTC4300A-1/ } \\ & \text { LTC4300A-2/ } \\ & \text { LTC4300A-3 } \end{aligned}$	Hot Swappable 2-Wire Bus Buffers	LTC4300A-1: Bus Buffer with READY and ENABLE LTC4300A-2: Dual Supply Buffer with ACC LTC4300A-3: Dual Supply Buffer and ENABLE
$\begin{aligned} & \text { LTC4302-1/ } \\ & \text { LTC4302-2 } \end{aligned}$	Addressable 2-Wire Bus Buffer	Address Expansion, GPIO, Software Controlled
$\begin{aligned} & \text { LTC4303/ } \\ & \text { LTC4304 } \end{aligned}$	Hot Swappable 2-Wire Bus Buffer with Stuck Bus Recovery	Provides Automatic Clocking to Free Stuck ${ }^{2} \mathrm{C}$ Busses
$\begin{aligned} & \hline \text { LTC4305/ } \\ & \text { LTC4306 } \end{aligned}$	2- or 4-Channel, 2-Wire Bus Multiplexers with Capacitance Buffering	Two or Four Software Selectable Downstream Busses, Stuck Bus Disconnect, Rise Time Accelerators, Fault Reporting, $\pm 10 \mathrm{kV}$ HBM ESD
LTC4307	Low Offset, Hot Swappable 2-Wire Bus Buffer with Stuck Bus Recovery	60mV Buffer Offset, 30ms Stuck Bus Disconnect and Recovery, Rise Time Accelerators, $\pm 5 \mathrm{kV}$ HBM ESD
LTC4307-1	High Definition Multimedia Interface (HDMI) Level Shifting 2-Wire Bus Buffer	60mV Buffer Offset, 3.3V to 5V Level Shifting, $\pm 5 \mathrm{kV}$ HBM ESD
LTC4308	Low Voltage, Level Shifting Hot Swappable 2-Wire Bus Buffer with Stuck Bus Recovery	Bus Buffer with 1V Precharge, ENABLE and READY, 0.9V to 5.5V Level Translation, 30ms Stuck Bus Disconnect and Recovery, Output Side Rise Time Accelerators, $\pm 6 \mathrm{kV}$ HBM ESD
LTC4309	Low Offset Hot Swappable 2-Wire Bus Buffer with Stuck Bus Recovery	60mV Buffer Offset, 30ms Stuck Bus Disconnect and Recovery, Rise Time Accelerators, $\pm 5 \mathrm{kV}$ HBM ESD, 1.8 V to 5.5 V Level Translation
$\begin{aligned} & \hline \text { LTC4310-1/ } \\ & \text { LTC4310-2 } \end{aligned}$	Hot Swappable ${ }^{2} \mathrm{C}$ Isolators	Bidirectional I ${ }^{2} \mathrm{C}$ Communication Between Two Isolated Busses, LTC4310-1: 100kHz Bus, LTC4310-2: 400kHz Bus
LTC4311	Hot Swappable I ²C/SMBus Accelerator	Rise Time Acceleration with ENABLE, $\pm 8 \mathrm{kV}$ HBM ESD
LTC4312/ LTC4314	2- or 4-Channel, Hardware Selectable 2-Wire Bus Multiplexers with Capacitance Buffering	Two or Four Pin Selectable Downstream Busses, $\mathrm{V}_{\text {IL }}$ Up to $0.3 \mathrm{~V} \bullet \mathrm{~V}_{\text {CC }}$, Rise Time Accelerators, 45 ms Stuck Bus Disconnect and Recovery, $\pm 4 \mathrm{kV}$ HBM ESD
LTC4313-1/ LTC4313-2/ LTC4313-3	High Noise Margin 2-Wire Bus Buffers	$\mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V} \cdot \mathrm{~V}_{\text {CC }}$, Rise Time Accelerators, Stuck Bus Disconnect and Recovery, 1V Precharge, $\pm 4 \mathrm{kV}$ HBM ESD

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - Specialized category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
CY7C910-51LMB MC33689DPEWR2 MC33975TEKR2 MEC1632-AUE MC33978AEK NVT4555UKZ TJA1081TS,112 RKSAS4 HMC677G32 LPC47N207-JV FTP-637DSL633R MAX7348AEP+ SM712GX04LF04-BA DS2413P+T\&R NCN5193MNTWG MC34978AEK MC33689DPEW MC33889BPEG NCV7381DP0R2G PCA9704PWJ S6BT112A01SSBB202 MAX7347AEE+ DS8113RNG+T\&R DS8024-RJX+T\&R NCN5192MNRG DS8023-RRX+T\&R DS8024-RRX+T\&R ST8034HCQR XP71055 TC7PCI3212MT,LF(S ASI4UE-F-G1-ST HOA6241-001 MEC1310-NU SC74HC4066ADTR2G TDA8035HNC1S1QL TNY380PN RMT3PB080 AS3935-BQFT 0714300268 MAX9924UAUB/V+ MAX3120CUA+ MAX3171CAI NCN8025MTTBG DS8023-RRX $\underline{\text { DS2406P+T\&R DS8007-ENG+ DS8007A-EAG+ DS2482X-101T DS1886T+ DG407AK/883B }}$

