LTC4440-5

High Speed, High Voltage, High Side Gate Driver

DESCRIPTIOn

The LTC ${ }^{\otimes} 4440-5$ is a high frequency high side N-channel MOSFET gate driver that is designed to operate in applications with $\mathrm{V}_{\text {IN }}$ voltages up to 60V. The LTC4440-5 can also withstand and continue to function during $80 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ transients. The powerful driver capability reduces switching losses in MOSFETs with high gate capacitances. The LTC4440-5's pull-up has a peak output current of 1.1A and its pull-down has an output impedance of 1.85Ω.

The LTC4440-5 features supply independent TTL/CMOS compatible input thresholds with 350 mV of hysteresis. The input logic signal is internally level-shifted to the bootstrapped supply, which may function at up to 95 V above ground.
The LTC4440-5 is optimized for driving (5V) logic level FETs and contains an undervoltage lockout circuit that disables the external MOSFET when activated.

The LTC4440-5 is available in the low profile (1mm) SOT-23 or a thermally enhanced 8-lead MSOP package.

PARAMETER	LTC4440-5	LTC4440A-5	LTC4440
Max Operating TS	60 V	80 V	80 V
Absolute Max TS	80 V	100 V	100 V
MOSFET Gate Drive	4 V to 15 V	4 V to 15 V	8 V to 15 V
$\mathrm{~V}_{\text {CC }}$ UV $^{+}$	3.2 V	3.2 V	6.3 V
$\mathrm{~V}_{\text {CC }}$ UV $^{-}$	3.04 V	3.04 V	6.0 V

TYPICAL APPLICATION

Synchronous Phase-Modulated Full-Bridge Converter

LTC4440-5 Driving a 1000pF Capacitive Load

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply VoltageVCC
BOOST - TS -0.3 V to 15 V-0.3 V to 15 VINP Voltage
BOOST Voltage (Continuous) -0.3 V to 85 V-0.3 V to 15 V
BOOST Voltage (100ms)

\qquad
TS Voltage (Continuous)

\qquadTS Voltage (100ms)
\qquad-5 V to 80 V
Peak Output Current < $1 \mu \mathrm{~s}$ (TG) 4AOperating Ambient Temperature Range
(Note 2) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature (Note 3) $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec). $300^{\circ} \mathrm{C}$

PIn COnfiGURATIOn

MS8E PACKAGE
8-LEAD PLASTIC MSOP
$T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=40^{\circ} \mathrm{C} / \mathrm{W}$
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC4440EMS8E-5\#PBF	LTC4440EMS8E-5\#TRPBF	LTBRG	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC4440ES6-5\#PBF	LTC4440ES6-5\#TRPBF	LTBRF	6-Lead Plastic SOT- 23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECRACPL CHARPCTEASTCS The o denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOST}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{TS}}=\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Main Supply (VCC)							
Ivcc	DC Supply Current Normal Operation UVLO	$\begin{aligned} & \text { INP }=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {CC }}<\text { UVLO Threshold (Falling) }-0.1 \mathrm{~V} \end{aligned}$			$\begin{gathered} 200 \\ 18 \end{gathered}$	$\begin{gathered} 325 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
UVLO	Undervoltage Lockout Threshold	$V_{C C}$ Rising $V_{C C}$ Falling Hysteresis	\bullet	$\begin{aligned} & 2.75 \\ & 2.60 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 3.04 \\ & 160 \end{aligned}$	$\begin{aligned} & 3.65 \\ & 3.50 \end{aligned}$	V V $m V$

IBOOST	DC Supply Current				
	Normal Operation	INP $=0 \mathrm{~V}$ INP $=6 \mathrm{~V}$			
		$\mu \mathrm{~A}$			

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOST}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{TS}}=\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Signal (INP)							
$\mathrm{V}_{\text {IH }}$	High Input Threshold	INP Ramping High	\bullet	1.2	1.6	2	V
VIL	Low Input Threshold	INP Ramping Low	\bullet	0.8	1.25	1.6	V
$\underline{\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {IL }}}$	Input Voltage Hysteresis				0.350		V
1 INP	Input Pin Bias Current				± 0.01	± 2	$\mu \mathrm{A}$

Output Gate Driver (TG)

$V_{O H}$	High Output Voltage	$I_{T G}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{BOOST}}-\mathrm{V}_{\mathrm{TG}}$	0.7	V	
$\mathrm{~V}_{0 \mathrm{~L}}$	Low Output Voltage	$\mathrm{I}_{\mathrm{TG}}=100 \mathrm{~mA}$	\bullet	185	275
$I_{P U}$	Peak Pull-Up Current		\bullet	0.75	1.1
$R_{\text {DS }}$	Output Pull-Down Resistance		\bullet	1.85	2.75

Switching Timing

t_{r}	Output Rise Time	$\begin{aligned} & 10 \%-90 \%, C_{L}=1 n F \\ & 10 \%-90 \%, C_{L}=10 n F \end{aligned}$		$\begin{gathered} 10 \\ 100 \end{gathered}$		ns ns
t_{f}	Output Fall Time	$\begin{aligned} & 10 \%-90 \%, C_{L}=1 n F \\ & 10 \%-90 \%, C_{L}=10 n F \end{aligned}$		$\begin{gathered} 7 \\ 70 \end{gathered}$		ns ns
tpLH	Output Low-High Propagation Delay		\bullet	35	65	ns
tPHL	Output High-Low Propagation Delay		\bullet	33	65	ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LTC4440-5 is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: T_{J} is calculated from the ambient temperature T_{A} and power dissipation PD according to the following formula:

$$
T_{J}=T_{A}+\left(P D \cdot \theta_{J A}{ }^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

Note 4: Failure to solder the exposed back side of the MS8E package to the PC board will result in a thermal resistance much higher than $40^{\circ} \mathrm{C} / \mathrm{W}$.

TYPICAL PERFORMANCE CHARACTERISTICS

$4440-5601$

BOOST-TS Supply Quiescent
Current vs Voltage

Output Low Voltage (V_{OL}) vs Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

4440-5 G04

4440-5 G08
Input (INP) Threshold
vs Temperature

Input (INP) Thresholds
vs Supply Voltage

$\mathrm{V}_{\text {CC }}$ Undervoltage Lockout
Thresholds vs Temperature

$4440-5$ G09
Input Threshold Hysteresis
vs Temperature

2MHz Operation
 $V_{C C}=B O O S T-T S=12 \mathrm{~V}$

BOOST-TS Quiescent Current vs Temperature

4440-5 G10
Peak Driver (TG) Pull-Up Current vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

PIn fUnCTIOnS

SOT-23 Package

Vcc (Pin 1): Chip Supply. This pin powers the internal low side circuitry. A low ESR ceramic bypass capacitor should be tied between this pin and the GND pin (Pin 2).
GND (Pin 2): Chip Ground.
INP (Pin 3): Input Signal. TTL/CMOS compatible input referenced to GND (Pin 2).
TS (Pin 4): Top (High Side) source connection or GND if used in ground referenced applications.

TG (Pin 5): High Current Gate Driver Output (Top Gate). This pin swings between TS and BOOST.
BOOST (Pin 6): High Side Bootstrapped Supply. An external capacitor should be tied between this pin and TS (Pin 4). Normally, a bootstrap diode is connected between $V_{C C}$ (Pin 1) and this pin. Voltage swing at this pin is from $V_{C C}-V_{D}$ to $V_{I N}+V_{C C}-V_{D}$, where V_{D} is the forward voltage drop of the bootstrap diode.

PIn fUnCTIOnS

Exposed Pad MS8E Package

INP (Pin 1): Input Signal. TTLCMOS compatible input referenced to GND (Pin 2).
GND (Pins 2, 4): Chip Ground.
$V_{\text {cc }}$ (Pin 3): Chip Supply. This pin powers the internal low side circuitry. A low ESR ceramic bypass capacitor should be tied between this pin and the GND pin (Pin 2).
NC (Pin 5): No Connect. No connection required. For convenience, this pin may be tied to Pin 6 (BOOST) on the application board.

BOOST (Pin 6): High Side Bootstrapped Supply. An external capacitor should be tied between this pin and TS (Pin 8). Normally, a bootstrap diode is connected between V_{CC} (Pin 3) and this pin. Voltage swing at this pin is from $V_{C C}$ $-V_{D}$ to $V_{I N}+V_{C C}-V_{D}$, where V_{D} is the forward voltage drop of the bootstrap diode.

TG (Pin 7): High Current Gate Driver Output (Top Gate). This pin swings between TS and BOOST.

TS (Pin 8): Top (High Side) source connection or GND if used in ground referenced applications.

Exposed Pad (Pin 9): Ground. Must be electrically connected to Pins 2 and 4 and soldered to PCB ground for optimum thermal performance.

BLOCK DIAGRAM

TIMIIGG DIAGRAM

APPLICATIONS INFORMATION

Overview

The LTC4440-5 receives a ground-referenced, low voltage digital input signal to drive a high side N -channel power MOSFET whose drain can float up to 80V above ground, eliminating the need for a transformer between the low voltage control signal and the high side gate driver. The LTC4440-5 normally operates in applications with input supply voltages ($\mathrm{V}_{\text {IN }}$) up to 60 V , but is able to withstand and continue to function during $80 \mathrm{~V}, 100 \mathrm{~ms}$ transients on the input supply.
The powerful output driver of the LTC4440-5 reduces the switching losses of the power MOSFET, which increase with transition time. The LTC4440-5 is capable of driving a 1 nF load with 10 ns rise and 7 ns fall times using a bootstrapped supply voltage $\mathrm{V}_{\text {BOOST-TS }}$ of 6 V .

Input Stage

The LTC4440-5 employs TTL/CMOS compatible input logic level or thresholds that allow a low voltage digital signal to drive standard threshold power MOSFETs. The LTC4440-5 contains an internal voltage regulator that biases the input buffer, allowing the input thresholds $\left(\mathrm{V}_{\mathrm{IH}}=1.6 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{IL}}=$ 1.25 V) to be relatively independent of variations in V_{Cc}. The 350 mV hysteresis between V_{IH} and V_{IL} eliminates false triggering due to noise during switching transitions. However, care should be taken to keep this pin from any noise pickup, especially in high frequency, high voltage applications. The LTC4440-5 input buffer has a high input impedance and draws negligible input current, simplifying the drive circuitry required for the input.

Output Stage

A simplified version of the LTC4440-5's output stage is shown in Figure 1. The pull-down device is an N-channel MOSFET (N1) and the pull-up device is an NPN bipolar junction transistor (Q1). The output swings from the lower rail (TS) to within an NPN $V_{B E}(\sim 0.7 \mathrm{~V})$ of the positive rail (BOOST). This large voltage swing is important in driving external power MOSFETs, whose $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is inversely proportional to its gate overdrive voltage $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)$.

The LTC4440-5's peak pull-up (Q1) current is 1.1 A while the pull-down (N1) resistance is 1.85Ω, with a BOOSTTS supply of 6 V . The low impedance of N 1 is required to

Figure 1. Capacitance Seen by TG During Switching
discharge the power MOSFET's gate capacitance during high-to-low signal transitions. When the power MOSFET's gate is pulled low (gate shorted to source through N1) by the LTC4440-5, its source (TS) is pulled low by its load (e.g., an inductor or resistor). The slew rate of the source/ gate voltage causes current to flow back to the MOSFET's gate through the gate-to-drain capacitance (C_{GD}). If the MOSFET driver does not have sufficient sink current capability (low output impedance), the current through the power MOSFET's C_{GD} can momentarily pull the gate high, turning the MOSFET back on.
A similar scenario exists when the LTC4440-5 is used to drive a low side MOSFET. When the low side power MOSFET's gate is pulled low by the LTC4440-5, its drain voltage is pulled high by its load (e.g., inductor or resistor). The slew rate of the drain voltage causes current to flow back to the MOSFET's gate through its gate-to-drain capacitance. If the MOSFET driver does not have sufficient sink current capability (low output impedance), the current through the power MOSFET's C_{GD} can momentarily pull the gate high, turning the MOSFET back on.

Rise/Fall Time

Since the power MOSFET generally accounts for the majority of the power loss in a converter, it is important to quickly turn it on or off, thereby minimizing the transition time in its linear region. The LTC4440-5 can drive a 1 nF load with a 10 ns rise time and 7 ns fall time.

The LTC4440-5's rise and fall times are determined by the peak current capabilities of Q1 and N1. The predriver that drives Q1 and N1 uses a nonoverlapping transition scheme to minimize cross-conduction currents. N1 is fully turned off before Q1 is turned on and vice versa.

APPLICATIONS INFORMATION

Power Dissipation

To ensure proper operation and long-term reliability, the LTC4440-5 must not operate beyond its maximum temperature rating. Package junction temperature can be calculated by:

$$
T_{J}=T_{A}+P D\left(\theta_{J A}\right)
$$

where:

$$
\mathrm{T}_{\mathrm{J}}=\text { Junction Temperature }
$$

$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
PD = Power Dissipation
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
Power dissipation consists of standby and switching power losses:

$$
P D=P_{S T D B Y}+P_{A C}
$$

where:
PSTDBY $=$ Standby Power Losses
$P_{\text {AC }}=A C$ Switching Losses
The LTC4440-5 consumes very little current during standby. The DC power loss at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ and $\mathrm{V}_{\text {BOOST-TS }}=6 \mathrm{~V}$ is only $(200 \mu \mathrm{~A})(6 \mathrm{~V})=1.2 \mathrm{~mW}$ with $\mathrm{INP}=0 \mathrm{~V}$.
AC switching losses are made up of the output capacitive load losses and the transition state losses. The capacitive load losses are primarily due to the large AC currents needed to charge and discharge the load capacitance during switching. Load losses for the output driver driving a pure capacitive load $\mathrm{C}_{\text {out }}$ would be:

Load Capacitive Power $=\left(\mathrm{C}_{\text {OUT }}\right)(\mathrm{f})\left(\mathrm{V}_{\text {BOOST-TS }}\right)^{2}$

The power MOSFET's gate capacitance seen by the driver output varies with its V_{GS} voltage level during switching. A power MOSFET's capacitive load power dissipation can be calculated using its gate charge, Q_{G}. The Q_{G} value corresponding to the MOSFET's $V_{G S}$ value ($V_{C C}$ in this case) can be readily obtained from the manufacturer's Q_{G} vS $V_{G S}$ curves:

Load Capacitive Power (MOS) $=\left(\mathrm{V}_{\text {BOOST-TS }}\right)\left(\mathrm{Q}_{\mathrm{G}}\right)(\mathrm{f})$
Transition state power losses are due to both AC currents required to charge and discharge the driver's internal
nodal capacitances and cross-conduction currents in the internal gates.

Undervoltage Lockout (UVLO)

The LTC4440-5 contains an undervoltage lockout detector that monitors $V_{\text {CC. }}$. When $V_{\text {CC }}$ falls below 3.04 V , the internal buffer is disabled and the output pin TG is pulled down to TS.

Bypassing and Grounding

The LTC4440-5 requires proper bypassing on the $\mathrm{V}_{\text {CC }}$ and $V_{\text {BOOST-TS }}$ supplies due to its high speed switching (nanoseconds) and large AC currents (Amperes). Careless component placement and PCB trace routing may cause excessive ringing and under/overshoot.
To obtain the optimum performance from the LTC4440-5:
A. Mount the bypass capacitors as close as possible between the $\mathrm{V}_{C C}$ and GND pins and the BOOST and TS pins. The leads should be shortened as much as possible to reduce lead inductance.
B. Use a low inductance, low impedance ground plane to reduce any ground drop and stray capacitance. Remember that the LTC4440-5 switches >2A peak currents and any significant ground drop will degrade signal integrity.
C. Plan the power/ground routing carefully. Know where the large load switching current is coming from and going to. Maintain separate ground return paths for the input pin and the output power stage.
D. Keep the copper trace between the driver output pin and the load short and wide.
E. When using the MS8E package, be sure to solder the exposed pad on the back side of the LTC4440-5 package to the board. Correctly soldered to a $2500 \mathrm{~mm}^{2}$ doublesided $10 z$ copper board, the LTC4440-5 has a thermal resistance of approximately $40^{\circ} \mathrm{C} / \mathrm{W}$. Failure to make good thermal contact between the exposed back side and the copper board will result in thermal resistances far greater than $40^{\circ} \mathrm{C} / \mathrm{W}$.

TYPICAL APPLICATIONS

LTC4440-5

TYPICAL APPLICATIONS

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

MS8E Package
8-Lead Plastic MSOP, Exposed Die Pad
(Reference LTC DWG \# 05-08-1662 Rev K)

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

REVSIO HASTORY (Revision history begins at Rev B)

REV	DATE	DESCRIPTION	PAGE NUMBER
B	1013	Added comparison table	1

TYPICAL APPLICATION

240W 42V-56V ${ }_{\text {IN }}$ to Unregulated 12V Half-Bridge Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT®1161	Quad Protected High Side MOSFET Driver	8 V to 48V Supply Range, $\mathrm{t}_{\text {ON }}=200 \mu \mathrm{~s}, \mathrm{t}_{\text {OFF }}=28 \mu \mathrm{~s}$
LTC1693 Family	High Speed Dual MOSFET Drivers	1.5A Peak Output Current, $4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 13.2 \mathrm{~V}$
LT1952	Single Switch Synchronous Forward Controller	25W to 500W DC/DC Controller
LT3010/LT3010-5	50mA, 3V to 80V Low Dropout Micropower Regulators	Low Quiescent Current ($30 \mu \mathrm{~A}$), Stable with Small ($1 \mu \mathrm{~F}$) Ceramic Capacitor
LT3430	High Voltage, 3A, 200kHz Step-Down Switching Regulator	Input Voltages Up to 60V, Internal 0.1Ω Power Switch, Current Mode Architecture, 16-Pin Exposed Pad TSSOP Package
$\begin{aligned} & \hline \text { LTC3722-1/ } \\ & \text { LTC3722-2 } \end{aligned}$	Synchronous Dual Mode Phase Modulated Full-Bridge Controllers	Adaptive Zero Voltage Switching, High Output Power Levels (Up to Kilowatts)
$\begin{aligned} & \hline \text { LTC3723-1/ } \\ & \text { LTC3723-2 } \end{aligned}$	Synchronous Push-Pull PWM Controllers	Current Mode or Voltage Mode Push-Pull Controllers
LTC3900	Synchronous Rectifier Driver for Forward Converters	Programmable Time Out, Reverse Inductor Current Sense
LTC3901	Secondary Side Synchronous Driver for Push-Pull and Full-Bridge Converters	Programmable Time Out, Reverse Inductor Current Sense
LTC4440	High Speed, High Voltage, High Side Gate Driver	High Side Source up to $100 \mathrm{~V}, 8 \mathrm{~V}$ to 15 V Gate Drive Supply, Undervoltage Lockout, 6-Lead ThinSOT or 8-Lead Exposed MSOP Package
LTC4441	6A MOSFET Driver	Adjustable Gate Drive from 5V to $8 \mathrm{~V}, 5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 28 \mathrm{~V}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
$\underline{00053 \mathrm{P} 0231} 5695657.404 .7355 .5$ LT4936 57.904 .0755 .05882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 020740000060100564 $\underline{01312} \underline{0134220000} \underline{60713816} \underline{\mathrm{M} 15730061} \underline{61161-90} \underline{61278-0020}$ 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

