feATURES

- Internal Schottky Diode RF Detector with Two Input Power Ranges:

LTC5505-1, -28dBm to 18dBm
LTC5505-2, -32 dBm to 12 dBm

- Wide Input Frequency Range: 300MHz to 3GHz
(LTC5505-1); 300MHz to 3.5 GHz (LTC5505-2)
- Temperature Compensated
- Buffered Detector Output
- Wide V ${ }_{\text {CC }}$ Range of 2.7 V to 6 V
- Low Operating Current: 0.5 mA
- Low Shutdown Current: <2 4 A
- Low Profile (1mm) ThinSOT ${ }^{\text {TM }}$ Package

APPLICATIONS

- Multimode Mobile Phone Products
- PCS Devices
- Wireless Data Modems
- Wireless and Cable Infrastructure
- RF Power Alarm
- Envelope Detector

DESCRIPTION

The LTC ${ }^{\circledR} 5505-X$ is an RF power detector for RF applications operating in the 300 MHz to 3.5 GHz range. A temperature compensated Schottky diode peak detector and buffer amplifier are combined in a small 5-pin ThinSOT package. The supply voltage range is optimized for operation from a single lithium-ion cell or 3xNiMH.
The RF input voltage is peak detected using an on-chip Schottky diode. The detected voltage is buffered and supplied to the $\mathrm{V}_{\text {OUT }}$ pin. A power saving shutdown mode reduces supply current to less than $2 \mu \mathrm{~A}$.
The LTC5505-1 operates with input power levels from -28 dBm to 18 dBm . The LTC5505-2 operates with input power levels from -32 dBm to 12 dBm .

GT, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation

TYPICAL APPLICATION

Dual Band Mobile Phone Tx Power Control

ABSOLUTE MAXIMUM RATINGS

(Note 1)
$V_{\text {CC }}, V_{\text {OUT }}$ to GND \qquad -0.3 V to 6.5 V
RF Voltage
LTC5505-1 \qquad $\left(V_{\text {CC }}-2.6 \mathrm{~V}\right)$ to 7 V
LTC5505-2 \qquad $\left(V_{\text {CC }}-1.4 \mathrm{~V}\right)$ to 7 V
SHDN Voltage to GND -0.3 V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
IVout \qquad Operating Temperature Range (Note 2) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature \qquad
\qquad $125^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LTC5505-1ES5 LTC5505-2ES5
	S5 PART MARKING
	LTXV LTRW

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \widehat{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{HI}, \widehat{\mathrm{SHDN}}=\mathrm{OV}=\mathrm{LO}$, RF Input Signal is Off, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {CC }}$ Operating Voltage		\bullet	2.7		6	V
IVCC Shutdown Current	$\overline{\text { SHDN }}=\mathrm{LO}$	\bullet			2	$\mu \mathrm{A}$
$I_{\text {VCC }}$ Operating Current	$\overline{\text { SHDN }}=\mathrm{HI}, \mathrm{I}_{\text {VOUT }}=0 \mathrm{~mA}$	\bullet		0.5	0.75	mA
$\mathrm{V}_{\text {OUT }} \mathrm{V}_{\text {OL }}$ ((No RF Input)	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=2 k, \overline{\text { SHDN }}=\mathrm{HI}, \text { Enabled } \\ & \overline{\text { SHDN }}=\text { LOW, Disabled } \end{aligned}$		170	$\begin{gathered} 260 \\ 1 \end{gathered}$	350	mV mV
V OUT Output Current	$\mathrm{V}_{\text {OUT }}=1.75 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=2.7 \mathrm{~V}, \Delta \mathrm{~V}_{\text {OUT }}=10 \mathrm{mV}$	\bullet	1	2		mA
$V_{\text {Out }}$ Enable Time	$\overline{\text { SHDN }}=\mathrm{HI}, \mathrm{C}_{\text {LOAD }}=33 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=2 \mathrm{k}$	\bullet		8	20	$\mu \mathrm{S}$
Vout Bandwidth	$\mathrm{C}_{\text {LOAD }}=33 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=2 \mathrm{k}$ (Note 4)			4		MHz
$\mathrm{V}_{\text {Out }}$ Load Capacitance	(Note 7)	\bullet			33	pF
$\mathrm{V}_{\text {OUT }}$ Slew Rate	$\mathrm{V}_{\text {RFIN }}=2 \mathrm{~V}$ Step, $\mathrm{C}_{\text {LOAD }}=33 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=2 \mathrm{k}$ (Note 3)			10		$\mathrm{V} / \mathrm{\mu s}$
Vout Noise	$V_{C C}=3 \mathrm{~V}$, Noise $\mathrm{BW}=1.5 \mathrm{MHz}, 50 \Omega$ RF Input Termination			1.4		$\mathrm{mV} \mathrm{P}_{\text {- }}$
SHDN Voltage, Chip Disabled	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 6V	\bullet			0.35	V
SHDN Voltage, Chip Enabled	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 6 V	\bullet	1.4			V
$\overline{\overline{\text { SHDN }} \text { Input Current }}$	$\overline{\mathrm{SHDN}}=3.6 \mathrm{~V}$	\bullet		24	40	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \widehat{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{HI}, \overline{\mathrm{SHDN}}=\mathrm{OV}=\mathrm{LO}, \mathrm{RF}$ Input Signal is Off, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RFIN Input Frequency Range (LTC5505-1) (LTC5505-2)			$\begin{aligned} & 300 \text { to } 3000 \\ & 300 \text { to } 3500 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
RFIN Input Power Range (LTC5505-1)	$\begin{aligned} & \text { RF Frequency }=900 \mathrm{MHz} \text { (Note } 5,6,7 \text {) } \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ & \text { RF Frequency }=1800 \mathrm{MHz} \text { (Note } 5,6,7 \text {) } \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ & \text { RF Frequency }=2400 \mathrm{MHz} \text { (Note } 5,7) \mathrm{V}_{C C}=2.7 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ & \text { RF Frequency }=2700 \mathrm{MHz} \text { (Note } 5,7) \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & -28 \text { to } 18 \\ & -26 \text { to } 18 \\ & -24 \text { to } 16 \\ & -22 \text { to } 16 \end{aligned}$		dBm dBm dBm dBm
RFIN Input Power Range (LTC5505-2)	$\begin{aligned} & \text { RF Frequency }=900 \mathrm{MHz} \text { (Note 5) } \\ & \text { RF Frequency }=1800 \mathrm{MHz} \text { (Note 5) } \\ & \text { RF Frequency }=2400 \mathrm{MHz} \text { (Note } 5) \\ & \text { RF Frequency }=2700 \mathrm{MHz} \text { (Note } 5 \text {) } \end{aligned}$		$\begin{aligned} & -32 \text { to } 12 \\ & -32 \text { to } 12 \\ & -32 \text { to } 12 \\ & -30 \text { to } 12 \end{aligned}$		dBm dBm dBm dBm
RFIN AC Input Resistance (LTC5505-1)	$\begin{aligned} & \mathrm{F}=850 \mathrm{MHz} \\ & \mathrm{~F}=1850 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 165 \\ & 20 \end{aligned}$		Ω Ω
RFIN Input Shunt Capacitance (LTC5505-1)			2		pF
RFIN AC Input Resistance (LTC5505-2)	$\begin{aligned} & \mathrm{F}=850 \mathrm{MHz} \\ & \mathrm{~F}=1850 \mathrm{MHz} \end{aligned}$		$\begin{gathered} 165 \\ 59 \end{gathered}$		Ω
RFIN Input Shunt Capacitance (LTC5505-2)			1.3		pF

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: The rise time at $\mathrm{V}_{\text {OUT }}$ is measured between 0.5 V and 1.5 V .
Note 4: Bandwidth is calculated using the 10% to 90% rise time equation: $B W=0.35 /$ rise time.

Note 5: RF performance is tested at:
$1800 \mathrm{MHz}, 14 \mathrm{dBm},-14 \mathrm{dBm}$ (LTC5505-1)
$1800 \mathrm{MHz}, 12 \mathrm{dBm},-14 \mathrm{dBm}$ (LTC5505-2)
Note 6: For input RF power levels $>16 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}$ minimum is 3 V and an RF input series resistor of 20Ω is required to limit the input current.
Note 7: Guaranteed by design.

LTC5505-1/LTC5505-2

TYPICAL PERFORMANCG CHARACTERISTICS

LTC5505-1 Typical Detector Characteristics, 1.85 GHz

LTC5505-1 Typical Detector Characteristics, 2.45 GHz

LTC5505-2 Typical Detector Characteristics, 0.85 GHz

LTC5505-2 Typical Detector Characteristics, 2.45 GHz

LTC5505-2 Typical Detector Characteristics, 1.85 GHz

LTC5505-2 Typical Detector Characteristics, 3.5 GHz

PIn functions

$R F_{\text {IN }}$ (Pin 1): RF Input Voltage. Referenced to $V_{C C}$. An external coupling capacitor to the RF source is required. The frequency range is 300 MHz to 3 GHz . This pin has an internal 250Ω termination, an internal Schottky diode detector and peak detector capacitor. (See Note 6 in the Electrical Characteristics.)
GND (Pin 2): System Ground.
$\overline{\text { SHDN }}$ (Pin 3): Shutdown Input. A logic low on the $\overline{\text { SHDN }}$ pin places the part in shutdown mode. Alogic high enables the part. SHDN has an internal 150k pull down resistor to ensure that the part is in shutdown when the drivers are in a tri-state condition.
$\mathbf{V}_{\text {OUT }}$ (Pin 4): Buffered and Level Shifted Detector Output Voltage.

VCC (Pin 5): Power Supply Voltage, 2.7V to 6V. $\mathrm{V}_{\text {CC }}$ should be bypassed appropriately with ceramic capacitors.

BLOCK DIAGRAM

APPLICATIONS InFORMATION

Operation

The LTC5505-X RF detector integrates several functions to provide R F power detection over frequencies ranging from 300 MHz to 3.5 GHz . These functions include an internally compensated buffer amplifier, an RF Schottky diode peak detector and level shiftamplifier to convert the RF feedback signal to DC , a delay circuit to avoid voltage transients at $V_{\text {Out }}$ when coming out of shutdown and a gain compression circuit to extend the detector dynamic range.

Buffer Amplifier

The buffer amplifier has a gain of two and is capable of driving a 2 mA load. The buffer amplifier typically has an output voltage range of 0.25 V to 1.75 V .

RF Detector

The internal RF Schottky diode peak detector and level shift amplifier converts the RF input signal to a low frequency signal. The detector demonstrates excellent efficiency and linearity over a wide range of input power. The Schottky detector is biased at about $60 \mu \mathrm{~A}$ and drives a peak detector capacitor of 28 pF .

Gain Compression

The gain compression circuit changes the feedback ratio as the RF peak-detected input voltage increases above 100 mV . Below 100 mV , the voltage gain from the peak detector to the buffer output is 1.5 . Above 200 mV , the
voltage gain is reduced to 0.7. The compression expands the low power detector range due to higher gain.

Modes of Operation

MODE	$\overline{\text { SHDN }}$	OPERATION
Shutdown	Low	Disabled
Enable	High	Power Detect

Applications

The LTC5505-1 and LTC5505-2 can be used as selfstanding signal strength measuring receivers for a wide range of input signals from -32 dBm to 18 dBm for frequencies from 300 MHz to 3.5 GHz .
The LTC5505-1 and LTC5505-2 can be used as demodulators for AM and ASK modulated signals with data rates up to 5MHz. Depending on specific application needs, the RSSI output can be split into two branches, providing AC-coupled data (or audio) output and DC-coupled, RSSI output for signal strength measurements and AGC.
The LTC5505-1 and LTC5505-2 can be used for dual band mobile phone transmitter power control (refer to Typical Application schematic on first page). The circuit uses a capacitive tap at the Tx PA outputs. For example, a 0.3 pF capacitor (C1) followed by a 100Ω resistor (R1) forms a coupling circuit with about a 20dB loss at the cellular band and 18dB loss atthe PCS band, referenced tothe LTC5505-2 IC RF input pin. For improved coupling accuracy, the C1 capacitor should be ahigh tolerance component ($\pm 0.05 \mathrm{pF}$.)

Example of LTC5505-X GSM/DCS Power Control Timing Diagram

t_{1} : PART COMES OUT OF SHUTDOWN $20 \mu \mathrm{~s}$ MAXIMUM PRIOR TO BURST.
t_{2} : CIRCUITS POWER UP AND SETTLE.
t_{3} : BASEBAND CONTROLLER STARTS RF POWER RAMP UP AT $22 \mu \mathrm{~s}$ AFTER $\overline{\text { SHDN }}$ IS ASSERTED HIGH.
t_{4} : BASEBAND CONTROLLER COMPLETES RAMP UP
t_{5} : BASEBAND CONTROLLER STARTS RF POWER RAMP DOWN AT END OF BURST.
t_{6} : LTC5505-X RETURNS TO SHUTDOWN MODE BETWEEN BURSTS

TYPICAL APPLICATION

Dual Band Mobile Phone Tx Power Control with Directional Coupler

PACKAGE DESCRIPTION

S5 Package
5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.

LTC5505-1/LTC5505-2

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1618	Constant Current/Constant Voltage, 1.4MHz, High Efficiency Boost Regulator	Up to 16 White LEDs, $\mathrm{V}_{\text {IN }}=1.6 \mathrm{~V}$ to 18 V , $\mathrm{V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=1.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC1733	Standalone Li-Ion Linear Battery Charger	Monolithic Charger, Thermal Rejection Prevents Overheating, Small Design, Up to 1.5A Charge Current
$\begin{aligned} & \text { LTC1734/ } \\ & \text { LTC1734L } \end{aligned}$	Li-Ion Linear Battery Charger in ThinSOT	50mA to 700mA Charge Current, Only Three Components for Complete Solution
LTC1878	600 mA I Out, 550 kHz , Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Min}=0.8 \mathrm{~V}$, $I_{Q}=10 \mu A, I_{S D}=<1 \mu A, M S 8$
LT1932	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 8 White LEDs, $\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=1.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}$, ThinSOT
LT1937	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 4 White LEDs, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 10 V , $\mathrm{V}_{\text {OUT }} \mathrm{Max}=34 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=1.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}$, ThinSOT, SC70
LTC3200	Low Noise, 2MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 4.5 V , $\mathrm{I}_{\mathrm{Q}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC3200-5	Low Noise, 2MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 4.5 V , $\mathrm{I}_{\mathrm{Q}}=6.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}$, ThinSOT
LTC3201	Low Noise, 1.7MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 4.5 V , $\mathrm{I}_{\mathrm{Q}}=6.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC3202	Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver	Up to 8 White LEDs, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 4.5 V , $\mathrm{I}_{\mathrm{Q}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC3404	600 mA Iout, 1.4 MHz , Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Min}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}, \mathrm{MS} 8$
$\begin{aligned} & \text { LTC3405/ } \\ & \text { LTC3405A } \end{aligned}$	300 mA Iout, 1.5 MHz , Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 6 V , $\mathrm{V}_{\text {OUT }} \mathrm{Min}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}$, ThinSOT
$\begin{aligned} & \text { LTC3406/ } \\ & \text { LTC3406B } \end{aligned}$	600 mA I Out, 1.5 MHz , Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Min}=0.6 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}$, ThinSOT
LTC3412	2.5A Iout, 4MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Min}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=60 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}$, TSSOP-16E
LTC3411	1.25A IOUT, 4MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Min}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=60 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC3440	$600 \mathrm{~mA} \mathrm{I}_{\text {Out }}$, 2MHz, Synchronous Buck-Boost DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{Min}=2.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=25 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}=<1 \mu \mathrm{~A}, \mathrm{MS} 10$
LTC4052	Li-Ion Battery Pulse Charger	Minimum Heat Dissipation, Current Limit for Safety, Standalone Charger, Monolithic
LTC4053	USB Compatible Li-Ion Charger	Standalone, Monolithic, $100 \mathrm{~mA} / 500 \mathrm{~mA}$ or Up to 2A from Wall Adapter
LTC4412	Low Loss PowerPath ${ }^{\text {TM }}$ Controller	Replaces Power Supply ORing Diodes, High Efficiency

PowerPath is a trademark of Linear Technology Corporation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Detector category.
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
HMC439QS16GTR HMC7447-SX MACP-010562-TR1000 R451075000 2085-6013-13 2085-6010-00 32-2018-BU 32-3033-BU 32-3203BU AD8361ARMZ-REEL LT5534ESC6\#TRPBF AD8361ARM-REEL7 AD8314ARMZ-REEL AD8311ACBZ-P7 AD8312ACBZ-P7 AD8313ARMZ-REEL7 AD8314ACPZ-RL7 AD8314ARMZ AD8314ARMZ-REEL7 AD8315ARMZ AD8317ACPZ-R7 AD8319ACPZ-R7 AD8361ARMZ AD8361ARMZ-REEL7 AD8362ARUZ-REEL7 AD8363ACPZ-R7 AD8302ARUZ-RL7 ADL5906ACPZN-R7 ADL5500ACBZ-P7 ADL5502ACBZ-P7 ADL5504ACBZ-P7 ADL5505ACBZ-P7 ADL5506ACBZ-R7 ADL5506WACBZ-R7 ADL5513ACPZ-R7 ADL5903ACPZN-R7 ADL5903SCPZN-R7 ADL6010ACPZN-R2 ADL6010SCPZN ADL6010SCPZN-R7 ADL6010SCPZN-R2 ADL6012ACPZN ADL5511ACPZ-R7 ADL5904ACPZN-R7 ADL5910ACPZN-R7 ADL5920ACPZ HMC1021LP4E HMC1120LP4E HMC1120LP4ETR HMC439QS16G

