

LTC5505-1/LTC5505-2

OGY with Buffered Output and >40dB Dynamic Range

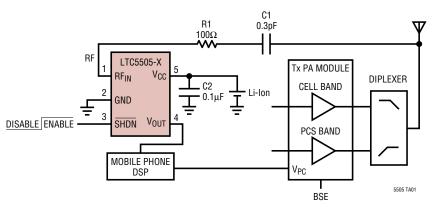
FEATURES

- Internal Schottky Diode RF Detector with Two Input Power Ranges:
 - LTC5505-1, -28dBm to 18dBm
 - LTC5505-2, -32dBm to 12dBm
- Wide Input Frequency Range: 300MHz to 3GHz (LTC5505-1); 300MHz to 3.5GHz (LTC5505-2)
- Temperature Compensated
- Buffered Detector Output
- Wide V_{CC} Range of 2.7V to 6V
- Low Operating Current: 0.5mA
- Low Shutdown Current: <2µA</p>
- Low Profile (1mm) ThinSOTTM Package

APPLICATIONS

- Multimode Mobile Phone Products
- PCS Devices
- Wireless Data Modems
- Wireless and Cable Infrastructure
- RF Power Alarm
- Envelope Detector

DESCRIPTION


The LTC[®]5505-X is an RF power detector for RF applications operating in the 300MHz to 3.5GHz range. A temperature compensated Schottky diode peak detector and buffer amplifier are combined in a small 5-pin ThinSOT package. The supply voltage range is optimized for operation from a single lithium-ion cell or 3xNiMH.

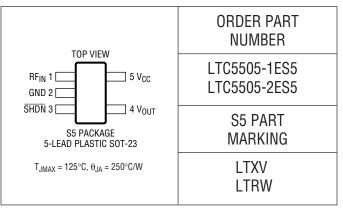
The RF input voltage is peak detected using an on-chip Schottky diode. The detected voltage is buffered and supplied to the V_{OUT} pin. A power saving shutdown mode reduces supply current to less than 2μ A.

The LTC5505-1 operates with input power levels from –28dBm to 18dBm. The LTC5505-2 operates with input power levels from –32dBm to 12dBm.

CT, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation

TYPICAL APPLICATION

Dual Band Mobile Phone Tx Power Control



ABSOLUTE MAXIMUM RATINGS

(Note 1)

V _{CC} , V _{OUT} to GND0.3V to 6.5V RF Voltage
LTC5505-1 (V _{CC} – 2.6V) to 7V
LTC5505-2 (V _{CC} – 1.4V) to 7V
SHDN Voltage to GND $-0.3V$ to (V _{CC} + 0.3V)
I _{VOUT}
Operating Temperature Range (Note 2) – 40°C to 85°C
Maximum Junction Temperature 125°C
Storage Temperature Range – 65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 3.6V, SHDN = V_{CC} = HI, SHDN = 0V = LO, RF Input Signal is Off, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{CC} Operating Voltage			2.7		6	V
I _{VCC} Shutdown Current	SHDN = LO				2	μA
I _{VCC} Operating Current	SHDN = HI, I _{VOUT} = 0mA	•		0.5	0.75	mA
V _{OUT} V _{OL} (No RF Input)	$\frac{R_{LOAD}}{SHDN} = 2k$, $\overline{SHDN} = HI$, Enabled SHDN = LOW, Disabled		170	260 1	350	mV mV
V _{OUT} Output Current	$V_{OUT} = 1.75V, V_{CC} = 2.7V, \Delta V_{OUT} = 10mV$		1	2		mA
V _{OUT} Enable Time	$\overline{\text{SHDN}}$ = HI, C _{LOAD} = 33pF, R _{LOAD} = 2k			8	20	μs
V _{OUT} Bandwidth	$C_{LOAD} = 33 pF, R_{LOAD} = 2k$ (Note 4)			4		MHz
V _{OUT} Load Capacitance	(Note 7)				33	pF
V _{OUT} Slew Rate	$V_{RFIN} = 2V$ Step, $C_{LOAD} = 33pF$, $R_{LOAD} = 2k$ (Note 3)			10		V/µs
V _{OUT} Noise	V_{CC} = 3V, Noise BW = 1.5MHz, 50 Ω RF Input Termination			1.4		mV _{P-P}
SHDN Voltage, Chip Disabled	V _{CC} = 2.7V to 6V	•			0.35	V
SHDN Voltage, Chip Enabled	V _{CC} = 2.7V to 6V		1.4			V
SHDN Input Current	SHDN = 3.6V	٠		24	40	μA

5505f

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 3.6V, SHDN = V_{CC} = HI, SHDN = 0V = LO, RF Input Signal is Off, unless otherwise noted.

PARAMETER	CONDITIONS	MIN TYP MAX	UNITS
RF _{IN} Input Frequency Range (LTC5505-1) (LTC5505-2)		300 to 3000 300 to 3500	MHz MHz
RF _{IN} Input Power Range (LTC5505-1)	$\label{eq:RF} \begin{array}{l} \text{RF Frequency} = 900 \text{MHz} \mbox{ (Note 5, 6, 7) } V_{\text{CC}} = 2.7 \text{V to 6V} \\ \text{RF Frequency} = 1800 \text{MHz} \mbox{ (Note 5, 6, 7)} V_{\text{CC}} = 2.7 \text{V to 6V} \\ \text{RF Frequency} = 2400 \text{MHz} \mbox{ (Note 5, 7)} V_{\text{CC}} = 2.7 \text{V to 6V} \\ \text{RF Frequency} = 2700 \text{MHz} \mbox{ (Note 5, 7)} V_{\text{CC}} = 2.7 \text{V to 6V} \\ \end{array}$	-28 to 18 -26 to 18 -24 to 16 -22 to 16	dBm dBm dBm dBm
RF _{IN} Input Power Range (LTC5505-2)	RF Frequency = 900MHz (Note 5) RF Frequency = 1800MHz (Note 5) RF Frequency = 2400MHz (Note 5) RF Frequency = 2700MHz (Note 5)	-32 to 12 -32 to 12 -32 to 12 -30 to 12	dBm dBm dBm dBm
$\mathrm{RF_{IN}}\mathrm{AC}$ Input Resistance (LTC5505-1)	F = 850MHz F = 1850MHz	165 20	Ω Ω
RF _{IN} Input Shunt Capacitance (LTC5505-1)		2	pF
RF _{IN} AC Input Resistance (LTC5505-2)	F = 850MHz F = 1850MHz	165 59	Ω Ω
RF _{IN} Input Shunt Capacitance (LTC5505-2)		1.3	pF

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

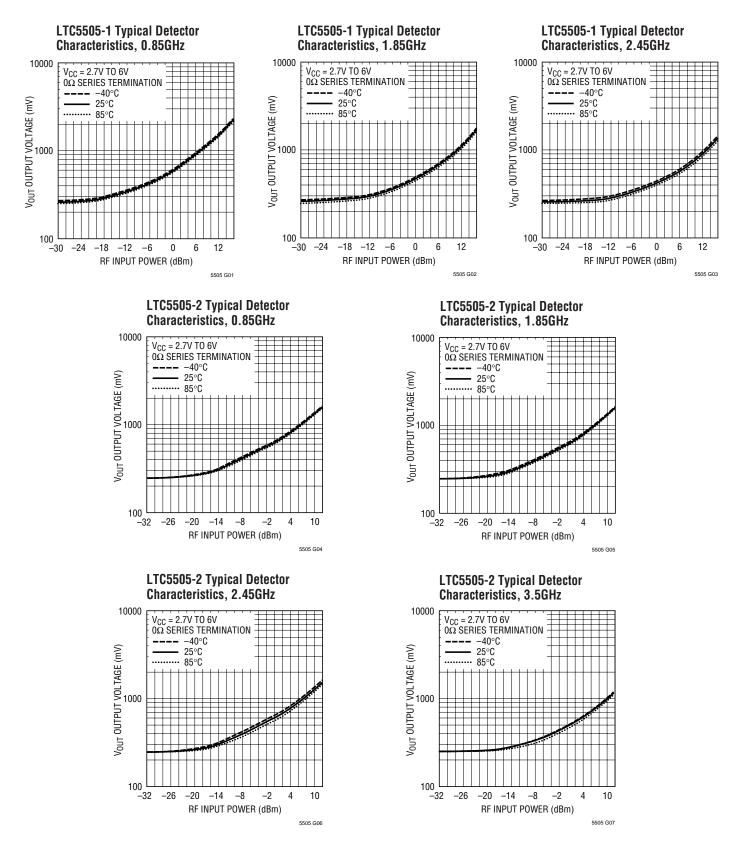
Note 3: The rise time at V_{OUT} is measured between 0.5V and 1.5V.

Note 4: Bandwidth is calculated using the 10% to 90% rise time equation: BW = 0.35/rise time.

Note 5: RF performance is tested at:

1800MHz, 14dBm, -14dBm (LTC5505-1)

1800MHz, 12dBm, -14dBm (LTC5505-2)


Note 6: For input RF power levels >16dBm, V_{CC} minimum is 3V and an RF input series resistor of 20Ω is required to limit the input current.

Note 7: Guaranteed by design.

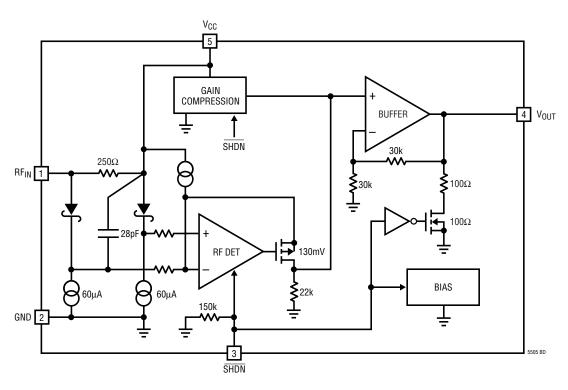
5505

TYPICAL PERFORMANCE CHARACTERISTICS

5505f

PIN FUNCTIONS

 $\mathbf{RF_{IN}}$ (Pin 1): RF Input Voltage. Referenced to V_{CC}. An external coupling capacitor to the RF source is required. The frequency range is 300MHz to 3GHz. This pin has an internal 250 Ω termination, an internal Schottky diode detector and peak detector capacitor. (See Note 6 in the Electrical Characteristics.)


GND (Pin 2): System Ground.

SHDN (Pin 3): Shutdown Input. A logic low on the SHDN pin places the part in shutdown mode. A logic high enables the part. SHDN has an internal 150k pull down resistor to ensure that the part is in shutdown when the drivers are in a tri-state condition.

V_{OUT} (Pin 4): Buffered and Level Shifted Detector Output Voltage.

V_{CC} (Pin 5): Power Supply Voltage, 2.7V to 6V. V_{CC} should be bypassed appropriately with ceramic capacitors.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

Operation

The LTC5505-X RF detector integrates several functions to provide RF power detection over frequencies ranging from 300MHz to 3.5GHz. These functions include an internally compensated buffer amplifier, an RF Schottky diode peak detector and level shift amplifier to convert the RF feedback signal to DC, a delay circuit to avoid voltage transients at VOUT when coming out of shutdown and a gain compression circuit to extend the detector dynamic range.

Buffer Amplifier

The buffer amplifier has a gain of two and is capable of driving a 2mA load. The buffer amplifier typically has an output voltage range of 0.25V to 1.75V.

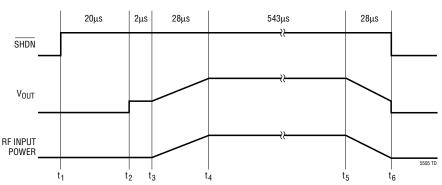
RF Detector

The internal RF Schottky diode peak detector and level shift amplifier converts the RF input signal to a low frequency signal. The detector demonstrates excellent efficiency and linearity over a wide range of input power. The Schottky detector is biased at about 60µA and drives a peak detector capacitor of 28pF.

Gain Compression

The gain compression circuit changes the feedback ratio as the RF peak-detected input voltage increases above 100mV. Below 100mV, the voltage gain from the peak detector to the buffer output is 1.5. Above 200mV, the voltage gain is reduced to 0.7. The compression expands the low power detector range due to higher gain.

Modes of Operation


MODE	SHDN	N OPERATION	
Shutdown	Low	Disabled	
Enable	High	Power Detect	

Applications

The LTC5505-1 and LTC5505-2 can be used as selfstanding signal strength measuring receivers for a wide range of input signals from -32dBm to 18dBm for freauencies from 300MHz to 3.5GHz.

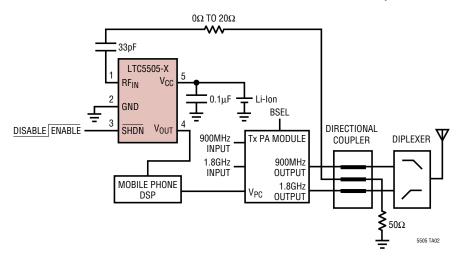
The LTC5505-1 and LTC5505-2 can be used as demodulators for AM and ASK modulated signals with data rates up to 5MHz. Depending on specific application needs, the RSSI output can be split into two branches, providing AC-coupled data (or audio) output and DC-coupled, RSSI output for signal strength measurements and AGC.

The LTC5505-1 and LTC5505-2 can be used for dual band mobile phone transmitter power control (refer to Typical Application schematic on first page). The circuit uses a capacitive tap at the Tx PA outputs. For example, a 0.3pF capacitor (C1) followed by a 100Ω resistor (R1) forms a coupling circuit with about a 20dB loss at the cellular band and 18dB loss at the PCS band, referenced to the LTC5505-2 IC RF input pin. For improved coupling accuracy, the C1 capacitor should be a high tolerance component ($\pm 0.05 \text{pF.}$)

Example of LTC5505-X GSM/DCS Power Control Timing Diagram

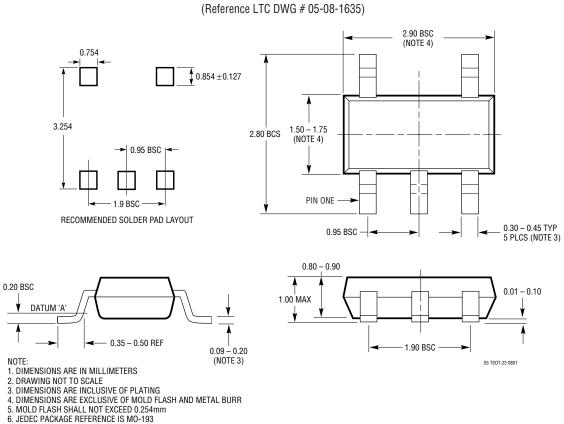
t1: PART COMES OUT OF SHUTDOWN 20µs MAXIMUM PRIOR TO BURST

t2: CIRCUITS POWER UP AND SETTLE. ta: BASEBAND CONTROLLER STARTS RF POWER RAMP UP AT 22µs AFTER SHDN IS ASSERTED HIGH. t4: BASEBAND CONTROLLER COMPLETES RAMP UP


ts: BASEBAND CONTROLLER STARTS RF POWER RAMP DOWN AT END OF BURST.

t6: LTC5505-X RETURNS TO SHUTDOWN MODE BETWEEN BURSTS

5505f



TYPICAL APPLICATION

Dual Band Mobile Phone Tx Power Control with Directional Coupler

PACKAGE DESCRIPTION

S5 Package 5-Lead Plastic TSOT-23

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS	
LT1618	Constant Current/Constant Voltage, 1.4MHz, High Efficiency Boost Regulator	Up to 16 White LEDs, V_{IN} = 1.6V to 18V, V_{OUT} Max = 34V, I_Q = 1.8mA, I_{SD} = <1 μ A, MS10	
LTC1733	Standalone Li-Ion Linear Battery Charger	Monolithic Charger, Thermal Rejection Prevents Overheating, Small Design, Up to 1.5A Charge Current	
LTC1734/ LTC1734L	Li-Ion Linear Battery Charger in ThinSOT	per in ThinSOT 50mA to 700mA Charge Current, Only Three Components for Complete Solution	
LTC1878	$ \begin{array}{ll} \mbox{600mA I}_{OUT}, \mbox{550kHz}, \mbox{ Synchronous Step-Down} \\ \mbox{DC/DC Converter} \end{array} & \begin{array}{ll} \mbox{95\% Efficiency}, \mbox{V}_{IN} = 2.7 \mbox{V to 6V}, \mbox{V}_{OUT} \mbox{ Min} = 0.8 \mbox{V}, \\ \mbox{I}_Q = 10 \mbox{\mu} \mbox{A}, \mbox{I}_{SD} = <1 \mbox{\mu} \mbox{A}, \\ \mbox{MS8} \end{array} $		
LT1932	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
LT1937	1937Constant Current, 1.2MHz, High Efficiency White LED Boost RegulatorUp to 4 White LEDs, $V_{IN} = 2.5V$ to 10V, V_{OUT} Max = 34V, $I_Q = 1.9mA$, $I_{SD} = <1\mu$ A, ThinSOT, SC70		
LTC3200	$ \begin{array}{c} \mbox{C3200} \\ \mbox{White LED Driver} \end{array} \begin{array}{c} \mbox{Up to 6 White LEDs, } V_{\text{IN}} = 2.7 \mbox{V to 4.5V,} \\ \mbox{I}_{\text{Q}} = 8 \mbox{mA, } \mbox{I}_{\text{SD}} = <1 \mbox{\muA, MS10} \end{array} \end{array} $		
LTC3200-5	Low Noise, 2MHz, Regulated Charge Pump White LED Driver	Charge Pump Up to 6 White LEDs, $V_{IN} = 2.7V$ to 4.5V, $I_Q = 6.5mA$, $I_{SD} = <1\mu A$, ThinSOT	
LTC3201	Low Noise, 1.7MHz, Regulated Charge Pump White LED Driver		
LTC3202	Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver	Up to 8 White LEDs, V_{IN} = 2.7V to 4.5V, I_Q = 5mA, I_{SD} = <1 μ A, MS10	
LTC3404	600mA I _{OUT} , 1.4MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, V_{IN} = 2.7V to 6V, V_{OUT} Min = 0.8V, I_Q = 10µA, I_{SD} = <1µA, MS8	
LTC3405/ LTC3405A	300mA I _{OUT} , 1.5MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, V_{IN} = 2.7V to 6V, V_{OUT} Min = 0.8V, I_Q = 20µA, I_{SD} = <1µA, ThinSOT	
LTC3406/ LTC3406B	600mA I _{OUT} , 1.5MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, V_{IN} = 2.5V to 5.5V, V_{OUT} Min = 0.6V, I_Q = 20µA, I_{SD} = <1µA, ThinSOT	
LTC3412			
LTC3411	1.25A I _{OUT} , 4MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, V_{IN} = 2.5V to 5.5V, V_{OUT} Min = 0.8V, I_Q = 60µA, I_{SD} = <1µA, MS10	
LTC3440	600mA I _{OUT} , 2MHz, Synchronous Buck-Boost DC/DC Converter	95% Efficiency, V_{IN} = 2.5V to 5.5V, V_{OUT} Min = 2.5V, I_Q = 25µA, I_{SD} = <1µA, MS10	
LTC4052	Li-Ion Battery Pulse Charger	Minimum Heat Dissipation, Current Limit for Safety, Standalone Charger, Monolithic	
LTC4053	USB Compatible Li-Ion Charger	Standalone, Monolithic, 100mA/500mA or Up to 2A from Wall Adapter	
LTC4412	Low Loss PowerPath [™] Controller	Replaces Power Supply ORing Diodes, High Efficiency	

PowerPath is a trademark of Linear Technology Corporation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Detector category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

HMC439QS16GTR HMC7447-SX MACP-010562-TR1000 R451075000 2085-6013-13 2085-6010-00 32-2018-BU 32-3033-BU 32-3203-BU AD8361ARMZ-REEL LT5534ESC6#TRPBF AD8361ARM-REEL7 AD8314ARMZ-REEL AD8311ACBZ-P7 AD8312ACBZ-P7 AD8313ARMZ-REEL7 AD8314ACPZ-RL7 AD8314ARMZ AD8314ARMZ-REEL7 AD8315ARMZ AD8317ACPZ-R7 AD8319ACPZ-R7 AD8361ARMZ AD8361ARMZ-REEL7 AD8362ARUZ-REEL7 AD8363ACPZ-R7 AD8302ARUZ-RL7 ADL5906ACPZN-R7 ADL5500ACBZ-P7 ADL5502ACBZ-P7 ADL5504ACBZ-P7 ADL5505ACBZ-P7 ADL5506ACBZ-R7 ADL5506WACBZ-R7 ADL5513ACPZ-R7 ADL5903ACPZN-R7 ADL5903SCPZN-R7 ADL6010ACPZN-R2 ADL6010SCPZN ADL6010SCPZN-R7 ADL6010SCPZN-R2 ADL6012ACPZN ADL5511ACPZ-R7 ADL5904ACPZN-R7 ADL5910ACPZN-R7 ADL5920ACPZ HMC1021LP4E HMC1120LP4E HMC1120LP4ETR HMC439Q816G