## feATURES

- Frequency Range: 40MHz to 6GHz
- Linear Dynamic Range: Up to 60dB
- $\pm 0.5 \mathrm{~dB}$ (Typ) Accuracy Over Temperature
- 40dB Channel-to-Channel Isolation at 2 GHz Even with Single-Ended RF Inputs
- Matched Dual-Channel Outputs: <1.25dB (Typ)
- Single-Ended RF Inputs-No Transformer Required
- Accurate RMS Power Measurement of High Crest Factor Modulated Waveforms
- Difference Output Provides VSWR Measurement
- Fast Envelope Detector Outputs
- Fast Response Time: 140ns Rise Time
- Small $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN24 Package


## APPLICATIONS

- VSWR Monitor
- MIMO Transmit Power Control
- Basestation PA Control
- Transmit and Receive Gain Control
- RF Instrumentation
$\boldsymbol{\mathcal { C }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 7262661, 7317357, 7622981.


## Matched Dual-Channel 6GHz RMS Power Detector

## DESCRIPTIOn

The LTC ${ }^{\circledR} 583$ is a dual-channel RMS power detector, capable of measuring two AC signals with wide dynamic range, from -59 dBm to 4 dBm , depending on frequency. Each AC signal's power in decibel-scaled value is precisely converted to a DC voltage on a linear scale, independent of the crest factor of the input signal waveforms. The LTC5583 is suitable for precision power measurement and level control for a variety of RF standards, including LTE, EDGE, W-CDMA, CDMA2000, TD-SCDMA, and WiMAX.

Good channel-to-channel isolation is necessary for operating the dual channels simultaneously. For applications where the two input signals are at the same frequency (e.g. measuring VSWR), the LTC5583 provides 40dB isolation at 2.14GHz even with single-ended inputs. No baluns are needed. Whenthe two inputsignals are at differentfrequencies, the isolation can be as high as 50 dB . The isolation can be improved to $>55 \mathrm{~dB}$ with differential inputs.

The power difference of the two input signals is provided at a difference output pin. Each channel also has a fast envelope detector, which tracks the RF input signal's envelope and outputs a voltage directly proportional to the signal's instantaneous power. The envelope detectors can be disabled to reduce power consumption.

## TYPICAL APPLICATION

## Block Diagram



Output Voltage and Linearity Error vs RF Input Power, 2140MHz CW Inputs, Single-Ended Drive


# ABSOLUTE MAXIMUM RATINGS <br> （Note 1） <br> Supply Voltage．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3．8V <br> Enable Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．-0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$ <br> $V_{0 S}$ Voltage．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．-0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$ <br> INV Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．-0.3 V to 3.6 V <br> Input Signal Power（Single－Ended，50 2 ）．．．．．．．．．．．．． 18 dBm <br> Input Signal Power（Differential，50 $)$ ）．．．．．．．．．．．．．．．．．24dBm <br> TJMAX．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $125^{\circ} \mathrm{C}$ <br> Operating Temperature Range ．．．．．．．．．．．．．．．．．$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ <br> Storage Temperature Range ．．．．．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ 

## PIn CONFIGURATION

| TOP VIEW |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
| DECA | －1］г－ー－ー－ーーー， | $\mathrm{V}_{\mathrm{OA}}$ |
| $V_{\text {CCA }}$ | －2］ | RT1 |
| $V_{\text {CCR }}$ | － 25 ¢ | $V_{\text {ODF }}$ |
| EN | 4！GND | $\mathrm{V}_{0}$ |
| $V_{\text {CCB }}$ | － | RT2 |
| DECB | －！－－－－－－－－ 13 | $\mathrm{V}_{0 B}$ |
|  |  |  |
|  |  |  |
| 24－LEAD（ $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ ）PLASTIC QFN |  |  |
| $\begin{gathered} T_{J M A X}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=37^{\circ} \mathrm{C} / \mathrm{W} \\ \text { EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB } \end{gathered}$ |  |  |

## ORDER INFORMATION

| LEAD FREE FINISH | TAPE AND REEL | PART MARKING | PACKAGE DESCRIPTION | TEMPERATURE RANGE |
| :--- | :--- | :--- | :--- | :--- |
| LTC5583IUF\＃PBF | LTC5583IUF\＃TRPBF | 5583 | $24-$ Lead $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$ Plastic QFN | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

Consult LTC Marketing for parts specified with wider operating temperature ranges．
Consult LTC Marketing for information on non－standard lead based finish parts．
For more information on lead free part marking，go to：http：／／www．linear．com／leadfree／
For more information on tape and reel specifications，go to：http：／／www．linear．com／tapeandreel／

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}$. Test circuits are shown in Figures 1 and 2 (Note 2).

| PARAMETER | CONDITIONS |  |  | MIII | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC Input |  |  |  |  |  |  |  |
| Input Frequency Range | (Note 4) |  |  |  | 40 to 6000 |  | MHz |
| Input Impedance | Differential |  |  |  | 400/0.5 |  | ת//pF |
| $\mathrm{f}_{\text {RF }}=450 \mathrm{MHz}$ (Single-Ended Inputs) |  |  |  |  |  |  |  |
| Linear Dynamic Range | CW, 50』, $\pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  |  | 63 |  | dB |
|  |  |  | $\bullet$ |  | 57 |  | dB |
| RF Input Power Range | CW, 50』, $\pm 1$ dB Linearity Error (Note 5) |  |  |  | -59 to 4 |  | dBm |
| Output Slope |  |  |  |  | 29.6 |  | $\mathrm{mV} / \mathrm{dB}$ |
| Logarithmic Intercept | (Note 3) |  |  |  | -78.5 |  | dBm |
| Deviation from CW Response | 11dB Peak to Average Ratio (3-Carrier CDMA2K) 12dB Peak to Average Ratio (4-Carrier WCDMA) |  |  |  | $\begin{aligned} & \hline 0.7 \\ & 0.4 \end{aligned}$ |  | dB dB |
| Input A to Input B Isolation | Single-Ended Inputs |  |  |  | 77 |  | dB |
| Input A to Output B Isolation Input B to Output A Isolation | Single-Ended Inputs (Notes 6, 7) | $\begin{aligned} & \text { Frequency Separation }=0 \mathrm{~Hz} \\ & \text { Frequency Separation }=1 \mathrm{MHz} \\ & \text { Frequency Separation }=10 \mathrm{MHz} \\ & \hline \end{aligned}$ |  |  | $\begin{array}{r} 50 \\ >55 \\ >55 \\ \hline \end{array}$ |  | dB dB dB |

## $\mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz}$ (Single-Ended Inputs)

| Linear Dynamic Range | CW, 50 , $\pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | 61 | dB |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - | 56 | dB |
| RF Input Power Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | -58 to 3 | dBm |
| Output Slope |  |  |  | 29.7 | $\mathrm{mV} / \mathrm{dB}$ |
| Logarithmic Intercept | (Note 3) |  |  | -77.8 | dBm |
| Deviation from CW Response | 11dB Peak to Average Ratio (3-Carrier CDMA2K) <br> 12dB Peak to Average Ratio (4-Carrier WCDMA) |  |  | $\begin{aligned} & 0.7 \\ & 0.4 \end{aligned}$ | dB dB |
| Input A to Input B Isolation | Single-Ended inputs |  |  | 68 | dB |
| Input A to Output B Isolation Input B to Output A Isolation | Single-Ended inputs (Notes 6, 7) | Frequency Separation $=0 \mathrm{~Hz}$ <br> Frequency Separation $=1 \mathrm{MHz}$ <br> Frequency Separation $=10 \mathrm{MHz}$ |  | $\begin{aligned} & 41 \\ & 52 \\ & 51 \end{aligned}$ | dB dB dB |

$\mathrm{f}_{\mathrm{RF}}=2140 \mathrm{MHz}$ (Single-Ended Inputs)

| Linear Dynamic Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | 50 | 60 |  | dB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\bullet$ |  | 55 |  | dB |
| RF Input Power Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | -58 to 2 |  |  | dBm |
| Output Slope |  |  |  | 26 | 29.6 | 34 | $\mathrm{mV} / \mathrm{dB}$ |
| Logarithmic Intercept | (Note 3) |  |  | -90 | -77.4 | -64 | dBm |
| Channel Mismatch | Input Power = OdBm to Both Channels |  |  |  | <1.25 |  | dB |
| Deviation from CW Response | 11dB Peak to Average Ratio (3-Carrier CDMA2K) 12dB Peak to Average Ratio (4- Carrier WCDMA) |  |  |  | $\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$ |  | dB dB |
| Input A to Input B Isolation | Single-Ended Inputs |  |  |  | 54 |  | dB |
| Input A to Output B Isolation Input B to Output A Isolation | Single-Ended Inputs (Notes 6, 7) | Frequency Separation $=0 \mathrm{~Hz}$ <br> Frequency Separation $=1 \mathrm{MHz}$ <br> Frequency Separation $=10 \mathrm{MHz}$ |  |  | $\begin{aligned} & 40 \\ & 52 \\ & 51 \end{aligned}$ |  | dB $d B$ $d B$ |
|  | Differential Inputs (Notes 6, 7) | $\begin{aligned} & \text { Frequency Separation }=0 \mathrm{~Hz} \\ & \text { Frequency Separation }=1 \mathrm{MHz} \\ & \text { Frequency Separation }=10 \mathrm{MHz} \end{aligned}$ |  |  | $\begin{aligned} & >55 \\ & >55 \\ & >55 \end{aligned}$ |  | dB dB dB |

ELECTRICAL CHARACTGRISTICS The • denotes the specifications which apply over the full operating temperature range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}$. Test circuits are shown in Figures 1 and 2 (Note 2).

| PARAMETER | CONDITIONS |  |  | MII | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{RF}}=2700 \mathrm{MHz}$ (Single-Ended Inputs) |  |  |  |  |  |  |  |
| Linear Dynamic Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  |  | 59 |  | dB |
|  |  |  | $\bullet$ |  | 52 |  | dB |
| RF Input Power Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  |  | -56 to 3 |  | dBm |
| Output Slope |  |  |  |  | 30.0 |  | $\mathrm{mV} / \mathrm{dB}$ |
| Logarithmic Intercept | (Note 3) |  |  |  | -74.9 |  | dBm |
| Deviation from CW Response | 12dB Peak to Average Ratio (WiMAX OFDM) |  |  |  | 0.6 |  | dB |
| Input A to Input B Isolation | Single-Ended Inputs |  |  |  | 52 |  | dB |
| Input A to Output B Isolation Input B to Output A Isolation | Singled-Ended Inputs (Notes 6, 7) | $\begin{aligned} & \text { Frequency Separation }=0 \mathrm{~Hz} \\ & \text { Frequency separation }=1 \mathrm{MHz} \\ & \text { Frequency separation }=10 \mathrm{MHz} \end{aligned}$ |  |  | $\begin{aligned} & 33 \\ & 45 \\ & 44 \end{aligned}$ |  | dB dB dB |
|  | Differential Inputs (Notes 6, 7) | $\begin{aligned} & \text { Frequency Separation }=0 \mathrm{~Hz} \\ & \text { Frequency separation }=1 \mathrm{MHz} \\ & \text { Frequency separation }=10 \mathrm{MHz} \end{aligned}$ |  |  | $\begin{gathered} 50 \\ >55 \\ >55 \end{gathered}$ |  | dB $d B$ $d B$ |

$\mathrm{f}_{\mathrm{RF}}=3600 \mathrm{MHz}$ (Differential Inputs)

| Linear Dynamic Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | 56 | dB |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\bullet$ | 49 | dB |
| RF Input Power Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | -53 to 3 | dBm |
| Output Slope |  |  |  | 30.2 | $\mathrm{mV} / \mathrm{dB}$ |
| Logarithmic Intercept | (Note 3) |  |  | -73.1 | dBm |
| Deviation from CW Response | 12dB Peak to Average Ratio (WiMAX OFDM) |  |  | 0.4 | dB |
| Input A to Input B Isolation | Differential Inputs |  |  | 70 | dB |
| Input A to Output B Isolation Input B to Output A Isolation | Differential Inputs (Notes 6, 7) | $\begin{aligned} & \text { Frequency Separation }=0 \mathrm{~Hz} \\ & \text { Frequency Separation }=1 \mathrm{MHz} \\ & \text { Frequency Separation }=10 \mathrm{MHz} \end{aligned}$ |  | $\begin{aligned} & \hline 47 \\ & >55 \\ & >55 \end{aligned}$ | dB dB dB |

## $\mathrm{f}_{\mathrm{RF}}=5800 \mathrm{MHz}$ (Differential Inputs)

| Linear Dynamic Range | CW, 50 $\Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | 49 | dB |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\bullet$ | 44 | dB |
| RF Input Power Range | CW, $50 \Omega, \pm 1 \mathrm{~dB}$ Linearity Error (Note 5) |  |  | -44 to 5 | dBm |
| Output Slope |  |  |  | 31.3 | $\mathrm{mV} / \mathrm{dB}$ |
| Logarithmic Intercept | (Note 3) |  |  | -63.2 | dBm |
| Deviation from CW Response | 12dB Peak to Average Ratio (WiMAX OFDM) |  |  | 0.5 | dB |
| Input A to Input B Isolation | Differential Inputs |  |  | 50 | dB |
| Input A to Output B Isolation Input B to Output A Isolation | Differential Inputs (Notes 6, 7) | $\begin{aligned} & \text { Frequency Separation }=0 \mathrm{~Hz} \\ & \text { Frequency Separation }=1 \mathrm{MHz} \\ & \text { Frequency Separation }=10 \mathrm{MHz} \end{aligned}$ |  | $\begin{aligned} & 30 \\ & 42 \\ & 41 \end{aligned}$ | dB dB dB |

## Output Interface

| $\mathrm{V}_{\text {OA }}, \mathrm{V}_{\text {OB }}$ | Output DC Voltage | No RF Signal Present | 0.45 | V |
| :---: | :---: | :---: | :---: | :---: |
|  | Output Impedance |  | 50 | $\Omega$ |
|  | IOUT | Source/Sink | 5/5 | mA |
|  | Rise Time, 10\% to 90\% | 0.5 V to 2.2V, $\mathrm{f}_{\text {RF }}=100 \mathrm{MHz}, \mathrm{C}_{\text {FLTRA }}=\mathrm{C}_{\text {FLTRB }}=8.2 \mathrm{nF}$ | 140 | ns |
|  | Fall Time, 90\% to 10\% | 2.2 V to 0.5V, $\mathrm{f}_{\text {RF }}=100 \mathrm{MHz}, \mathrm{C}_{\text {FLTRA }}=\mathrm{C}_{\text {FLTRB }}=8.2 \mathrm{nF}$ | 3.5 | $\mu \mathrm{S}$ |

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}$. Test circuits are shown in Figures 1 and 2 (Note 2).

| PARAMETER |  | CONDITIONS | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {ODF }}$ | Output DC Voltage | No RF Signal Present, $\mathrm{V}_{0 S}=0 \mathrm{~V}$ | 0.05 |  | V |
|  | Output Impedance |  | 5 |  | $\Omega$ |
|  | Iout | Source/Sink | 5/5 |  | mA |
|  | Rise Time, 10\% to 90\% | 50 mV to $1.8 \mathrm{~V}, \mathrm{f}_{\text {RF }}=100 \mathrm{MHz}, \mathrm{C}_{\text {FLTRA }}=\mathrm{C}_{\text {FLTRB }}=8.2 \mathrm{nF}$ | 170 |  | ns |
|  | Fall Time, 90\% to 10\% | 1.8 V to 50 mV , $\mathrm{f}_{\text {RF }}=100 \mathrm{MHz}, \mathrm{C}_{\text {FLTRA }}=\mathrm{C}_{\text {FLTRB }}=8.2 \mathrm{nF}$ | 3.5 |  | $\mu \mathrm{s}$ |
| ENVA ENVB | Output DC Voltage | No RF Signal Present | 2.15 |  | V |
|  | Output Impedance |  | 140 |  | $\Omega$ |
|  | Iout | Source/Sink | 4.0/1.8 |  | mA |
|  | Rise Time, 10\% to 90\% | 0.9 V to 2.1 V | 11 |  | ns |
|  | Fall Time, 90\% to 10\% | 2.1V to 0.9V | 11 |  | ns |
|  | -3dB Bandwidth |  | 50 |  | MHz |

Control Interface

| EN | Input High Voltage |  | $\bullet$ | 2 |  |  | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Input Low Voltage |  | $\bullet$ |  |  | 0.3 | V |
|  | Input Current | Applied Voltage $=3.3 \mathrm{~V}$ |  |  | 100 | 180 | $\mu \mathrm{A}$ |
| INV | Input High Voltage |  |  | 2 |  |  | V |
|  | Input Low Voltage |  |  |  |  | 1 | V |
|  | Input Current | Applied Voltage $=3.3 \mathrm{~V}$ |  |  | 0 |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{0}$ | Input Voltage Range |  |  | 0 |  | 2.4 | V |
|  | Input Current | Applied Voltage $=2.4 \mathrm{~V}$ |  |  | 77 |  | $\mu \mathrm{A}$ |
| Power Supply |  |  |  |  |  |  |  |
| Supply Voltage |  |  |  | 3.1 | 3.3 | 3.5 | V |
| Supply Current |  | Envelope Detectors Turned Off |  |  | 80.5 | 100 | mA |
| Supply Current |  | Envelope Detectors Turned On |  |  | 90.1 |  | mA |
| Shutdown Current |  | $\mathrm{EN}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.5 \mathrm{~V}$ |  |  | 0.1 | 20 | $\mu \mathrm{A}$ |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC5583 is guaranteed functional over the temperature range from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 3: Logarithmic Intercept is an extrapolated input power level from the best-fit log-linear straight line, where the output voltage is OV .
Note 4: Operation over a wider frequency range is possible with reduced performance. Consult the factory for information and assistance.
Note 5 : Linearity error is the difference in dB between the actual output and the best-fit straight line at $25^{\circ} \mathrm{C}$ (using linear regression between $P_{\text {IN }}=-50 \mathrm{dBm}$ and 0 dBm for $450 \mathrm{MHz}, 880 \mathrm{MHz}, 2140 \mathrm{MHz}, 2700 \mathrm{MHz}$;
between $\mathrm{P}_{\mathrm{IN}}=-40 \mathrm{dBm}$ and 0 dBm for $3600 \mathrm{MHz}, 5800 \mathrm{MHz}$ ). The dynamic range is defined as the range of input power over which the linearity error is within $\pm 1 \mathrm{~dB}$.
Note 6: Input A to Output B (Channel A to Channel B) isolation is defined as the ratio of input power levels at the two channels when the interfering channel (Channel A with higher power) results in a 1 dB output deviation in the interfered channel (Channel B with lower power) and vice versa. Sweep one channel input power level while holding the other channel input at -45 dBm for $450 \mathrm{MHz}, 880 \mathrm{MHz}, 2140 \mathrm{MHz}, 2700 \mathrm{MHz}, 3600 \mathrm{MHz}$, and at -35 dBm for 5800 MHz .
Note 7: For frequency separation $=0 \mathrm{OHz}$ between the two input signals, channel-to-channel isolation is a function of the phase difference between these two signals. The worst-case isolation is assumed.

TYPICAL PGRFORMAOCE CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuits shown in Figures 1 and 2.

Output Voltage vs RF Input Power CW Input at Various Frequencies


Slope vs Frequency


Slope Distribution vs Temperature 2140MHz CW Input


Linearity Error vs RF Input Power
CW Input at Various Frequencies


Logarithmic Intercept vs Frequency


Intercept Distribution vs Temperature 2140MHz CW Input


## TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. For temperature compensation of logarithmic intercept at 880 MHz , set $R_{P 1}=0$ pen, $R_{P 2}=0, R_{T 1}=11.5 \mathrm{k} \Omega, R_{T 2}=1.13 \mathrm{k} \Omega$. See Figure 1 .

Output Voltage and Linearity Error vs RF Input Power, 880MHz CW Inputs, Single-Ended Drive


Output Voltage and Linearity Error vs RF Input Power, 880MHz CW Inputs, Single-Ended Drive, 5 Devices


Channel Matching vs RF Input Power, 880 MHz CW Inputs, Single-Ended Drive, 5 Devices


Difference Output and Linearity
Error vs RF Input Power, 880MHz
CW Inputs, Single-Ended Drive


Modulation Deviation vs RF Input Power, 880MHz Inputs, Single-Ended Drive


Input A to Output B Isolation, Input B to Output A Isolation, 880MHz CW Inputs, Single-Ended Drive


## TYPICAL PERFORMANCE CHARACTERISTICS

$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. For temperature compensation of logarithmic intercept at 2140 MHz , set $R_{P 1}=$ Open, $R_{P 2}=0, R_{T 1}=9.76 \mathrm{k} \Omega, R_{T 2}=1.1 \mathrm{k} \Omega$. See Figure 1 .

Output Voltage and Linearity Error vs RF Input Power, 2140 MHz CW Inputs, Single-Ended Drive


Output Voltage and Linearity Error vs RF Input Power, 2140 MHz CW Inputs, Single-Ended Drive, 5 Devices


Channel Matching vs RF Input Power, 2140MHz CW Inputs, Single-Ended Drive, 5 Devices


Difference Output and Linearity Error vs RF Input Power, 2140MHz CW Inputs, Single-Ended Drive


Modulation Deviation
vs RF Input Power, 2140MHz
Inputs, Single-Ended Drive


Input A to Output B Isolation, Input B to Output A Isolation, 2140MHz CW Inputs, Single-Ended Drive


## TYPICAL PERFORMANCE CHARACTERISTICS

$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. For temperature compensation of logarithmic intercept at 2700 MHz , set $\mathrm{R}_{\mathrm{P} 1}=$ Open, $\mathrm{R}_{\mathrm{P} 2}=0, \mathrm{R}_{\mathrm{T} 1}=8.87 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{T} 2}=1.21 \mathrm{k} \Omega$. See Figure 1 .

Output Voltage and Linearity Error vs RF Input Power, 2700MHz CW Inputs, Single-Ended Drive


Output Voltage and Linearity Error vs RF Input Power, 2700 MHz CW Inputs, Single-Ended Drive, 5 Devices


Channel Matching vs RF Input Power, 2700MHz CW Inputs, Single-Ended Drive, 5 Devices


Difference Output and Linearity Error vs RF Input Power, 2700MHz CW Inputs, Single-Ended Drive


Modulation Deviation
vs RF Input Power, 2700MHz
Inputs, Single-Ended Drive


Input A to Output B Isolation, Input $B$ to Output A Isolation, 2700MHz CW Inputs, Single-Ended Drive


## TYPICAL PERFORMANCE CHARACTERISTICS

$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. For temperature compensation of logarithmic intercept at 3600 MHz , set $R_{P 1}=0$ pen, $R_{P 2}=0, R_{T 1}=10.2 \mathrm{k} \Omega, R_{T 2}=1.65 \mathrm{k} \Omega$. See Figure 2.

Output Voltage and Linearity Error vs RF Input Power, 3600MHz CW Inputs, Differential Drive


Output Voltage and Linearity Error vs RF Input Power, 3600MHz CW Inputs, Differential Drive, 3 Devices


Channel Matching vs RF Input Power, 3600 MHz CW Inputs, Differential Drive, 3 Devices


Difference Output and Linearity
Error vs RF Input Power, 3600 MHz
CW Inputs, Differential Drive


Modulation Deviation vs RF Input Power, 3600 MHz Inputs, Differential Drive


Input A to Output B Isolation, Input B to Output A Isolation, 3600 MHz CW Inputs, Differential Drive


## TYPICAL PERFORMANCE CHARACTERISTICS

$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. For temperature compensation of logarithmic intercept at 5800 MHz , set $R_{P 1}=0$ pen, $R_{P 2}=0, R_{T 1}=10 \mathrm{k} \Omega, R_{T 2}=1.47 \mathrm{k} \Omega$. See Figure 2.

Output Voltage and Linearity Error
vs RF Input Power, 5800MHz CW Inputs, Differential Drive


Output Voltage and Linearity Error vs RF Input Power, 5800MHz CW Inputs, Differential Drive, 3 Devices


Channel Matching vs RF Input Power, 5800MHz CW Inputs, Differential Drive, 3 Devices


Difference Output and Linearity Error vs RF Input Power, 5800MHz CW Inputs, Differential Drive


Modulation Deviation vs RF Input Power, 5800MHz Inputs, Differential Drive


Input A to Output B Isolation,
Input $B$ to Output A Isolation, 5800 MHz CW Inputs, Differential Drive

$\mathrm{A} \rightarrow \mathrm{B}$ INDICATES: CH A = INTERFERING CHANNEL CH B = INTERFERED CHANNEL
$\mathrm{B} \rightarrow \mathrm{A}$ INDICATES: CH B $=$ INTERFERING CHANNEL CH A = INTERFERED CHANNEL

## INTERFERED CHANNEL

INPUT $=-35 \mathrm{dBm}$, INTERFERING CHANNEL INPUT SWEPT

FREQ SEP = FREQUENCY
SEPARATION BETWEEN CH A INPUT AND CH B INPUT

INTERFERING CHANNEL
INPUT POWER ( dBm )
${ }^{5583} 636$

## TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuits shown in Figures 1 and 2.

Input A to Input B Isolation,
Single-Ended Inputs


Output Response to RF Burst
Input, 100MHz CW Input,
$C_{\text {FLTRA }}=C_{\text {FLTRB }}=8.2 \mathrm{nF}$


Supply Current vs Supply Voltage Envelope Detectors Disabled


Input A to Input B Isolation, Differential Inputs


Output Response to RF Burst Input, 100MHz CW Input, $C_{\text {FLTRA }}=C_{\text {FLTRB }}=1 \mu \mathrm{~F}$


Supply Current vs Supply Voltage Envelope Detectors Enabled


## TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuits shown in Figures 1 and 2.


Envelope Detector Output and Input Signal Envelope, 100MHz Input Average Power $=-30 \mathrm{dBm}$


OSCILLOSCOPE WAVEFORM ACQUIRED IN AVERAGE MODE

Envelope Detector Output Over
Temperature, 2140MHz Input
Average Power $=-30 \mathrm{dBm}$


Envelope Detector Peak Output Voltage vs Crest Factor, 2140MHz Input


Envelope Detector Output and Input Signal Envelope, 100MHz Input Average Power $=-30 d B m$


OSCILLOSCOPE WAVEFORM ACQUIRED IN AVERAGE MODE

Envelope Detector Output Over
Temperature, 2140MHz Input
Average Power $=-30 \mathrm{dBm}$


## PIn functions

DECA, DECB (Pins 1, 6): Input Common Mode Decoupling Pins for Channel A and Channel B. These pins are internally biased to 1.6 V . The input impedance is $1.75 \mathrm{k} \Omega$ in parallel with a 40 pF internal shunt capacitor to ground. The impedance between DECA and $I N^{+} A\left(\right.$ or $\left.I N^{-} A\right)$ is $200 \Omega$. The pin can be connected to the center tap of an external balun or to a capacitor to ground.
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}, \mathrm{V}_{\text {CCR }}$ (Pins 2, 5, 3): Power Supply Pins for Channel A, Channel B, and Bias Circuits. Typical total current consumption of these pins is 81 mA . Each of these pins should be bypassed with 1 nF and $1 \mu \mathrm{~F}$ capacitors, placed as close to the IC as possible.
EN (Pin 4): Enable Input Pin. An applied voltage above 2 V will activate the bias for the IC. For an applied voltage below $0.3 V$, the circuit will be shut down (disabled) with a corresponding reduction in power supply current. If the enable function is not required, then this pin can be connected to $\mathrm{V}_{\mathrm{Cc}}$. The applied voltage to this pin should not exceed $\mathrm{V}_{\text {cc }}$ by more than 0.3 V .
RP2 (Pin9): Pinfor Setting Polarity of Second OrderOutput Temperature Compensation. Connect this pin to ground to change the output voltage inversely proportional to ambient temperature. Float this pin to change the output voltage proportional to ambient temperature.
INV (Pin 12): Control Input Pin to Invert the Polarity of the Difference Output $V_{\text {OdF }}$.
RT2 (Pin 14): Second Order Output Temperature Compensation Pin for Both Channels. Connect this pin to ground to disable. The output voltage will increase or decrease with the ambient temperature by connecting this pin to ground via an off-chip resistor, depending on the polarity set by RP2 pin.
$V_{0 S}$ (Pin 15): Input Pin for Setting the DC Offset of the Difference Output $V_{\text {odF. }}$. It is recommended to set this DC offset such that $V_{\text {ODF }}$ does not fall below 100 mV .
$V_{\text {ODF }}$ (Pin 16): DC Difference Output. This voltage is equal to the difference of the two channels' output voltages, plus a DC offset:

$$
\begin{aligned}
& V_{O D F}=\left(V_{O A}-V_{O B}\right)+V_{O S} \text {, if INV pin is held low, }(<1 V) \\
& V_{O D F}=\left(V_{O B}-V_{O A}\right)+V_{O S} \text {, f INV pin is held high, }(>2 V)
\end{aligned}
$$

RT1 (Pin 17): First Order Output Temperature Compensation Pin for Both Channels. Connect this pin to ground to disable. The output voltage will increase or decrease with the ambient temperature by connecting this pin to ground via an off-chip resistor, depending on the polarity set by RP1 pin.
$\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}$ (Pins 18, 13): DC Output of Channel A and Channel B, respectively.
$V_{\text {cCN }}$ (Pin 19): Power Supply Pin for the Envelope Detectors in Both Channels. Typical total current consumption of this pin is 9.6 mA . This pin should be bypassed with 1 nF and $1 \mu \mathrm{~F}$ capacitors. Connect this pin to ground to disable the envelope detectors.
ENVA, ENVB (Pins 20, 11): Envelope Detector OutputPins for Channel A and Channel B, respectively. Each output tracks the input signal's RF envelope and outputs a DC voltage directly proportional to the signal power, normalized to the average power.
FLTA, FLTB (Pins 21, 10): Connection for an ExternalFiltering Capacitor for Channel A and Channel B, respectively. A minimum 8 nF capacitor is required for stable AC average power measurement. Each capacitor should be connected between FLTA and $V_{C C A}$, and between FLTB and $V_{\text {CCB }}$.
RP1 (Pin 22): Pin for Setting Polarity of First Order Output Temperature Compensation. Connect this pin to ground to change the output voltage proportional to ambient temperature. Float this pin to change the output voltage inversely proportional to ambient temperature.
$\operatorname{IN}^{+} A, \operatorname{IN}^{-} \mathrm{A}, \mathrm{IN}^{+} \mathrm{B}, \operatorname{IN}-\mathrm{B}$ (Pins 24, 23, 7, 8): Differential RF Input Signal Pins for Channel A and Channel B. Each channel can be driven with a single-ended or differential signal. These pins are internally biased to 1.6 V and should be DC-blocked externally. The differential impedance is $400 \Omega$.

GND (Exposed Pad Pin 25): Circuit Ground Return for the Entire IC. This must be soldered to the printed circuit board ground plane.

## TEST CIRCUITS



| COMP | VALUE | SIZE | PART NUMBER |
| :---: | :---: | :---: | :--- |
| C | 20 pF | 0402 | Murata GRM1555CIH200JB01 |
| C | 100 pF | 0402 | Murata GRM1555CIH101JD01B |
| $C$ | 1 nF | 0402 | Murata GRM155R71H102KA01D |
| $C$ | 100 nF | 0402 | Murata GRM155R61A104KA01 |
| $C$ | $1 \mu \mathrm{~F}$ | 0402 | Murata GRM155R60J105KE19 |
| R | $75 \Omega$ | 0402 | Vishay CRCW040275ROFKED |


| FREQUENCY | RP1 | RP2 | RT1 | RT2 | INPUT RETURN LOSS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 450 MHz | Open | $0 \Omega$ | $11.5 \mathrm{k} \Omega$ | $1.13 \mathrm{k} \Omega$ | 21 dB |
| 880 MHz | Open | $0 \Omega$ | $11.5 \mathrm{k} \Omega$ | $1.13 \mathrm{k} \Omega$ | 14 dB |
| 2140 MHz | Open | $0 \Omega$ | $9.76 \mathrm{k} \Omega$ | $1.10 \mathrm{k} \Omega$ | 14 dB |
| 2700 MHz | Open | $0 \Omega$ | $8.87 \mathrm{k} \Omega$ | $1.21 \mathrm{k} \Omega$ | 14 dB |

Figure 1. Test Circuit Optimized for 40MHz to 3GHz Operation in Single-Ended Input Configuration

## LTC5583

TEST CIRCUITS


| COMP | VALUE | SIZE | PART NUMBER |
| :---: | :---: | :---: | :--- |
| C | 20 pF | 0402 | Murata GRM1555CIH200JB01 |
| C | 100 pF | 0402 | Murata GRM1555CIH101JD01B |
| C | 1 nF | 0402 | Murata GRM155R71H102KA01D |
| C | 100 nF | 0402 | Murata GRM155R61A104KA01 |
| C | $1 \mu \mathrm{~F}$ | 0402 | Murata GRM155R60J105KE19 |
| R | $62 \Omega$ | 0402 | Vishay CRCW040262R0FKED |


| FREQUENCY | L1, L2 | C1, C2 | T1, T2 | RP1 | RP2 | RT1 | RT2 | INPUT RETURN LOSS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2140 MHz | 2.7 nH | 1 pF | Murata LDB212G1005C-001 | Open | 0 | $9.76 \mathrm{k} \Omega$ | $1.10 \mathrm{k} \Omega$ | 15 dB |
| 2700 MHz | 1.5 nH | X | TDK_HHM1710J1 | Open | 0 | $8.87 \mathrm{k} \Omega$ | $1.21 \mathrm{k} \Omega$ | 15 dB |
| 3600 MHz | 1.2 nH | 0.3 pF | TDK_HHM1727D1 | Open | 0 | $10.2 \mathrm{k} \Omega$ | $1.65 \mathrm{k} \Omega$ | 17 dB |
| 5800 MHz | Short | 0.3 pF | TDK_HHM1733B1 | Open | 0 | $10.0 \mathrm{k} \Omega$ | $1.47 \mathrm{k} \Omega$ | 11 dB |

Figure 2. Test Circuit Optimized for 2GHz to 6GHz Operation in Differential Input Configuration

## TEST CIRCUITS



Figure 3. Top Side of Evaluation Board for Single-Ended Input Configuration

## APPLICATIONS InFORMATION

The LTC5583 is a dual-channel true RMS power detector, capable of measuring two RF signals over the frequency range from 40 MHz to 6 GHz , independent of input waveforms with different crest factors such as CW, CDMA2K, WCDMA, LTE and WiMAX signals. Up to 60dB dynamic range is achieved with very stable output over the full temperature range from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Input sensitivity can be as low as -56 dBm up to 2.7 GHz even with singleended $50 \Omega$ input termination.

## RF Inputs

The differential RF inputs are internally biased at 1.6 V . The differential impedance is about $400 \Omega$. These pins should be DC blocked when connected to ground or other matching components.
The LTC5583 can be driven in a single-ended configuration. The single-ended input impedance vs frequency is given in Table 1. Figure 4 shows the simplified circuit of this single-ended configuration for each channel. The DECA pin can be either left floating or AC-coupled to ground via an external capacitor. While the RF signal is applied to the $I N^{+} A\left(\right.$ or $\left.\mathbb{I N}^{-} A\right)$ pin, the other pin, $\mathbb{I N}^{-} A\left(\right.$ or $\left.I N^{+} A\right)$, should be AC-coupled to ground. By simply terminating the signal side of the inputs with a $75 \Omega$ resistor in front of the AC-blocking capacitor and coupling the other side to ground using a 1 nF capacitor, a broadband $50 \Omega$ input match can be achieved with typical input return loss better than 14 dB from 40 MHz to 2.7 GHz . At higher RF frequencies, additional matching components may be needed. Contact LTC Applications for more information.

Table 1. Single-Ended Input Impedance

| FREQUENCY (MHz) | $\begin{gathered} \text { INPUT } \\ \text { IMPEDANCE }(\Omega) \end{gathered}$ | S11 |  |
| :---: | :---: | :---: | :---: |
|  |  | MAG | ANGLE ( ${ }^{\circ}$ ) |
| 40 | 207.4-j15.5 | 0.613 | -2.2 |
| 100 | 193.0 - j34.0 | 0.599 | -5.4 |
| 200 | 188.9 - j56.8 | 0.611 | -8.9 |
| 400 | 151.6 - j68.7 | 0.576 | -15.2 |
| 600 | 127.8 - j62.8 | 0.530 | -19.5 |
| 800 | 107.6-j66.0 | 0.513 | -26.2 |
| 1000 | 96.1 - j61.5 | 0.485 | -30.3 |
| 1200 | 85.6 - j59.2 | 0.467 | -35.4 |
| 1400 | 76.2 - j57.4 | 0.455 | -41.0 |
| 1600 | 67.7 - j55.0 | 0.445 | -47.1 |
| 1800 | 60.4 - j52.0 | 0.435 | -53.5 |
| 2000 | 54.9 - j48.7 | 0.423 | -59.4 |
| 2200 | 50.3 - j45.6 | 0.414 | -65.2 |
| 2400 | 46.5 - j42.7 | 0.406 | -70.8 |
| 2600 | 43.7 - j39.8 | 0.396 | -76.0 |
| 2800 | 41.6 - j37.0 | 0.384 | -80.8 |
| 3000 | 40.2 - j34.5 | 0.371 | -84.9 |
| 3200 | 39.3 - j32.0 | 0.356 | -88.8 |
| 3400 | 37.8 - j30.1 | 0.350 | -93.1 |
| 3600 | 35.6 - j26.4 | 0.336 | -101.5 |
| 3800 | 35.0 - j23.3 | 0.314 | -107.4 |
| 4000 | 34.4 - j19.8 | 0.291 | -115.0 |
| 4200 | 33.6 - j16.7 | 0.275 | -123.2 |
| 4400 | 32.9 - j14.2 | 0.264 | -130.6 |
| 4600 | 31.7 - j11.1 | 0.260 | -141.0 |
| 4800 | 30.5 - j8.0 | 0.261 | -152.0 |
| 5000 | 29.3-j5.1 | 0.268 | -162.5 |
| 5200 | 28.0-j2.1 | 0.283 | -173.0 |
| 5400 | $26.7+j 0.5$ | 0.304 | 178.4 |
| 5600 | $25.4+\mathrm{j} 2.7$ | 0.328 | 171.7 |
| 5800 | $24.2+\mathrm{j} 4.8$ | 0.353 | 165.8 |
| 6000 | $23.1+\mathrm{j} 6.6$ | 0.377 | 161.1 |

## APPLICATIONS INFORMATION



Figure 4. Single-Ended Input Configuration


Figure 5. Differential Input Configuration


Figure 6. Single-Ended to Differential Conversion

## APPLICATIONS InFORMATION

The LTC5583 differential inputs can also be driven from a fully balanced source as shown in Figure 5. When the two input sources are single-ended, conversion to differential signals can improve channel-to-channel isolation to obtain accurate outputs from the dual channels, particularly at very high frequencies (i.e. 3.6 GHz and above). This can be achieved using a $1: 1$ balun to match the chip's internal $400 \Omega$ input impedance to the $50 \Omega$ source by adding a $62 \Omega$ resistor (R1) at the differential inputs as shown in Figure 5 . Since there is no voltage conversion gain from impedance transformation in this case, the sensitivity of the detector is similar to the one using single-ended inputs as shown in Figure 4.
If better sensitivity is needed, a 1:4 balun can be used and R1 should be increased to $400 \Omega$ correspondingly to match $200 \Omega$ input impedance to the $50 \Omega$ source. This impedance transformation results in 6dB voltage gain, thus 6 dB improvement in sensitivity is obtained while the overall dynamic range remains the same. At high frequency, additional LC elements may be needed for input impedance matching due to the parasitics of the transformer and PCB traces.
Alternatively, a narrowband LC matching network can be used for the conversion of a single-ended signal to a balanced signal. Such a matching network is shown in Figure 6. By this means, the sensitivity and overall linear dynamic range of the detector can be similar to the one using a 1:4 RF input balun, as described above.

For a $50 \Omega$ input termination, the approximate RF input power range of the LTC5583 is from -58 dBm to 4 dBm , even with high crest factor signals such as a 4-carrier WCDMA waveform, but the minimum detectable RF power level varies as the input RF frequency increases. The linear
dynamic range can also be shifted to tailor to a particular application. By simply inserting an attenuator in front of the RF input, the power range is shifted higher by the amount of the attenuation.

The sensitivity of LTC5583 is dictated by the broadband input noise power, which also determines the output DC offset voltage. When the inputs are terminated differently, the DC output voltage may vary slightly. When the input noise power is minimized, the DC offset voltage is also reduced to a minimum, and the sensitivity and dynamic range are improved accordingly.

## External Filtering Capacitors at FLTA and FLTB Pins

These pins are internally biased at $\mathrm{V}_{C C}-0.43 \mathrm{~V}$ via a 1.2 k resistor from the $V_{C C A}$ and $V_{C C B}$ voltage supply. To ensure stable operation of the LTC5583, an external capacitor with a value of 8 nF or higher is required to connect the FLTA pin to $\mathrm{V}_{\text {CCA }}$, and the FLTB pin to $\mathrm{V}_{\text {CCB }}$, respectively. Do not connect these filter capacitors to ground or any other low voltage reference to prevent an abnormal startup condition.

The value of these two filtering capacitors has a dominant effect on the output transient response. The lower the capacitance, the faster the output rise and fall times. For signals with AM content such as W-CDMA, ripple can be observed when the loop bandwidth set by the filtering capacitors is close to the modulation bandwidth of the signal.
In general, the LTC5583 output ripple remains relatively constant regardless of the RF input power level for a fixed filtering capacitor and modulation format of the RF signal. Typically, this capacitor must be selected to average out the ripple to achieve the desired accuracy of RF power measurement.

## APPLICATIONS INFORMATION

RMS Power Detector Output: $V_{O A}, V_{O B}$

The output buffer amplifier of the LTC5583 is shown in Figure 7. This Class-AB buffer amplifier can output $\pm 5 \mathrm{~mA}$ current to the load. The output impedance is determined primarily by the $50 \Omega$ series resistor connected to the buffer amplifier inside the chip. This will prevent any overstress on the internal devices in the event that the output is shorted to ground.

The -3 dB small-signal bandwidth of the buffer amplifier is about 22.4 MHz and the full-scale rise/fall time can be as fast as 140 ns , limited by the slew rate of the internal circuit instead. When the output is resistively terminated or open, the fastest output transient response is achieved when a large signal is applied to the RF input. The rise time of the LTC5583 is about 140 ns and the fall time is $3.5 \mu \mathrm{~s}$, respectively, for full-scale pulsed RF input power with $8.2 n F$ filtering capacitors. The speed of the outputtransient response is dictated mainly by the filtering capacitors (at least 8nF) at the FLTA and FLTB pins. See the detailed output transient response in the Typical Performance Characteristics section. When the RF input has AM content, residual ripple may be present at the output depending upon the low frequency content of the modulated RF signal. This ripple can be reduced with a larger filtering capacitor at the expense of a slower transient response.

Since the output buffer amplifier of the LTC5583 is capable of driving an arbitrary capacitive load, the residual ripple can be further filtered at the output with a series resistor $\mathrm{R}_{\text {SS }}$ and a large shunt capacitor C LOAD (see Figure 7). This lowpass filter also reduces the output noise by limiting the outputnoise bandwidth. When this RC network is designed properly, a fast outputtransient response can be maintained with reduced residual ripple. For example, we can estimate $C_{\text {LOAD }}$ with an output voltage swing of 1.7 V at 2140 MHz . In order to not allow the maximum 5 mA sourcing current to limit the fall time (about $5 \mu \mathrm{~s}$ ), the maximum value of C LOAD can be chosen as follows:

$$
\begin{aligned}
\mathrm{C}_{\text {LOAD }} & \leq 5 \mathrm{~mA} \bullet \text { Allowable Additional Time } / 1.7 \mathrm{~V} \\
& =5 \mathrm{~mA} \bullet 0.25 \mu \mathrm{~s} / 1.7 \mathrm{~V}=735 \mathrm{pF}
\end{aligned}
$$

Once $C_{\text {LOAD }}$ is determined, $\mathrm{R}_{S S}$ can be chosen properly to form an RC low-pass filter with a corner frequency of $1 /\left[2 \pi \cdot\left(R_{S S}+50\right) \cdot C_{\text {LOAD }}\right]$.

In general, the rise time of the LTC5583 is much shorter than the fall time. However, when the output RC filter is used, the rise time may be dominated by the time constant of this filter. Accordingly, the rise time becomes very similar to the fall time. Although the maximum sinking capability of the LTC5583 is 5 mA , it is recommended that the output load resistance should be greater than 1.2k in order to achieve the full output voltage swing.


Figure 7. Simplified Circuit Schematic of the RMS
Power Detector Output Interface

## APPLICATIONS InFORMATION

## Temperature Compensation of Logarithmic Intercept

The simplified interface schematics of the intercept temperature compensation are shown in Figure 8 and Figure 9. The adjustment of the output voltage can be described by the following equation with respect to the ambient temperature:
where TC1 and TC2 are the first order and second order temperature compensation coefficients, respectively; $\mathrm{T}_{\mathrm{A}}$ is the actual ambient temperature; and $\mathrm{t}_{\text {NOM }}$ is the reference room temperature $25^{\circ} \mathrm{C}$; detV1 and detV2 are the output voltage variation when $R_{T 1}$ and $R_{T 2}$ are not set to zero.

$$
\begin{aligned}
\Delta V_{\text {OUT }}= & T C 1 \bullet\left(T_{A}-t_{\text {NOM }}\right)+T C 2 \cdot\left(T_{A}-t_{\text {NOM }}\right)^{2} \\
& +\operatorname{detV1}+\operatorname{det} V 2
\end{aligned}
$$



Figure 8. Simplified Interface Circuit Schematic of the Polarity Pins RP1 and RP2


Figure 9. Simplified Interface Circuit Schematic of the Control Pins RT1 and RT2

## APPLICATIONS INFORMATION

The temperature coefficients TC1 and TC2 are shown as functions of the tuning resistors $\mathrm{R}_{\mathrm{T} 1}$ and $\mathrm{R}_{\mathrm{T} 2}$ in Figure 10 and Figure 11.


Figure 10. First Order Temperature Compensation Coefficient TC1 vs External RT1 Value


Figure 11. Second Order Temperature Compensation Coefficient TC2 vs External RT2 Value

When pins RT1 and RT2 are shorted to ground, the temperature compensation circuit is disabled automatically. Polarity of the temperature coefficient TC1 (or TC2), can be selected by either shorting the RP1 pin (or RP2 pin) to ground or leaving it open, while the coefficients' values can be controlled by external resistors $\mathrm{R}_{\mathrm{T} 1}$ and $\mathrm{R}_{\mathrm{T} 2}$ independently, according to Figures 10 and 11. At a given RF frequency, the polarities and optimal values of TC1 and TC2 can be chosen to ensure a stable output over the operating temperature range. Table 2 lists the suggested $R_{P 1}, R_{P 2}$, $\mathrm{R}_{\mathrm{T} 1}$ and $\mathrm{R}_{\mathrm{T} 2}$ values at various RF frequencies for the best output performance over temperature.

Table 2. Suggested $\mathbf{R}_{\mathbf{p}}$ and $\mathbf{R}_{\mathbf{T}}$ Values for Optimal Temperature Performance vs RF Frequency

| Frequency (MHz) | $\mathbf{R}_{\mathbf{P} 1}$ | $\mathbf{R}_{\mathbf{T} 1} \mathbf{( k \boldsymbol { \Omega } )}$ | $\mathbf{R}_{\mathbf{P} 2}$ | $\mathbf{R}_{\mathbf{T} \mathbf{2}} \mathbf{( k \boldsymbol { \Omega } )}$ |
| :---: | :---: | :---: | :---: | :---: |
| 450 | Open | 11.5 | 0 | 1.13 |
| 880 | Open | 11.5 | 0 | 1.13 |
| 2140 | Open | 9.76 | 0 | 1.10 |
| 2700 | Open | 8.87 | 0 | 1.21 |
| 3600 | Open | 10.2 | 0 | 1.65 |
| 5800 | Open | 10.0 | 0 | 1.47 |

## APPLICATIONS InFORMATION

## Envelope Detector Output: ENVA, ENVB

Each envelope detector output linearly follows the instantaneous input power level, tracking the input signal's RF envelope. ENVA and ENVB also indicate the peak-to-average power ratio (crest factor). Thus, reading both $V_{0 A}$ and ENVA provides the average power, peak-to-average power ratio, peak power, and RF envelope of the input signal to Channel A . Reading $\mathrm{V}_{\mathrm{OB}}$ and ENVB provides the same information for Channel $B$.

## Enable: EN

A simplified schematic of the EN pin interface is shown in Figure 13. The enable voltage necessary to turn on the LTC5583 is 2 V . To disable or turn off the chip, set this voltage below 0.3 V . It is important that the voltage applied to the EN pin should never exceed $V_{C C}$ by more than 0.3 V . Otherwise, the supply current may be sourced through the upper ESD protection diode connected at the EN pin. Under no circumstances should voltage be applied to the EN pin before the supply pins ( $\left.\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}, \mathrm{V}_{\text {CCR }}, \mathrm{V}_{\mathrm{CCN}}\right)$. If this occurs, damage to the IC may result.


Figure 12. Simplified Schematic of the ENVA and ENVB Pin


Figure 13. Simplified Schematic of the Enable Pin

## APPLICATIONS INFORMATION

Difference Output: $\mathrm{V}_{\text {ODF }}$
This voltage is equal to the difference of the two channels' output voltages, plus a DC offset:

$$
\begin{aligned}
V_{\text {ODF }}= & \left(V_{\text {OA }}-V_{\text {OB }}\right)+V_{\text {OS }} \\
& \text { if } \operatorname{INV} \text { voltage }<1 \mathrm{~V} . \\
V_{\text {ODF }}= & \left(V_{\text {OB }}-V_{\text {OA }}\right)+V_{\text {OS }} \\
& \text { I INV voltage }>2 V .
\end{aligned}
$$

A simplified schematic of the $V_{\text {ODF }}$ interface is shown in Figure 14. The low $5 \Omega$ output impedance at this pin is due to internal feedback circuitry.


Figure 14. Simplified Schematic of the $V_{0 D F}$ Pin

Figure 15 shows a simplified schematic of the INV pin interface. INV determines the sign of the difference function at the $V_{\text {ODF }}$ output.


Figure 15. Simplified Schematic of the INV Pin

A simplified schematic of the $\mathrm{V}_{\text {OS }}$ pin interface is shown in Figure 16. The output range of $V_{\text {ODF }}$ is from 50 mV to $\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV}$; it cannot go below 50 mV . If $\mathrm{V}_{O A}-\mathrm{V}_{\mathrm{OB}}$ is negative (for INV = low), a positive offset voltage $\mathrm{V}_{\mathrm{OS}}$ is needed. Similarly, if $\mathrm{V}_{O B}-V_{O A}$ is negative (for INV = high), a positive offset voltage $\mathrm{V}_{0 S}$ is needed.


Figure 16. Simplified Schematic of the $V_{0 S}$ Pin

## Supply Voltage Ramping

Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage overshoot at initial turn-on that exceeds the maximum rating. A supply voltage ramp time of greater than 1 ms is recommended. In case this voltage ramp time is not controllable, a small (i.e. $1 \Omega$ ) series resistor can be inserted between $V_{\text {CC }}$ pin and the supply voltage source to mitigate the problem and protect the IC. The R1 shown in Figures 1 and 2 serves this purpose.

## LTC5583

PACKAGE DESCRIPTION

## UF Package

24-Lead Plastic QFN ( $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ )
(Reference LTC DWG \# 05-08-1697)


RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS


BOTTOM VIEW—EXPOSED PAD


PIN 1 NOTCH $\mathrm{R}=0.20$ TYP OR $0.35 \times 45^{\circ}$ CHAMFER

NOTE:

1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE, IF PRESENT
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

## REVISION HISTORY

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: |
| A | $12 / 10$ | Revised the maximum Shutdown Current value in the Electrical Characteristics section. | 5 |

## TYPICAL APPLICATION

VSWR Monitor


## RELATED PARTS

| PART NUMBER | DESCRIPTION | COMMENTS |
| :---: | :---: | :---: |
| Infrastructure |  |  |
| LT5527 | 400MHz to 3.7GHz, 5V Downconverting Mixer | 2.3dB Gain, 23.5 dBm IIP3 and 12.5 dB NF at $1900 \mathrm{MHz}, 5 \mathrm{~V} / 78 \mathrm{~mA}$ Supply |
| LT5557 | 400MHz to 3.8GHz, 3.3V Downconverting Mixer | 2.9 dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply |
| LTC6400-X | 300MHz Low Distortion IF Amp/ADC Driver | Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/0 |
| LTC6401-X | 140MHz Low Distortion IF Amp/ADC Driver | Fixed Gain of 8dB, 14dB, 20dB and 26dB; >40dBm OIP3 at 140MHz, Differential I/0 |
| LTC6416 | 2GHz 16-Bit ADC Buffer | 40.25 dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping |
| LTC6412 | 31dB Linear Analog VGA | 35 dBm OIP3 at 240 MHz , Continuous Gain Range -14 dB to 17 dB |
| LT5554 | Ultralow Distort IF Digital VGA | 48 dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125 dB Gain Steps |
| LT5575 | 700MHz to 2.7GHz Direct Conversion I/Q Demodulator | Integrated Baluns, 28dBm IIP3, 13dBm P1dB, 0.03dB I/Q Amplitude Match, $0.4^{\circ}$ Phase Match |
| LT5578 | 400MHz to 2.7GHz Upconverting Mixer | 27 dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer |
| LT5579 | 1.5GHz to 3.8GHz Upconverting Mixer | 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports |
| LTC5598 | 5 MHz to 1.6GHz I/Q Modulator | 27.7 dBm OIP3 at $140 \mathrm{MHz}, 22.9 \mathrm{dBm}$ at $900 \mathrm{MHz},-161.2 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor |
| LTC5588-1 | 200MHz to 6 GHz I/Q Modulator with Ultra-High OIP3 | 31dBm Uncalibrated OIP3, Single-Pin Calibration to Optimize OIP3 to 35dBm, $-158 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, 3.3V Supply |
| RF Power Detectors |  |  |
| LT5534 | 50 MHz to 3 GHz Log RF Power Detector with 60dB Dynamic Range | $\pm 1 \mathrm{~dB}$ Output Variation over Temperature, 38ns Response Time, Log Linear Response |
| LT5537 | Wide Dynamic Range Log RF/IF Detector | Low Frequency to 1GHz, 83dB Log Linear Dynamic Range |
| LT5581 | 6GHz Low Power RMS Detector | 40 dB Dynamic Range, $\pm 1 \mathrm{~dB}$ Accuracy Over Temperature, 1.5 mA Supply Current |
| LTC5582 | 10GHz RMS Power Detector | 57 dB Dynamic Range, $\pm 1 \mathrm{~dB}$ Accuracy Over Temperature |
| ADCs |  |  |
| LTC2208 | 16-Bit, 130Msps ADC | 78dBFS Noise Floor, >83dB SFDR at 250MHz |
| LTC2262-14 | 14-Bit, 150Msps ADC Ultralow Power | 72.8dB SNR, 88dB SFDR, 149mW Power Consumption |
| LTC2242-12 | 12-Bit, 250Msps ADC | 65.4dB SNR, 78dB SFDR, 740mW Power Consumption |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Detector category.
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
HMC439QS16GTR HMC7447-SX MACP-010562-TR1000 R451075000 2085-6013-13 2085-6010-00 32-2018-BU 32-3033-BU 32-3203BU AD8361ARMZ-REEL LT5534ESC6\#TRPBF AD8361ARM-REEL7 AD8314ARMZ-REEL AD8311ACBZ-P7 AD8312ACBZ-P7 AD8313ARMZ-REEL7 AD8314ACPZ-RL7 AD8314ARMZ AD8314ARMZ-REEL7 AD8315ARMZ AD8317ACPZ-R7 AD8319ACPZ-R7 AD8361ARMZ AD8361ARMZ-REEL7 AD8362ARUZ-REEL7 AD8363ACPZ-R7 AD8302ARUZ-RL7 ADL5906ACPZN-R7 ADL5500ACBZ-P7 ADL5502ACBZ-P7 ADL5504ACBZ-P7 ADL5505ACBZ-P7 ADL5506ACBZ-R7 ADL5506WACBZ-R7 ADL5513ACPZ-R7 ADL5903ACPZN-R7 ADL5903SCPZN-R7 ADL6010ACPZN-R2 ADL6010SCPZN ADL6010SCPZN-R7 ADL6010SCPZN-R2 ADL6012ACPZN ADL5511ACPZ-R7 ADL5904ACPZN-R7 ADL5910ACPZN-R7 ADL5920ACPZ HMC1021LP4E HMC1120LP4E HMC1120LP4ETR HMC439QS16G

