## 5 MHz to 1600 MHz High Linearity Direct Quadrature Modulator

## feATURES

- Frequency Range: 5 MHz to 1600 MHz
- High Output IP3: +27.7 dBm at 140 MHz +22.9 dBm at 900 MHz
- Low Output Noise Floor at 6MHz Offset: No Baseband AC Input: -161.2dBm/Hz $\mathrm{P}_{\text {OUT }}=5.5 \mathrm{dBm}:-160 \mathrm{dBm} / \mathrm{Hz}$
- Low LO Feedthrough: -55 dBm at 140 MHz
- High Image Rejection: -50.4 dBc at 140 MHz
- Integrated LO Buffer and LO Quadrature Phase

Generator

- $50 \Omega$ Single-Ended LO and RF Ports
- $>400 \mathrm{MHz}$ Baseband Bandwidth
- 24-Lead QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Package
- Pin-Compatible with Industry Standard Pin-Out
- Shut-down Mode


## APPLICATIONS

- Point-to-Point Microwave Link
- Military Radio
- Basestation Transmitter GSM/EDGE/CDMA2K
- 700 MHz LTE Basestation Transmitter
- Satellite Communication
- CATV/Cable Broadband Modulator
- 13.56MHz/UHF RFID Modulator


## DESCRIPTION

The LTC ${ }^{\circledR} 5598$ is a direct I/Q modulator designed for high performance wireless applications, including wireless infrastructure. It allows direct modulation of an RF signal using differential baseband I and Q signals. It supports point-to-point microwave link, GSM, EDGE, CDMA, 700MHz band LTE, CDMA2000, CATV applications and other systems. It may also be configured as an image reject upconverting mixer, by applying $90^{\circ}$ phase-shifted signals to the $I$ and $Q$ inputs.
The I/Q baseband inputs consist of voltage-to-current converters that in turn drive double-balanced mixers. The outputs of these mixers are summed and applied to a buffer, which converts the differential mixer signals to a $50 \Omega$ single-ended buffered RF output. The four balanced I and Q baseband input ports are intended for DC coupling from a source with a common-mode voltage level of about 0.5 V . The LO path consists of an LO buffer with single-ended or differential inputs, and precision quadrature generators that produce the LO drive for the mixers. The supply voltage range is 4.5 V to 5.25 V , with about 168 mA current.
$\boldsymbol{\Sigma} \boldsymbol{\top}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

## TYPICAL APPLICATION

5MHz to 1600MHz Direct Conversion Transmitter Application


Noise Floor vs RF Output Power and Differential LO Input Power

ABSOLUTE MAXIMUM RATIOGS

## (Note 1)

Supply Voltage ..... 5.6V
Common Mode Level of BBPI, BBMI and BBPQ, BBMQ ..... 0.6 V
LOP, LOM Input ..... 20dBm
Voltage on Any Pin
Not to Exceed ..... -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
TJMAX ..... $150^{\circ} \mathrm{C}$
Operating Temperature Range ..... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

## PIn CONFIGURATION <br> mantion



## ORDER INFORMATION

| LEAD FREE FINISH | TAPE AND REEL | PART MARKING | PACKAGE DESCRIPTION | TEMPERATURE RANGE |
| :--- | :--- | :--- | :--- | :--- |
| LTC5598IUF\#PBF | LTC5598IUF\#TRPBF | 5598 | $24-$ Lead $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$ Plastic QFN | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS $V_{C C}=5 V, E N=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L} O}=0 \mathrm{CBm}$, single-ended; BBPI, BBMI, $B B P Q, B B M Q$ common-mode $D C$ voltage $V_{C M B B}=0.5 V_{D C}$, I\&Q baseband input signal $=100 \mathrm{kHz} \mathrm{CW}, 0.8 \mathrm{~V}_{\mathrm{PP}, \mathrm{DIFF}}$ each, $1 \& \mathrm{Q} 90^{\circ}$ shifted (lower side-band selection), unless otherwise noted. (Note 11)

| SYMBOL | PARAMETER | CONDITIONS | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RF OUTPUT (RF) |  |  |  |  |  |
| $\mathrm{f}_{\text {RF }}$ | RF Frequency Range |  | 5 to 1600 |  | MHz |
| $\mathrm{S}_{22,0 \mathrm{~N}}$ | RF Output Return Loss | EN = High, 5 MHz to 1600MHz | <-20 |  | dB |

$\mathrm{f}_{\mathrm{LO}}=140 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=139.9 \mathrm{MHz}$

| GV | Conversion Voltage Gain | $20 \cdot \log \left(\mathrm{~V}_{\text {RF, OUT, }} 50 \Omega / \mathrm{V}_{\text {IN, DIFF, I or }}\right.$ ) | -2 | dB |
| :---: | :---: | :---: | :---: | :---: |
| Pout | Absolute Output Power | $1 V_{\text {PP, DIF }}$ on each I\&Q Inputs | 2 | dBm |
| OP1dB | Output 1dB Compression |  | 8.5 | dBm |
| OIP2 | Output 2nd Order Intercept | (Notes 4, 5) | 74 | dBm |
| OIP3 | Output 3rd Order Intercept | (Notes 4, 6) | 27.7 | dBm |
| NFloor | RF Output Noise Floor | No Baseband AC Input Signal (Note 3) $P_{\text {OUT }}=4.6 \mathrm{dBm}$ (Note 3) $\mathrm{P}_{\mathrm{LO}, \mathrm{SE}}=10 \mathrm{dBm}$ $P_{\text {OUT }}=5.5 \mathrm{dBm}$ (Note 3) $\mathrm{P}_{\mathrm{LO}, \text { DIFF }}=20 \mathrm{dBm}$ | $\begin{gathered} \hline-161.2 \\ -154.5 \\ -160 \end{gathered}$ | $\mathrm{dBm} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$ |
| IR | Image Rejection | (Note 7) | -50.4 | dBC |
| LOFT | LO Feedthrough (Carrier Leakage) | $\begin{aligned} & \mathrm{EN}=\text { High (Note 7) } \\ & \mathrm{EN}=\text { Low (Note 7) } \end{aligned}$ | $\begin{aligned} & -55 \\ & -78 \end{aligned}$ | $\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$ |

## $\mathrm{f}_{\mathrm{LO}}=450 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=449.9 \mathrm{MHz}$

| Gv | Conversion Voltage Gain | $20 \cdot \log \left(\mathrm{~V}_{\text {RF, OUT, }} 50 \Omega / \mathrm{V}_{\text {IN, DIFF, I or Q }}\right.$ ) | -5.0 -2.1 | 0.5 | dB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pout | Absolute Output Power | $1 V_{\text {PP, DIF }}$ on each I\&Q Inputs | 1.9 |  | dBm |
| OP1dB | Output 1dB Compression |  | 8.4 |  | dBm |
| OIP2 | Output 2nd Order Intercept | (Notes 4, 5) | 72 |  | dBm |
| OIP3 | Output 3rd Order Intercept | (Notes 4, 6) | 25.5 |  | dBm |
| NFIoor | RF Output Noise Floor | No Baseband AC Input Signal (Note 3) | -160.9 |  | $\mathrm{dBm} / \mathrm{Hz}$ |
| IR | Image Rejection | (Note 7) | -55 |  | dBC |
| LOFT | LO Feedthrough (Carrier Leakage) | $\begin{aligned} & \text { EN = High (Note 7) } \\ & \text { EN = Low (Note 7) } \end{aligned}$ | $\begin{aligned} & \hline-51 \\ & -68 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBm} \\ & \hline \end{aligned}$ |

$\mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=899.9 \mathrm{MHz}$

| $\mathrm{G}_{V}$ | Conversion Voltage Gain | $20 \cdot \log \left(\mathrm{~V}_{\text {RF, OUT, }} 50 \Omega / \mathrm{V}_{\text {IN, DIFF, I or Q }}\right)$ | -2 | dB |
| :---: | :---: | :---: | :---: | :---: |
| Pout | Absolute Output Power | $1 V_{\text {PP, DIFF }}$ on each I\&Q Inputs | 2 | dBm |
| OP1dB | Output 1dB Compression |  | 8.5 | dBm |
| OIP2 | Output 2nd Order Intercept | (Notes 4, 5) | 69 | dBm |
| OIP3 | Output 3rd Order Intercept | (Notes 4, 6) | 22.9 | dBm |
| NFloor | RF Output Noise Floor | No Baseband AC Input Signal (Note 3) $P_{\text {OUT }}=5.2 \mathrm{dBm}$ (Note 3) $\mathrm{P}_{\mathrm{LO}, \mathrm{SE}}=10 \mathrm{dBm}$ | $\begin{aligned} & \hline-160.3 \\ & -154.5 \end{aligned}$ | $\mathrm{dBm} / \mathrm{Hz}$ dBm/Hz |
| IR | Image Rejection | (Note 7) | -54 | dBC |
| LOFT | LO Feedthrough (Carrier Leakage) | $\begin{aligned} & \mathrm{EN}=\text { High }(\text { Note } 7) \\ & \mathrm{EN}=\text { Low }(\text { Note } 7) \end{aligned}$ | $\begin{aligned} & -48 \\ & -54 \end{aligned}$ | dBm dBm |

## LTC5598

 $B B P Q, B B M Q$ common-mode $D C$ voltage $V_{C M B B}=0.5 V_{D C}$, I\&Q baseband input signal $=100 \mathrm{kHz} \mathrm{CW}, 0.8 \mathrm{VPP}$, DIFF each, I\&Q $90^{\circ}$ shifted (lower side-band selection), unless otherwise noted. (Note 11)

| SYMBOL | PARAMETER | CONDITIONS | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LO INPUT (LOP) |  |  |  |  |  |
| $\mathrm{f}_{\mathrm{LO}}$ | LO Frequency Range |  | 5 to 1600 |  | MHz |
| PLO,DIFF | Differential LO Input Power Range |  | -10 to 20 |  | dBm |
| $\mathrm{P}_{\text {LO, SE }}$ | Single-Ended LO Input Power Range |  | -10 to 12 |  | dBm |
| $\mathrm{S}_{11, \mathrm{ON}}$ | LO Input Return Loss | EN = High | -10.5 |  | dB |
| $\mathrm{S}_{11,0 \mathrm{FF}}$ | LO Input Return Loss | EN = Low | -9.6 |  | dB |

BASEBAND INPUTS (BBPI, BBMI, BBPQ, BBMQ)

| BW $_{\text {BB }}$ | Baseband Bandwidth | -3dB Bandwidth | $>400$ | MHz |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{I}_{\mathrm{b}, \mathrm{BB}}$ | Baseband Input Current | Single-Ended | -68 | $\mu \mathrm{~A}$ |
| $\mathrm{R}_{\text {IN, SE }}$ | Input Resistance | Single-Ended | -7.4 | $\mathrm{k} \Omega$ |
| $\mathrm{V}_{\text {CMBB }}$ | DC Common-Mode VoItage | Externally Applied | 0.5 | V |
| $V_{\text {SWING }}$ | Amplitude Swing | No Hard Clipping, Single-Ended | 0.86 | $V_{P-P}$ |

POWER SUPPLY ( $\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}$ )

| $V_{\text {CC }}$ | Supply Voltage |  | 4.5 | 5 | 5.25 |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $I_{\text {CC(ON })}$ | Supply Current | EN = High, $I_{\text {CC1 }}+I_{\text {CC2 }}$ | 130 | 165 | 200 |
| $I_{\text {CC(OFF) }}$ | Supply Current, Sleep Mode | EN = OV, ICC1 $+I_{\text {CC2 }}$ | mA |  |  |
| $\mathrm{I}_{\text {ON }}$ | Turn-On Time | EN = Low to High (Notes 8, 10) | 0.24 | 0.9 | mA |
| $\mathrm{I}_{\text {OFF }}$ | Turn-Off Time | EN = High to Low (Notes 9, 10) | 75 | ns |  |

## POWER UP/DOWN

| Enable | Input High Voltage Input High Current | $\begin{aligned} & \text { EN }=\text { High } \\ & \text { EN }=5 \mathrm{~V} \end{aligned}$ | 2 | 43 | $\mu \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sleep | Input Low Voltage Input Low Current | $\begin{aligned} & \mathrm{EN}=\mathrm{L} O W \\ & \mathrm{EN}=0 \mathrm{~V} \end{aligned}$ |  | -40 | $\mu \mathrm{A}$ |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC5598 is guaranteed functional over the operating temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 3: At 6 MHz offset from the LO signal frequency. 100 nF between BBPI and BBMI, 100 nF between BBPQ and BBMQ.
Note 4: Baseband is driven by 2 MHz and 2.1 MHz tones with $1 \mathrm{~V}_{\text {PP,DIFF }}$ for two-tone signals at each I or $Q$ input ( $0.5 \mathrm{~V}_{\text {PP, DIFF }}$ for each tone).
Note 5: IM2 is measured at LO frequency -4.1 MHz .

Note 6: IM3 is measured at LO frequency -1.9 MHz and LO frequency - 2.2MHz.

Note 7: Amplitude average of the characterization data set without image or LO feedthrough nulling (unadjusted).
Note 8: RF power is within $10 \%$ of final value.
Note 9: RF power is at least 30 dB lower than in the ON state.
Note 10: External coupling capacitors at pins LOP, LOM and RF are 100pF each.
Note 11: Tests are performed as shown in the configuration of Figure 10. The LO power is applied to J 3 while J 5 is terminated with $50 \Omega$ to ground for single-ended LO drive.
 OdBm single-ended, BBPI, BBMI, BBPQ, BBMQ common-mode DC voltage $V_{C M B B}=0.5 V_{D C}$, $\& Q$ baseband input signal $=100 \mathrm{kHz}$, $0.8 \mathrm{~V}_{\text {PP, DIFF }}$, two-tone baseband input signal $=2 \mathrm{MHz}, 2.1 \mathrm{MHz}, 0.5 \mathrm{~V}_{\mathrm{PP}, \mathrm{DIFF}}$ each tone, $\mathrm{I} \& \mathrm{Q} 90^{\circ}$ shifted (lower side-band selection); $f_{\text {NOISE }}=f_{\text {LO }}-6 \mathrm{MHz}$; unless otherwise noted. (Note 11)


OdBm single-ended, BBPI, BBMI, BBPQ, BBMQ common-mode DC voltage $V_{C M B B}=0.5 \mathrm{~V}_{\mathrm{DC}}$, $\mathrm{I} \& Q$ baseband input signal $=100 \mathrm{kHz}$, $0.8 V_{\text {PP,DIFF, }}$ two-tone baseband input signal $=2 \mathrm{MHz}, 2.1 \mathrm{MHz}, 0.5 \mathrm{~V}_{\text {PP,DIFF }}$ each tone, I\&Q $90^{\circ}$ shifted (lower side-band selection); $\mathrm{f}_{\text {NOISE }}=\mathrm{f}_{\text {LO }}-6 \mathrm{MHz}$; unless otherwise noted. (Note 11)


TYPICAL PGRFORMANC CHARACTERISTICS $V_{C C}=5 V, E N=5 V, T_{A}=25^{\circ} C, f_{R F}=f_{L 0}-f_{B B}, f_{10}=$ $450 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$ single-ended, BBPI, BBMI, BBPQ, BBMQ common-mode DC voltage $\mathrm{V}_{\mathrm{CMBB}}=0.5 \mathrm{~V}_{\mathrm{DC}}$, I\&Q baseband input signal $=100 \mathrm{kHz}, 0.8 \mathrm{~V}_{\text {PP, DIFF }}$, two-tone baseband input signal $=2 \mathrm{MHz}, 2.1 \mathrm{MHz}, 0.5 \mathrm{~V}_{\text {PP,DIFF }}$ each tone, $1 \& \mathrm{Q} 90^{\circ}$ shifted (lower side-band selection); $\mathrm{f}_{\text {NOISE }}=\mathrm{f}_{\mathrm{LO}}-6 \mathrm{MHz}$; unless otherwise noted. (Note 11)


Noise Floor vs RF Output Power and Differential LO Input Power





LO Feedthrough Distribution



## PIn functions

EN (Pin 1): Enable Input. When the Enable Pin voltage is higher than 2 V , the IC is turned on. When the input voltage is less than 1 V , the IC is turned off. If not connected, the IC is enabled.

GND (Pins 2, 5, 8, 11, 12, 19, 20, 23 and 25): Ground. Pins $2,5,8,11,12,19,20,23$ and exposed pad 25 are connected to each other internally. For best RFperformance, pins 2, 5, 8, 11, 12, 19, 20, 23 and the Exposed Pad 25 should be connected to RF ground.
LOP (Pin 3): Positive LO Input. This LO input is internally biased at about 2.3V. An AC de-coupling capacitor should be used at this pin to match to an external $50 \Omega$ source.

LOM (Pin 4): NegativeLO Input. This inputis internally biased at about2.3V. AnAC de-coupling capacitor should be used at this pin via a $50 \Omega$ to ground for best OIP2 performance.

CAPA, CAPB (Pins 6, 7): External capacitor pins. A capacitor between the CAPA and the CAPB pin can be used in order to improve the image rejection for frequencies below 100 MHz . A capacitor value of 470 nF is recommended. These pins are internally biased at about 2.3 V .
BBMQ, BBPQ (Pins 9, 10): Baseband Inputs for the Q-channel, each high input impedance. They should be externally biased at 0.5 V common-mode level and not be left floating. Applied common-mode voltage must stay below 0.6 V D.

NC (Pins 13, 15): No Connect. These pins are floating.
GNDRF(Pins 14, 17): Ground. Pins 14 and 17 areconnected to each other internally and function as the ground return for the RF output buffer. They are connected via back-to-back diodes to the exposed pad 25. For best LO suppression performance those pins should be grounded separately from the exposed paddle 25 . For best RF performance, pins 14 and 17 should be connected to RF ground.

RF (Pin 16): RF Output. The RF output is a DC-coupled single-ended output with approximately $50 \Omega$ output impedance at RF frequencies. An AC coupling capacitor should be used at this pin to connect to an external load.
$\mathbf{V}_{\text {CC }}$ (Pins 18, 24): Power Supply. It is recommended to use 1 nF and $4.7 \mu \mathrm{~F}$ capacitors for decoupling to ground on each of these pins.

BBPI, BBMI (Pins 21, 22): Baseband Inputs for the Qchannel, each high input impedance. They should be externally biased at 0.5 V common-mode level and not be left floating. Applied common-mode voltage must stay below 0.6 V DC.

Exposed Pad (Pin 25): Ground. This pin must be soldered to the printed circuit board ground plane.

## BLOCK DIAGRAM



## APPLICATIONS INFORMATION

The LTC5598 consists of I and Q input differential voltage-to-current converters, I and Q up-conversion mixers, an RF output buffer, an LO quadrature phase generator and LO buffers.

External I and Q baseband signals are applied to the differential baseband input pins, BBPI, BBMI, and BBPQ, BBMQ. These voltage signals are converted to currents and translated to RF frequency by means of double-balanced up-converting mixers. The mixer outputs are combined in an RF output buffer, which also transforms the output impedance to $50 \Omega$. The center frequency of the resulting RF signal is equal to the LO signal frequency. The LO input drives a phase shifter which splits the LO signal into inphase and quadrature LO signals. These LO signals are then applied to on-chip buffers which drive the up-conversion mixers. In most applications, the LOP input is driven by the LO source via an optional matching network, while the LOM input is terminated with $50 \Omega$ to RF ground via a similar optional matching network. The RF output is single-ended and internally $50 \Omega$ matched.

## Baseband Interface

The circuit is optimized for a common mode voltage of 0.5 V which should be externally applied. The baseband pins should not be left floating because the internal PNP's base current will pull the common mode voltage higher than the 0.6 V limit. This condition may damage the part. In shut-down mode, it is recommended to have a termination to ground or to a 0.5 V source with a value lower than $1 \mathrm{k} \Omega$. The PNP's base current is about $-68 \mu \mathrm{~A}$ in normal operation.
The baseband inputs (BBPI, BBMI, BBPQ, BBMQ) present a single-ended input impedance of about $-7.4 \mathrm{k} \Omega$ each. Because of the negative input impedance, it is important to keep the source resistance at each baseband input low enough such that the parallel value remains positive vs baseband frequency. At each of the four baseband inputs, a capacitor of 4 pF in series with $30 \Omega$ is connected to ground. This is in parallel with a PNP emitter follower (see Figure 1). The baseband bandwidth depends on the source impedance. For a $25 \Omega$ source impedance, the baseband bandwidth $(-1 \mathrm{~dB})$ is about 300 MHz . If a 5.6 nH series inductor is
inserted in each of the four baseband connections, the -1 dB baseband bandwidth increases to about 800 MHz .

It is recommended to include the baseband inputimpedance in the baseband lowpass filter design. The inputimpedance of each baseband input is given in Table 1.

Table 1. Single-Ended BB Port Input Impedance vs Frequency for $E N=$ High and $V_{\text {CMBB }}=0.5 V_{D C}$

| FREQUENCY <br> (MHz) | BB INPUT <br> IMPEDANCE | REFLECTION COEFFICIENT |  |
| :---: | :---: | :---: | :---: |
|  |  | ANGLE |  |
| 0.1 | $-10578-\mathrm{j} 263$ | 1.01 | -0.02 |
| 1 | $-8436-\mathrm{j} 1930$ | 1.011 | -0.15 |
| 2 | $-6340-\mathrm{j} 3143$ | 1.013 | -0.36 |
| 4 | $-3672-\mathrm{j} 3712$ | 1.014 | -0.78 |
| 8 | $-1644-\mathrm{j} 2833$ | 1.015 | -1.51 |
| 16 | $-527-\mathrm{j} 1765$ | 1.016 | -2.98 |
| 30 | $-177-\mathrm{j} 1015$ | 1.017 | -5.48 |
| 60 | $-45.2-\mathrm{j} 514$ | 1.017 | -11 |
| 100 | $-13.2-\mathrm{j} 306$ | 1.014 | -18.5 |
| 140 | $-0.2-\mathrm{j} 219$ | 1 | -25.7 |
| 200 | $4.5-\mathrm{j} 151$ | 0.982 | -36.6 |
| 300 | $10.4-\mathrm{j} 99.4$ | 0.921 | -52.9 |
| 400 | $12.3-\mathrm{j} 72.4$ | 0.854 | -68.2 |
| 500 | $14.7-\mathrm{j} 57.5$ | 0.780 | -79.9 |
| 600 | $15.5-\mathrm{j} 46.3$ | 0.720 | -91.4 |

The baseband inputs should be driven differentially; otherwise, the even-order distortion products may degrade the overall linearity performance. Typically, a DAC will


Figure 1. Simplified Circuit Schematic of the LTC5598 (Only l-Half is Drawn)

## APPLLCATIONS InFORMATION

be the signal source for the LTC5598. A reconstruction filter should be placed between the DAC output and the LTC5598's baseband inputs.

In Figure 2 a typical baseband interface is shown, using a fifth-order lowpass ladder filter.


Figure 2. Baseband Interface with 5th Order Filter and $0.5 V_{\text {CM }}$ DAC (Only I Channel is Shown)

For each baseband pin, a 0 to 1 V swing is developed corresponding to a DAC output current of 0 mA to 20 mA . The maximum sinusoidal single side-band RFoutput power is about +7.3 dBm for full 0 V to 1 V swing on each I - and Q- channel baseband input (2VPP, DIFF).

## LO Section

The internal LO chain consists of poly-phase phase shifters followed by LO buffers. The LOP input is designed as a single-ended input with about $50 \Omega$ input impedance. The LOM input should be terminated with $50 \Omega$ through a DC blocking capacitor.
The LOP and LOM inputs can be driven differentially in case an exceptionally low large-signal output noise floor is required (see graph 5598 G20b).
A simplified circuit schematic for the LOP, LOM, CAPA and CAPB inputs is given in Figure 3. A feedback path is implemented from the LO buffer outputs to the LO inputs in order to minimize offsets in the LO chain by storing the offsets on C5, C7 and C8 (see Figure 10). Optional capacitor C8 improves the image rejection below 100 MHz (see graph 5598 G20a). Because of the feedback path, the input impedance for $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$ is somewhat different than for $P_{L O}=10 \mathrm{dBm}$ for the lower part of the operating frequency range. In Table 2, the LOP port input impedance vs frequency is given for $\mathrm{EN}=$ High and $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$. For $E N=$ Low and $P_{L O}=0 \mathrm{dBm}$, the input impedance is given
in Table 3. In Table 4 and 5, the LOP port input impedance is given for EN = High and Low under the condition of $P_{\text {LO }}=10 \mathrm{dBm}$. Figure 4 shows the LOP port return loss for the standard demo board (schematic is shown in Figure 10) when the LOM port is terminated with $50 \Omega$ to GND. The values of L1, L2, C9 and C10 are chosen such that the bandwidth for the LOP port of the standard demo board is maximized while meeting the LO input return loss $S_{11,0 N}<-10 \mathrm{~dB}$.

Table 2. LOP Port Input Impedance vs Frequency for EN = High and $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$ (LOM AC Coupled With $50 \Omega$ to Ground).

| FREQUENCY (MHz) | LO INPUT IMPEDANCE | REFLECTION COEFFICIENT |  |
| :---: | :---: | :---: | :---: |
|  |  | MAG | ANGLE |
| 0.1 | 333 - j10.0 | 0.739 | -0.5 |
| 1 | 318 - j59.9 | 0.737 | -3.3 |
| 2 | 285 - j94.7 | 0.728 | -6.1 |
| 4 | 227-j120 | 0.708 | -10.6 |
| 8 | 154-j124 | 0.678 | -18.7 |
| 16 | 89.9 - j95.4 | 0.611 | -33.0 |
| 30 | 60.4 - j60.6 | 0.420 | -41.3 |
| 60 | 54.8 - j35.8 | 0.489 | -51.5 |
| 100 | 43.6 - j24.4 | 0.261 | -89.9 |
| 200 | 37.9 - j17.3 | 0.235 | -113 |
| 400 | 31.8 - j12.4 | 0.266 | -137 |
| 800 | 23.6 - 8.2 | 0.374 | -156 |
| 1000 | 19.8 - j5.5 | 0.437 | -165 |
| 1250 | 16.0 - j1.8 | 0.515 | -175 |
| 1500 | $13.6+\mathrm{j} 2.4$ | 0.574 | 174 |
| 1800 | $12.1+\mathrm{j} 7.3$ | 0.618 | 162 |



Figure 3. Simplified Circuit Schematic for the LOP, LOM, CAPA and CAPB Inputs.

## APPLICATIONS INFORMATION

Table 3. LOP Port Input Impedance vs Frequency for EN = Low and $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$ (LOM AC Coupled with $50 \Omega$ to Ground).

| $\begin{aligned} & \text { FREQUENCY } \\ & \text { (MHz) } \end{aligned}$ | LO INPUT IMPEDANCE | REFLECTION COEFFICIENT |  |
| :---: | :---: | :---: | :---: |
|  |  | MAG | ANGLE |
| 0.1 | 1376 - j84.4 | 0.930 | -0.3 |
| 1 | 541-j1593 | 0.980 | -3.2 |
| 2 | 177-j877 | 0.977 | -6.2 |
| 4 | 75.3 - j452 | 0.965 | -12.2 |
| 8 | 49.2 - j228 | 0.918 | -23.6 |
| 16 | 43.3-j117 | 0.784 | -41.8 |
| 30 | 40.7-j64.1 | 0.585 | -62.7 |
| 60 | 39.1 - j34.6 | 0.382 | -86 |
| 100 | 37.6-j23.8 | 0.296 | -102 |
| 200 | 33.4 - j16.4 | 0.275 | -124 |
| 400 | 27.5-j11.1 | 0.320 | -145 |
| 800 | 20.1 - j4.9 | 0.430 | -167 |
| 1000 | 17.5-j1.6 | 0.479 | -176 |
| 1250 | 15.3 + j2.1 | 0.532 | 175 |
| 1500 | 13.8 + 5.6 | 0.571 | 167 |
| 1800 | 12.8 + j9.7 | 0.605 | 157 |

Table 4. LOP Port Input Impedance vs Frequency for EN = High and $\mathrm{P}_{\mathrm{L} 0}=10 \mathrm{dBm}$ (LOM AC Coupled with $50 \Omega$ to Ground).

| FREQUENCY <br> (MHz) | LO INPUT <br> IMPEDANCE | REFLECTION COEFFICIENT |  |
| :---: | :---: | :---: | :---: |
|  | MAG | ANGLE |  |
| 0.1 | $360-\mathrm{j} 14.8$ | 0.756 | -0.7 |
| 1 | $349-\mathrm{j} 70.5$ | 0.758 | -3.2 |
| 2 | $311-\mathrm{j} 113$ | 0.752 | -6.0 |
| 4 | $240-\mathrm{j} 148$ | 0.739 | -10.9 |
| 8 | $148-\mathrm{j} 146$ | 0.715 | -19.7 |
| 16 | $81.3-\mathrm{j} 102$ | 0.641 | -35.2 |
| 30 | $55.4-\mathrm{j} 61.6$ | 0.506 | -54.7 |
| 60 | $45.7-\mathrm{j} 34.4$ | 0.341 | -77.4 |
| 100 | $43.0-\mathrm{j} 24.1$ | 0.261 | -91.6 |
| 200 | $38.0-\mathrm{j} 17.1$ | 0.234 | -114 |
| 400 | $32.0-\mathrm{j} 12.5$ | 0.265 | -137 |
| 800 | $23.6-\mathrm{j} 8.3$ | 0.374 | -156 |
| 1000 | $19.8-\mathrm{j} 5.6$ | 0.438 | -165 |
| 1250 | $15.8-\mathrm{j} 1.7$ | 0.520 | -176 |
| 1500 | $13.5+\mathrm{j} 2.4$ | 0.575 | 174 |
| 1800 | $12.0+\mathrm{j} 7.3$ | 0.619 | 162 |

Table 5. LOP Port Input Impedance vs Frequency for EN = Low and $\mathrm{P}_{\mathrm{L} O}=10 \mathrm{dBm}$ (LOM AC Coupled with $50 \Omega$ to Ground).

| FREQUENCY <br> (MHz) | LO INPUT | REFLECTION COEFFICIENT |  |
| :---: | :---: | :---: | :---: |
|  |  | MAG | ANGLE |
| 0.1 | $454-j 30.5$ | 0.802 | -0.9 |
| 1 | $423-j 102$ | 0.780 | -3.2 |
| 2 | $365-j 165$ | 0.796 | -5.9 |
| 4 | $249-j 219$ | 0.798 | -11.4 |
| 8 | $117-j 179$ | 0.781 | -22.4 |
| 16 | $60.7-j 106$ | 0.697 | -40.3 |
| 30 | $43.1-j 62.0$ | 0.559 | -62.4 |
| 60 | $38.6-j 34.6$ | 0.386 | -86.7 |
| 100 | $37.6-j 23.9$ | 0.297 | -102 |
| 200 | $33.5-j 16.5$ | 0.274 | -124 |
| 400 | $27.6-j 11.3$ | 0.319 | -145 |
| 800 | $20.2-j 5.1$ | 0.429 | -166 |
| 1000 | $17.7-j 1.7$ | 0.478 | -175 |
| 1250 | $15.2+\mathrm{j} 2.0$ | 0.533 | 175 |
| 1500 | $13.9+j 5.4$ | 0.570 | 167 |
| 1800 | $12.9+j 9.5$ | 0.604 | 158 |



Figure 4. LOP Port Return Loss vs Frequency for Standard Board (See Figure 10)

## APPLICATIONS InFORMATION

The LOP port return loss for the low end of the operating frequency range can be optimized using extra $120 \Omega$ terminations atthe LO inputs (replaceC9and C10 with $120 \Omega$ resistors, see Figure 10), and is shown in Figure 5.


Figure 5. LO Port Return Loss vs Frequency Optimized for Low Frequency (See Figure 10)

The LOP port return loss for the high end of the operating frequency range can be optimized using slightly different values for C9, C10 and L1, L2 (see Figure 6).


Figure 6. LO Port Return Loss vs Frequency Optimized for High Frequency (See Figure 10)

The third-harmonic rejection on the applied LO signal is recommended to be equal or better than the desired image rejection performance since third-harmonic LO content can degrade the image rejection severely. Image rejection is not sensitive to second-harmonic LO content.

The large-signal noise figure can be improved with a higher LO input power. However, if the LO input power is too large and causes internal clipping in the phase shifter section, the image rejection can be degraded rapidly. This clipping point depends on the supply voltage, LO frequency, temperature and single-ended vs differential LO drive. At $f_{L O}=140 \mathrm{MHz}, V_{C C}=5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ and single-ended LO drive, this clipping point is at about 16.6 dBm . For 4.5 V it lowers to 14.6 dBm . For differential drive with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ it is about 20 dBm .

The differential LO port input impedance for EN $=$ High and $P_{\mathrm{LO}}=10 \mathrm{dBm}$ is given in Table 6 .

Table 6. LOP - LOM Port Differential Input Impedance vs Frequency for $E N=$ High and $P_{\mathrm{L} 0}=10 \mathrm{dBm}$

| FREQUENCY <br> $(\mathbf{M H z )}$ | LO DIFFERENTIAL <br> INPUT IMPEDANCE |
| :---: | :---: |
| 0.1 | $642-\mathrm{j} 25.7$ |
| 1.0 | $626-\mathrm{j} 112$ |
| 2.0 | $572-\mathrm{j} 204$ |
| 4.0 | $429-\mathrm{j} 305$ |
| 8.0 | $222-\mathrm{j} 287$ |
| 16 | $102-\mathrm{j} 181$ |
| 30 | $64.2-\mathrm{j} 104$ |
| 60 | $50.9-\mathrm{j} 58.9$ |
| 100 | $46.2-\mathrm{j} 40.2$ |
| 200 | $37.4-\mathrm{j} 28.6$ |
| 400 | $28.3-\mathrm{j} 19.4$ |
| 800 | $20.0-\mathrm{j} 10.6$ |
| 1000 | $17.5-\mathrm{j} 7.9$ |
| 1250 | $16.6-\mathrm{j} 2.7$ |
| 1500 | $17.3+\mathrm{j} 3.3$ |
| 1800 | $20.6+\mathrm{j} 10.2$ |

## RF Section

After upconversion, the RF outputs of the I and Q mixers are combined. An on-chip buffer performs internal differential to single-ended conversion, while transforming the output impedance to $50 \Omega$. Table 7 shows the RF port output impedance vs frequency for EN = High.

## APPLICATIONS INFORMATION

Table 7. RF Output Impedance vs Frequency for EN = High

| FREQUENCY <br> (MHz) | RF OUTPUT <br> IMPEDANCE | REFLECTION COEFFICIENT |  |
| :---: | :---: | :---: | :---: |
|  |  | ANGLE |  |
| 0.1 | $59.0-\mathrm{j} 0.6$ | 0.083 | -3.6 |
| 1 | $58.5-\mathrm{j} 2.1$ | 0.081 | -12.7 |
| 2 | $57.3-\mathrm{j} 3.5$ | 0.076 | -23.6 |
| 4 | $54.6-\mathrm{j} 4.5$ | 0.061 | -41.6 |
| 8 | $51.9-\mathrm{j} 3.6$ | 0.040 | -60.8 |
| 16 | $50.5-\mathrm{j} 2.1$ | 0.022 | -74.8 |
| 30 | $50.2-\mathrm{j} 1.1$ | 0.011 | -80 |
| 60 | $50-\mathrm{j} 0.5$ | 0.005 | -86.5 |
| 100 | $50-\mathrm{j} 0.2$ | 0.002 | -84.9 |
| 200 | $49.7+\mathrm{j} 0$ | 0.003 | 177.4 |
| 400 | $48.9+\mathrm{j} 0.3$ | 0.011 | 162 |
| 800 | $46.1+\mathrm{j} 0.4$ | 0.041 | 173.3 |
| 1000 | $44.5+\mathrm{j} 0.2$ | 0.058 | 178 |
| 1250 | $42.8+\mathrm{j} 0$ | 0.077 | -179.7 |
| 1500 | $41.2-\mathrm{j} 0.1$ | 0.097 | -179.4 |
| 1800 | $39.9+\mathrm{j} 0.4$ | 0.113 | 177.4 |

The RF portoutput impedance for EN = Low is given in Table 8. It is roughly equivalent to a 1.3 pF capacitor to ground.

Table 8. RF Output Impedance vs Frequency for EN = Low

| FREQUENCY <br> (MHz) | LO INPUT <br> IMPEDANCE | REFLECTION COEFFICIENT |  |
| :---: | :---: | :---: | :---: |
|  |  | ANGLE |  |
| 100 | $82.3-j 1223$ | 0.995 | -4.6 |
| 200 | $51.1-\mathrm{j} 618$ | 0.987 | -9.2 |
| 400 | $35.3-\mathrm{j} 310$ | 0.965 | -18.1 |
| 800 | $24.4-\mathrm{j} 148$ | 0.906 | -36.6 |
| 1000 | $20.4-\mathrm{j} 114$ | 0.878 | -46.4 |
| 1250 | $17-\mathrm{j} 87$ | 0.847 | -58.4 |
| 1500 | $14.7-\mathrm{j} 68$ | 0.818 | -70.7 |
| 1800 | $13.1-\mathrm{j} 54$ | 0.785 | -84.3 |

In Figure 7 the simplified circuit schematic of the RF output buffer is drawn. A plot of the RF port return loss vs frequency is drawn in Figure 8 for EN = High and Low.

## Enable Interface

Figure 9 shows a simplified schematic of the EN pin interface. The voltage necessary to turn on the LTC5598 is 2 V . To disable (shut down) the chip, the enable voltage
must be below 1 V . If the EN pin is not connected, the chip is enabled. This EN = High condition is assured by the 125k on-chip pull-up resistor. It is important that the voltage at the EN pin does not exceed $V_{\text {CC }}$ by more than 0.3 V . Should


Figure 7. Simplified Circuit Schematic of the RF Output


Figure 8. RF Port Return Loss vs Frequency


Figure 9: EN Pin Interface

## APPLICATIONS InFORMATION

this occur, the supply current could be sourced through the EN pin ESD protection diodes, which are not designed to carry the full supply current, and damage may result.

## Evaluation Board

Figure 10 shows the evaluation board schematic. A good ground connection is required for the exposed pad. If this is not done properly, the RF performance will degrade. Additionally, the exposed pad provides heat sinking for the part and minimizes the possibility of the chip overheating. Resistors R1 and R2 reduce the charging current in capacitors C1 and C4 (see Figure 10) and will reduce supply ringing during a fast power supply ramp-up in case an inductive cable is connected to the $\mathrm{V}_{C C}$ and GND turrets. For EN = High, the voltage drop over R1 and R2 is about 0.15 V . If a power supply is used that ramps up slower than $10 \mathrm{~V} / \mathrm{\mu s}$ and limits the overshoot on the supply below 5.6 V , R1 and R2 can be omitted.

The LTC5598 can be used for base-station applications with various modulation formats. Figure 13 shows a typical application.


Figure 10. Evaluation Circuit Schematic

## APPLICATIONS INFORMATION



Figure 13: 5MHz to 1600MHz Direct Conversion Transmitter Application

## PACKAGE DESCRIPTION

## UF Package

24-Lead ( $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ ) Plastic QFN
(Reference LTC DWG \# 05-08-1697)


RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS


NOTE:

1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)-TO BE APPROVED
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

ON THE TOP AND BOTTOM OF PACKAGE

## RELATED PARTS

| PART NUMBER | DESCRIPTION | COMMENTS |
| :---: | :---: | :---: |
| Infrastructure |  |  |
| LT5514 | Ultralow Distortion, IF Amplifier/ADC Driver with Digitally Controlled Gain | 850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range |
| LT5517 | 40MHz to 900MHz Quadrature Demodulator | 21dBm IIP3, Integrated LO Quadrature Generator |
| LT5518 | 1.5 GHz to 2.4 GHz High Linearity Direct Quadrature Modulator | 22.8 dBm OIP3 at $2 \mathrm{GHz},-158.2 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, $50 \Omega$ Single-Ended RF and LO Ports, 4 -Channel W-CDMA ACPR $=-64 \mathrm{dBc}$ at 2.14 GHz |
| LT5519 | 0.7 GHz to 1.4 GHz High Linearity Upconverting Mixer | 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with $50 \Omega$ Matching, Single-Ended LO and RF Ports Operation |
| LT5520 | 1.3GHz to 2.3GHz High Linearity Upconverting Mixer | 15.9 dBm IIP3 at 1.9 GHz , Integrated RF Output Transformer with $50 \Omega$ Matching, Single-Ended LO and RF Ports Operation |
| LT5521 | 10MHz to 3700 MHz High Linearity Upconverting Mixer | 24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO Port Operation |
| LT5522 | 600 MHz to 2.7 GHz High Signal Level Downconverting Mixer | 4.5V to 5.25 V Supply, 25 dBm IIP3 at $900 \mathrm{MHz}, \mathrm{NF}=12.5 \mathrm{~dB}, 50 \Omega$ Single-Ended RF and LO Ports |
| LT5527 | 400MHz to 3.7GHz High Signal Level Downconverting Mixer | IIP3 $=23.5 \mathrm{dBm}$ and $\mathrm{NF}=12.5 \mathrm{dBm}$ at $1900 \mathrm{MHz}, 4.5 \mathrm{~V}$ to 5.25 V Supply, $\mathrm{I}_{\mathrm{CC}}=78 \mathrm{~mA}$, Conversion Gain $=2 \mathrm{~dB}$. |
| LT5528 | 1.5 GHz to 2.4 GHz High Linearity Direct Quadrature Modulator | 21.8 dBm OIP3 at $2 \mathrm{GHz},-159.3 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, $50 \Omega, 0.5 \mathrm{~V}_{\text {DC }}$ Baseband Interface, 4 -Channel W-CDMA ACPR $=-66 \mathrm{dBc}$ at 2.14 GHz |
| LT5554 | Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA | 48 dBm OIP3 at 200MHz, $1.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input-Referred Noise, 2dB to 18dB Gain Range, 0.125 dB Gain Step Size |
| LT5557 | 400MHz to 3.8GHz High Signal Level Downconverting Mixer | IIP3 $=23.7 \mathrm{dBm}$ at $2600 \mathrm{MHz}, 23.5 \mathrm{dBm}$ at $3600 \mathrm{MHz}, \mathrm{I}_{\mathrm{CC}}=82 \mathrm{~mA}$ at 3.3 V |
| LT5560 | Ultra-Low Power Active Mixer | 10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter. |
| LT5568 | 700MHz to 1050MHz High Linearity Direct Quadrature Modulator | 22.9 dBm OIP3 at $850 \mathrm{MHz},-160.3 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, $50 \Omega, 0.5 \mathrm{~V}_{\text {DC }}$ Baseband Interface, 3-Ch CDMA2000 ACPR $=-71.4 \mathrm{dBc}$ at 850 MHz |
| LT5571 | 620MHz - 1100MHz High Linearity Quadrature Modulator | 21.7 dBm OIP3 at $900 \mathrm{MHz},-159 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, High-Ohmic 0.5 V DC Baseband Interface |
| LT5572 | 1.5 GHz to 2.5 GHz High Linearity Direct Quadrature Modulator | 21.6 dBm OIP3 at $2 \mathrm{GHz},-158.6 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, High-Ohmic 0.5V $\mathrm{DC}^{\text {B }}$ Baseband Interface, $4-\mathrm{Ch}$ W-CDMA ACPR $=-67.7 \mathrm{dBc}$ at 2.14 GHz |
| LT5575 | 800MHz to 2.7GHz High Linearity Direct Conversion I/Q Demodulator | $50 \Omega$, Single-Ended RF and LO Ports, 28dBm IIP3 at 900MHz, 13.2dBm P1dB, 0.04 dB I/Q Gain Mismatch, $0.4^{\circ} \mathrm{I} / \mathrm{Q}$ Phase Mismatch |
| LT5579 | 1.5 GHz to 3.8 GHz High Linearity Upconverting Mixer | 27.3 dBm OIP3 at $2.14 \mathrm{GHz}, 9.9 \mathrm{~dB}$ Noise Floor, 2.6 dB Conversion Gain, -35dBm LO Leakage |
| RF Power Detectors |  |  |
| LTC ${ }^{\text {® } 505 ~}$ | RF Power Detectors with >40dB Dynamic Range | 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply |
| LTC5507 | 100 kHz to 1000MHz RF Power Detector | 100 kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply |
| LTC5508 | 300 MHz to 7GHz RF Power Detector | 44dB Dynamic Range, Temperature Compensated, SC70 Package |
| LTC5509 | 300MHz to 3GHz RF Power Detector | 36dB Dynamic Range, Low Power Consumption, SC70 Package |
| LTC5530 | 300MHz to 7GHz Precision RF Power Detector | Precision V ${ }_{\text {OUt }}$ Offset Control, Shutdown, Adjustable Gain |
| LTC5531 | 300MHz to 7GHz Precision RF Power Detector | Precision V ${ }_{\text {Out }}$ Offset Control, Shutdown, Adjustable Offset |
| LTC5532 | 300MHz to 7GHz Precision RF Power Detector | Precision V ${ }_{\text {Out }}$ Offset Control, Adjustable Gain and Offset |
| LT5534 | 50MHz to 3GHz Log RF Power Detector with 60dB Dynamic Range | $\pm 1 \mathrm{~dB}$ Output Variation over Temperature, 38ns Response Time, Log Linear Response |
| LTC5536 | Precision 600MHz to 7GHz RF Power Detector with Fast Comparator Output | 25ns Response Time, Comparator Reference Input, Latch Enable Input, -26dBm to +12dBm Input Range |
| LT5537 | Wide Dynamic Range Log RF/IF Detector | Low Frequency to 1GHz, 83dB Log Linear Dynamic Range |
| LT5538 | 3.8GHz Wide Dynamic Range Log Detector | 75 dB Dynamic Range, $\pm 1 \mathrm{~dB}$ Output Variation Over Temperature |
| LT5570 | 2.7GHz RMS Power Detector | Fast Responding, up to 60dB Dynamic Range, $\pm 0.3 \mathrm{~dB}$ Accuracy Over Temperature |
| LT5581 | 40dB Dynamic Range RMS Detector | 10 MHz to $6 \mathrm{GHz}, \pm 1 \mathrm{~dB}$ Accuracy Over Temperature, 1.4mA at 3.3 V Supply |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Modulator/Demodulator category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
LC72722PM-TLM-E HMC495LP3TR LT5571EUF\#PBF LT5528EUF\#PBF LT5502EGN\#PBF THAT1510S08-U CMX589AD5 ADRF6821ACPZ AD630ADZ AD630ARZ AD630JNZ AD630KNZ AD8346ARUZ-REEL7 AD8339ACPZ AD8345ARE AD8345AREZ AD8345AREZ-RL7 AD8347ARUZ AD8347ARUZ-REEL7 AD8348ARUZ AD8348ARUZ-REEL7 AD8349AREZ AD8349AREZ-RL7 ADL5371ACPZ-R7 ADL5387ACPZ-WP ADL5387ACPZ-R7 ADL5372ACPZ-R7 ADL5373ACPZ-R7 ADA2200ARUZ-REEL7 AD8346ARUZ ADL5380-EVALZ ADL5382ACPZ-R7 AD630ARZ-RL ADL5375-15ACPZ-R7 ADL5380ACPZ-R7 ADL5375-05ACPZ-R7 AD8333ACPZ-WP AD8341ACPZ-REEL7 ADRF6703ACPZ-R7 ADRF6750ACPZ-R7 ADRF6806ACPZ-R7 HMC1097LP4E HMC630LP3ETR HMC500LP3ETR HMC495LP3ETR HMC500LP3E HMC630LP3E HMC631LP3E HMC795LP5E MC1496DR2G

