feATURES

- 1.6 GHz -3dB Bandwidth
- Fixed Gain of 20V/N (26dB)
- -85 dBc IMD3 at 70 MHz (Equivalent $01 \mathrm{P} 3=46.5 \mathrm{dBm}$)
- -72 dBc IMD3 at 140 MHz (Equivalent $01 P 3=40 \mathrm{dBm}$)
- $1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Internal Op Amp Noise
- $1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Total Input Referred Noise
- 6.8dB Noise Figure
- Differential Inputs and Outputs
- 50Ω Input Impedance
- 2.85 V to 3.5 V Supply Voltage
- 45 mA Supply Current (135 mW)
- 1 V to 1.6 V Output Common Mode, Adjustable
- DC- or AC-Coupled Operation
- Max Differential Output Swing 4.7Vp-p
- Small 16 -Lead $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}$ QFN Package

APPLICATIONS

- Differential ADC Driver
- Differential Driver/Receiver
- Single Ended to Differential Conversion
- IF Sampling Receivers
- SAW Filter Interfacing

DESCRIPTIOn

The LTC ${ }^{\circledR} 6401-26$ is a high-speed differential amplifier targeted at processing signals from DC to 140 MHz . The part has been specifically designed to drive 12 -, 14 - and 16-bit ADCs with low noise and low distortion, but can also be used as a general-purpose broadband gain block.
The LTC6401-26 is easy to use, with minimal support circuitry required. The output common mode voltage is set using an external pin, independent of the inputs, which eliminates the need of transformers or AC-coupling capacitors in many applications. The gain is internally fixed at $26 \mathrm{~dB}(20 \mathrm{~V} / \mathrm{V})$.
The LTC6401-26 saves space and power compared to alternative solutions using IF gain blocks and transformers. The LTC6401-26 is packaged in a compact 16-lead $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ QFN package and operates over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range.
$\overline{\boldsymbol{\Sigma Y}}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Single-Ended to Differential ADC Driver at 140MHz IF

Equivalent OIP3 vs Frequency

LTC6401-26

ABSOLUTE MAXIMUM RATIOGS

(Note 1)
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$). 3.6V
Input Current (Note 2) $\pm 10 \mathrm{~mA}$
Operating Temperature Range (Note 3) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 4)

\qquad
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Maximum Junction Temperature
\qquad
\qquad $150^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

UD PACKAGE

16-LEAD ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC QFN
$T_{J M A X}=150^{\circ} \mathrm{C}, \theta_{J A}=68^{\circ} \mathrm{C} / \mathrm{W}, \theta_{J C}=4.2^{\circ} \mathrm{C} / \mathrm{W}$ EXPOSED PAD (PIN 17) IS V^{-}, MUST BE SOLDERED TO PCB

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6401CUD-26\#PBF	LTC6401CUD-26\#TRPBF	LCDG	$16-$ Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic QFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6401IUD-26\#PBF	LTC6401IUD-26\#TRPBF	LCDG	16 -Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LTC6400 AnD LTC6401 SELECTOR GUIDE Please check each datasheet for complete details.

PART NUMBER	GAIN $(\mathbf{d B})$	GAIN $(\mathbf{V} / \mathbf{V})$	Z IN $^{(D I F F E R E N T I A L)}$ (Ω)	ICC $(\mathbf{m A})$
LTC6401-8	8	2.5	400	45
LTC6401-20	20	10	200	50
LTC6401-26	26	20	50	45
LTC6400-20	20	10	200	90
LTC6400-26	26	20	50	85

In addition to the LTC6401 family of amplifiers, a lower distortion LTC6400 family is available. The LTC6400 is pin compatible to the LTC6401, and has the same low noise performance. The low distortion of the LTC6400 comes at the expense of higher power consumption. Please refer to the separate LTC6400 data sheets for complete details. Other gain versions from 8 dB to 14 dB will follow.

DC ELECTRICAL CHARACTERISTICS The denotes the speciifations which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V},+I \mathrm{~N}=-\mathrm{IN}=\mathrm{V}_{0 C M}=1.25 \mathrm{~V}$, ENABLE $=0 \mathrm{~V}$, No RL unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input/Output Characteristic (+IN, -IN, +OUT, -OUT, +0UTF, -OUTF)							
$\mathrm{G}_{\text {DIFF }}$	Gain	$\mathrm{V}_{\text {IN }}= \pm 50 \mathrm{mV}$ Differential	\bullet	25	26	27	dB
$\mathrm{TC}_{\text {Gain }}$	Gain Temperature Drift	$\mathrm{V}_{\text {IN }}= \pm 50 \mathrm{mV}$ D Differential	\bullet		0.003		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {SWIIGGMIN }}$	Output Swing Low	Each Output, $\mathrm{V}_{\text {IN }}= \pm 200 \mathrm{mV}$ Differential	\bullet		0.09	0.15	V
$V_{\text {SWINGMAX }}$	Output Swing High	Each Output, $\mathrm{V}_{\text {IN }}= \pm 200 \mathrm{mV}$ Differential	\bullet	2.3	2.43		V
Voutdifmax	Maximum Differential Output Swing	1 dB Compressed	\bullet	4.3	4.7		$V_{\text {P-P }}$
IOUT	Output Current Drive	$\begin{aligned} & \text { Each Output, } \mathrm{V}_{\text {IN }}= \pm 200 \mathrm{mV}, \\ & V_{\text {OUT }}>2 V_{\text {P-P }} \end{aligned}$	\bullet	10			mA
$\mathrm{V}_{0 \mathrm{~S}}$	Input Offset Voltage	Differential	\bullet	-2.5		2.5	mV
TCV ${ }_{0}$	Input Offset Voltage Dritt	Differential	\bullet		1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ivrmin	Input Common Mode Voltage Range, MIN					1	V
Ivamax	Input Common Mode Voltage Range, MAX			1.6			V
Rindiff	Input Resistance (+IN, -IN)	Differential	\bullet	42.5	50	57.5	Ω
$\mathrm{C}_{\text {Indiff }}$	Input Capacitance (+\|N, -IN)	Differential, Includes Parasitic			1		pF
Routilif	Output Resistance (+OUT, -OUT)	Differential	\bullet	18	25	32	Ω
R ${ }_{\text {OUTFDIFF }}$	Filtered Output Resistance (+OUTF, -OUTF)	Differential	\bullet	85	100	115	Ω
Coutroiff	Filtered Output Capacitance (+OUTF, -OUTF)	Differential, Includes Parasitic			2.7		pF
CMRR	Common Mode Rejection Ratio	Input Common Mode Voltage 1.1V to1.4V	\bullet	50	75		dB

Output Common Mode Control

G_{cm}	Common Mode Gain	$\mathrm{V}_{\text {OCM }}=1 \mathrm{~V}$ to 1.6V			1		VN
$V_{\text {Ocmmin }}$	Output Common Mode Range, MIN		\bullet			1 1.1	V
$V_{\text {Ocmmax }}$	Output Common Mode Range, MAX		\bullet	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$			V
$V_{\text {oscm }}$	Common Mode Offset Voltage	$\mathrm{V}_{\text {Ocm }}=1.1 \mathrm{~V}$ to 1.5V	\bullet	-15		15	mV
TCV ${ }_{\text {oscm }}$	Common Mode Offset Voltage Drift		\bullet		3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{IV}_{\text {Ocm }}$	Vocm Input Current		\bullet		5	15	$\mu \mathrm{A}$

ENABLE Pin

V_{IL}	$\overline{\text { ENABLE }}$ Input Low Voltage		\bullet		0.8	V
V_{H}	$\overline{\text { ENABLE }}$ Input High Voltage		\bullet	2.4		v
ILL	$\overline{\text { ENABLE }}$ Input Low Current	$\overline{\text { ENABLE }}=0.8 \mathrm{~V}$	\bullet		0.5	$\mu \mathrm{A}$
I_{H}	$\overline{\text { ENABLE }}$ Input High Current	$\overline{\text { ENABLE }}=2.4 \mathrm{~V}$	\bullet	1.4	3	$\mu \mathrm{A}$

Power Supply

$V_{\text {S }}$	Operating Supply Range		\bullet	2.85	3	3.5	V
$I_{\text {S }}$	Supply Current	ENABLE $=0 V$, Both Inputs and Outputs Floating	\bullet	35	45	60	mA
ISHDN	Shutdown Supply Current	ENABLE $=3 V$, Both Inputs and Outputs Floating	\bullet		0.8	3	mA
PSRR	Power Supply Rejection Ratio (Differential Outputs)	2.85 V to 3.5 V	\bullet	60	95.5	dB	

LTC6401-26

AC ELECTRICAL CHARACTERISTICS
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{0 C M}=1.25 \mathrm{~V}$,
ENABLE $=0 V$, No R unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
-3dBBW	-3dB Bandwidth	$200 \mathrm{mV} \mathrm{V}_{\text {P-P,OUT }}$ (Note 6)	1.2	1.6		GHz
0.5 dBBW	Bandwidth for 0.5dB Flatness	200mV P-P,OUT (Note 6)		0.5		GHz
0.1 dBBW	Bandwidth for 0.1dB Flatness	200mV V-P,OUT (Note 6)		0.22		GHz
1/f	1/f Noise Corner			16		kHz
SR	Slew Rate	Differential $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ Step (Note 6)		3300		V/ $/ \mathrm{s}$
$\mathrm{t}_{\text {S1\% }}$	1\% Settling Time	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ (Note 6)		3		ns
$\mathrm{t}_{\text {OVDR }}$	Overdrive Recovery Time	$\mathrm{V}_{\text {OUT }}=1.9 \mathrm{~V}_{\text {P-P }}($ Note 6)		19		ns
t_{ON}	Turn-On Time	+OUT, -OUT Within 10\% of Final Values		93		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	ICc Falls to 10\% of Nominal		140		ns
-3dBBW Vocm	Vocm Pin Small Signal -3dB BW	$0.1 V_{\text {P-p }}$ at $V_{\text {ocm }}$, Measured Single-Ended at Output (Note 6)		14.7		MHz

10MHz Input Signal

HD2,10M/HD3,10M	Second/Third Order Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, \mathrm{R}_{\mathrm{L}}=200 \Omega$	-95/-81	dBC
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p, }}$, No R_{L}	-93/-96	dBC
IMD3,10M	Third-Order Intermodulation (f1 $=9.5 \mathrm{MHz}$ f2 $=10.5 \mathrm{MHz}$)	$V_{\text {OUT }}=2 V_{\text {P-p }}$ Composite, $\mathrm{R}_{\mathrm{L}}=200 \Omega$	-80	dBC
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ Composite, No R_{L}	-97	dBC
OIP3,10M	Equivalent Third-Order Output Intercept Point ($\mathrm{f} 1=9.5 \mathrm{MHz} \mathrm{f} 2=10.5 \mathrm{MHz}$)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}$ Composite, No RL (Note 7)	52.5	dBm
$\mathrm{P}_{1 \mathrm{ddB}, 10 \mathrm{M}}$	1dB Compression Point	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Notes 5, 7)	17.3	dBm
$\mathrm{NF}_{10 \mathrm{M}}$	Noise Figure	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Note 5)	6.8	dB
$\mathrm{e}_{\text {IN, 10M }}$	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)	1.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
${ }^{\text {en }}$, 10M	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)	30	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

70MHz Input Signal

HD2,70M/HD3,70M	Second/Third Order Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, \mathrm{R}_{\mathrm{L}}=200 \Omega$	-83/-66	dBC
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p, }}$, No R_{L}	-86/-81	dBC
IMD3,70M	Third-Order Intermodulation (f1 $=69.5 \mathrm{MHz} f 2=70.5 \mathrm{MHz}$)	$\mathrm{V}_{\text {OUT }}=2 V_{\text {P-P }}$ Composite, $\mathrm{R}_{\mathrm{L}}=200 \Omega$	-74	dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ Composite, No R_{L}	-85	dBC
OIP3,70M	Equivalent Third-Order Output Intercept Point (f1 $=69.5 \mathrm{MHz}$ f2 $=70.5 \mathrm{MHz}$)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ Composite, No R L (Note 7)	46.5	dBm
$\mathrm{P}_{1 \mathrm{dd}, 70 \mathrm{M}}$	1dB Compression Point	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Notes 5, 7)	17.2	dBm
$\mathrm{NF}_{70 \mathrm{M}}$	Noise Figure	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Note 5)	6.7	dB
$\mathrm{e}_{\text {In, } 70 \mathrm{M}}$	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)	1.44	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\underline{\mathrm{e}_{\text {ON,70M }}}$	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)	28.8	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

AC ELECTRICAL CHARACTERISTICS
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{0 C M}=1.25 \mathrm{~V}$, $\overline{E N A B L E}=0 V$, No R_{L} unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
140MHz Input Signal						
$\begin{aligned} & \hline \text { HD2,140M/ } \\ & \text { HD3,140M } \end{aligned}$	Second/Third Order Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, \mathrm{R}_{\mathrm{L}}=200 \Omega$		-81/-54		dBC
		$V_{\text {OUT }}=2 V_{\text {P-p, }}$, No R_{L}		-85/-69		dBC
IMD3,140M	Third-Order Intermodulation $(f 1=139.5 \mathrm{MHz} f 2=140.5 \mathrm{MHz})$	$V_{\text {OUT }}=2 V_{\text {P-P }}$ Composite, $\mathrm{R}_{\mathrm{L}}=200 \Omega$		-64		dBC
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ Composite, No R_{L}		-72		dBC
OIP3,140M	Equivalent Third-Order Output Intercept Point(f1 $=139.5 \mathrm{MHz} \uparrow 2=140.5 \mathrm{MHz}$)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ Composite, No RL (Note 7)		40		dBm
$\mathrm{P}_{1 \mathrm{~dB}, 140 \mathrm{M}}$	1dB Compression Point	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Notes 5, 7)		17.4		dBm
$\mathrm{NF}_{140 \mathrm{M}}$	Noise Figure	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Note 5)		6.5		dB
$\mathrm{e}_{\mathrm{N}, 140 \mathrm{M}}$	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)		1.43		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
eon,140M	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)		28.6		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{IMD}_{3,130 \mathrm{M} / 150 \mathrm{M}}$	Third-Order Intermodulation $(f 1=130 \mathrm{MHz}$ f2 = 150MHz) Measure at 170 MHz	$V_{\text {OUT }}=2 V_{\text {P-P }}$ Composite, $\mathrm{R}_{\mathrm{L}}=375 \Omega$		-70	-62	dBC

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Input pins (+IN, -IN) are protected by steering diodes to either supply. If the inputs go beyond either supply rail, the input current should be limited to less than 10 mA .
Note 3: The LTC6401C and LTC6401I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Note 4: The LTC6401C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. It is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these
temperatures. The LTC6401I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: Input and output baluns used. See Test Circuit A.
Note 6: Measured using Test Circuit B. $R_{L}=87.5 \Omega$ per output.
Note 7: Since the LTC6401-26 is a feedback amplifier with low output impedance, a resistive load is not required when driving an AD converter. Therefore, typical output power is very small. In order to compare the LTC6401-26 with amplifiers that require 50Ω output load, the output voltage swing driving a given R_{L} is converted to OIP_{3} and $\mathrm{P}_{1 \mathrm{~dB}}$ as if it were driving a 50Ω load. Using this modified convention, $2 V_{P-p}$ is by definition equal to 10 dBm , regardless of actual R_{L}.

LTC6401-26

TYPICAL PERFORMANC CHARACTERISTICS

S21 Phase and Group Delay vs Frequency

Input and Output Impedance vs Frequency

Gain 0.1dB Flatness

Input and Output Reflection and Reverse Isoloation vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

LTC6401-26

TYPICAL PERFORMANCE CHARACTERISTICS

Output 1dB Compression Point vs Frequency

640126 G16

Turn-On Time

Equivalent Output Third Order
Intercept Point vs Frequency

640126 G17

Turn-Off Time

PIn fUnCTIONS

\mathbf{V}^{+}(Pins 1, 3, 10): Positive Power Supply (Normally tied to 3 V or 3.3 V). All three pins must be tied to the same voltage. Bypass each pin with 1000 pF and $0.1 \mu \mathrm{~F}$ capacitors as close to the pins as possible.
$V_{\text {OCM }}$ (Pin 2): This pin sets the output common mode voltage. An $0.1 \mu \mathrm{~F}$ external bypass capacitor is recommended.

V $^{-}$(Pins 4, 9, 12, 17): Negative Power Supply. All four pins must be connected to same voltage/ground.
-OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins have series 12.5Ω resistors Rout.
-OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins have 50Ω series resistors and a 2.7 pF shunt capacitor.
$\overline{\text { ENABLE (Pin 11): This pin is a logic input referenced to }}$ V_{EE}. If low, the part is enabled. If high, the part is disabled and draws very low standby current while the internal op amp has high output impedance.
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are internally shorted together.
-IN (Pins 15, 16): Negative Input. Pins 15 and 16 are internally shorted together.
Exposed Pad (Pin 17): V^{-}. The Exposed Pad must be connected to same voltage/ground as pins 4, 9, 12.

APPLICATIONS INFORMATION

Circuit Operation

The LTC6401-26 is a low noise and low distortion fully differential op amp/ADC driver with:

- Operation from DC to $1.6 \mathrm{GHz}-3 \mathrm{~dB}$ bandwidth
- Fixed gain of 20V/V (26dB)
- Differential input impedance 50Ω
- Differential output impedance 25Ω
- Differential impedance of output filter 100Ω

The LTC6401-26 is composed of afully differential amplifier with on chip feedback and output common mode voltage control circuitry. Differential gain and input impedance are set by $25 \Omega / 500 \Omega$ resistors in the feedback network. Small output resistors of 12.5Ω improve the circuit stability over various load conditions. They also provide a possible external filtering option, which is often desirable when the load is an ADC.
Filter resistors of 50Ω are available for additional filtering. Lowpass/bandpass filters are easily implemented with just a couple of external components. Moreover, they offer single-ended 50Ω matching in wideband applications and no external resistor is needed.
The LTC6401-26 is very flexible in terms of I/O coupling. It can be AC- or DC-coupled at the inputs, the outputs or both. Due to the internal connection between input and output, users are advised to keep input common mode voltage between 1 V and 1.6 V for proper operation. If the inputs are AC-coupled, the input common mode voltage is automatically biased close to $\mathrm{V}_{\text {Ocm }}$ and thus no external circuitry is needed for bias. The LTC6401-26 provides an output common mode voltage set by $\mathrm{V}_{0 C M}$, which allows driving ADC directly without external components such as transformer or AC coupling capacitors. The input signal can be either single-ended or differential with only minor difference in distortion performance.

Input Impedance and Matching

The differential inputimpedance of the LTC6401-26 is 50Ω. The interface between the input of LTC6401-26 and 50 Ω source is straightforward. One way is to directly connect
them if the source is differential (Figure 1). Another approach is to employ a wideband transformer if the source is single ended (Figure 2). Both methods provide a wideband match. Alternatively, one could apply a narrowband impedance match at the inputs of the LTC6401-26 for frequency selection and/or noise reduction.
Referring to Figure 3, LTC6401-26 can be easily configured for single-ended input and differential output without a balun. The signal is fed to one of the inputs through a matching network while the other input is connected to the same matching network and a source resistor. Because the return ratios of the two feedback paths are equal, the two outputs have the same gain and thus symmetrical swing. In general, the single-ended input impedance and termination resistor R_{T} are determined by the combination of R_{S}, R_{G} and R_{F} For example, when R_{S} is 50Ω, it is found that the single-ended input impedance is 75Ω and R_{T} is 150Ω in order to match to a 50Ω source impedance.

Figure 1. Input Termination for Differential 50Ω Input Impedance

Figure 2. Input Termination for Differential 50Ω Input Impedance Using a Balun

APPLICATIONS INFORMATION

Figure 3. Input Termination for Single-Ended 50Ω Input Impedance

The LTC6401-26 is unconditionally stable, i.e. differential stability factor Kf>1 and stability measure B1>0. However, the overall differential gain is affected by both source impedance and load impedance as shown in Figure 4:

$$
A_{V}=\left|\frac{V_{O U T}}{V_{I N}}\right|=\frac{1000}{R_{S}+50} \cdot \frac{R_{L}}{25+R_{L}}
$$

The noise performance of the LTC6401-26 also depends upon the source impedance and termination. A trade-off between gain and noise is obvious when constant noise figure circle and constant gain circle are plotted within the same input Smith Chart, based on which users can choose the optimal source impedance for a given gain and noise requirement.

Output Impedance Match and Filter

The LTC6401-26 can drive an ADC directly without external output impedance matching. Alternatively, the differential output impedance of 25Ω can be made larger, e.g. 50Ω, by series resistors or LC network.

Figure 4. Calculate Differential Gain

The internal low pass filter outputs at +OUTF/-OUTF have a -3 dB bandwidth of 590 MHz . External capacitors can reduce the low pass filter bandwidth as shown in Figure 5. A bandpass filter is easily implemented with only a few components as shown in Figure 6. Three 39pF capacitors and 16 nH inductor create a bandpass filter with 165 MHz center frequency, -3 dB frequencies at 138 MHz and 200MHz.

Output Common Mode Adjustment

The LTC6401-26's output common mode voltage is set by the $\mathrm{V}_{\text {OCM }}$ pin, which is a high impedance input. The output common mode voltage is capable of tracking $\mathrm{V}_{\text {OCM }}$ in a range from 1 V to 1.6 V . Bandwidth of $\mathrm{V}_{\text {Ocm }}$ control is typically 15 MHz , which is dominated by a low pass filter connected to the $\mathrm{V}_{0 c m}$ pin and is aimed to reduce common mode noise generation at the outputs. The internal common mode feedback loop has a -3dB bandwidth of 400 MHz , allowing fast rejection of any common mode output voltage disturbance. The $\mathrm{V}_{\text {OCM }}$ pin should be tied to a DC bias voltage with a $0.1 \mu \mathrm{~F}$ bypass capacitor. When interfacing with 3V A/D converters such as the LTC22xx families, the $\mathrm{V}_{0 \mathrm{CM}}$ pin can be connected to the V_{CM} pin of the ADC.

Driving A/D Converters

The LTC6401-26 has been specifically designed to interface directly with high speed A/D converters. Figure 7 shows the LTC6401-26 with single-ended input driving the LTC2208, which is a 16 -bit, 130 Msps ADC. Two external 5Ω resistors help eliminate potential resonance associated with bond wires of either the ADC input or the driver output. $V_{\text {OCM }}$

Figure 5. LTC6401-26 Internal Filter Topology Modified for Low Filter Bandwidth (Three External Capacitors)

LTC6401-26

APPLICATIONS INFORMATION

Figure 6. LTC6401-26 with 165MHz Output Bandpass Filter
of the LTC6401-26 is connected to $\mathrm{V}_{\text {CM }}$ of the LTC2208 at 1.25 V . Alternatively, a single-ended input signal can be converted to a differential signal via a balun and fed to the input of the LTC6401-26. Figure 8 summarizes the IMD3 performance of the whole system as shown in Figure 7.

Test Circuits

Due to the fully-differential design of the LTC6401 and its usefulness in applications with differing characteristic specifications, two test circuits are used to generate the information in this datasheet. Test Circuit A is DC987B, a two-port demonstration circuit for the LTC6401 family. The silkscreen is shown in Figure 9. This circuit includes input and output transformers (baluns) for single-ended-to-differential conversion and impedance transformation, allowing direct hook-up to a 2-port network analyzer. There are also series resistors at the output to present the LTC6401 with a 375Ω differential load, optimizing distortion performance. Due to the inputand outputtransformers, the -3 dB bandwidth is reduced from 1.6 GHz to 1.37 GHz .

Figure 7. Single-Ended Input to LTC6401-26 and LTC2208

Figure 8. IMD_{3} for the Combination of LTC6401-26 and LTC2208
Test Circuit B uses a 4-port network analyzer to measure S-parameters and gain/phase response. This removes the effects of the wideband baluns and associated circuitry, for a true picture of the $>1 \mathrm{GHz}$ S-parameters and AC characteristics.

Figure 9. Top Silkscreen for DC987B, Test Circuit A

TYPICAL APPLICATION

Demo Circuit 987B Schematic (Test Circuit A)

LTC6401-26

TYPICAL APPLICATION
Test Circuit B, 4-Port Analysis

PACKAGE DESCRIPTION

UD Package

16-Lead Plastic QFN (3mm $\times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1691)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

LTC6401-26

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
High-Speed Differential Amplifiers/Differential Op Amps		
LT-1993-2	800MHz Differential Amplifier/ADC Driver	$\mathrm{A}_{V}=2 \mathrm{~V} / \mathrm{V}, \mathrm{OIP3}=38 \mathrm{dBm}$ at 70 MHz
LT1993-4	900MHz Differential Amplifier/ADC Driver	$\mathrm{A}_{\mathrm{V}}=4 \mathrm{~V} / \mathrm{V}, 01 \mathrm{P} 3=40 \mathrm{dBm}$ at 70 MHz
LT1993-10	700MHz Differential Amplifier/ADC Driver	$\mathrm{A}_{\mathrm{V}}=2 \mathrm{~V} / \mathrm{V}, 0 \mathrm{IP3}=40 \mathrm{dBm}$ at 70 MHz
LT1994	Low Noise, Low Distortion Differential Op Amp	16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs
LT5514	Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain	OIP3 $=47 \mathrm{dBm}$ at 100MHz, Gain Control Range 10.5dB to 33dB
LT5524	Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain	OIP3 $=40 \mathrm{dBm}$ at 100 MHz , Gain Control Range 4.5 dB to 37 dB
LTC6400-20	1.8GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{V}=20 \mathrm{~dB}, 90 \mathrm{~mA}$ Supply Current, IMD3 $=-65 \mathrm{dBc}$ at 300 MHz
LTC6400-26	1.9GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{V}=26 \mathrm{~dB}, 85 \mathrm{~mA}$ Supply Current, IMD3 $=-71 \mathrm{dBc}$ at 300 MHz
LTC6401-8	2.2GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{\mathrm{V}}=8 \mathrm{~dB}, 45 \mathrm{~mA}$ Supply Current, IMD3 $=-80 \mathrm{dBc}$ at 140 MHz
LTC6401-20	1.3GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{V}=20 \mathrm{~dB}, 50 \mathrm{~mA}$ Supply Current, IMD3 $=-74 \mathrm{dBc}$ at 140 MHz
LT6402-6	300MHz Differential Amplifier/ADC Driver	$A_{V}=6 \mathrm{~dB}$, Distortion $<-80 \mathrm{dBc}$ at 25 MHz
LT6402-12	300MHz Differential Amplifier/ADC Driver	$A_{V}=12 \mathrm{~dB}$, Distortion $<-80 \mathrm{dBc}$ at 25 MHz
LT6402-20	300MHz Differential Amplifier/ADC Driver	$A_{V}=20 \mathrm{~dB}$, Distortion $<-80 \mathrm{dBc}$ at 25 MHz
LTC6406	3GHz Rail-to-Rail Input Differential Op Amp	$1.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, -72 dBc Distortion at $50 \mathrm{MHz}, 18 \mathrm{~mA}$
LT6411	Low Power Differential ADC Driver/Dual Selectable Gain Amplifier	16 mA Supply Current, IMD3 $=-83 \mathrm{dBc}$ at $70 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=1,-1$ or 2

High-Speed Single-Ended Output Op Amps

LT1812/LT1813/ LT1814	High Slew Rate Low Cost Single/Dual/Quad Op Amps	$8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, $750 \mathrm{~V} / \mu \mathrm{s}, 3 \mathrm{~mA}$ Supply Current
LT1815/LT1816/ LT1817	Very High Slew Rate Low Cost Single/Dual/Quad Op Amps	$6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, $1500 \mathrm{~V} / \mathrm{\mu s}$, 6.5mA Supply Current
LT1818/LT1819	Ultra High Slew Rate Low Cost Single/Dual Op Amps	$6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 2500V/us, 9mA Supply Current
LT6200/LT6201	Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps	$0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 165MHz GBW, Distortion $=-80 \mathrm{dBc}$ at 1 MHz
$\begin{aligned} & \text { LT6202/LT6203/ } \\ & \text { LT6204 } \end{aligned}$	Rail-to-Rail Input and Output Low Noise Single/Dual/Quad Op Amps	$1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 3mA Supply Current, 100MHz GBW
$\begin{aligned} & \text { LT6230/LT6231/ } \\ & \text { LT6232 } \end{aligned}$	Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps	$1.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 3.5mA Supply Current, 215MHz GBW
$\begin{aligned} & \text { LT6233/LT6234/ } \\ & \text { LT6235 } \end{aligned}$	Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps	$1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 1.2mA Supply Current, 60MHz GBW

LTC1562-2	Very Low Noise, 8th Order Filter Building Block	Lowpass and Bandpass Filters up to 300kHz
LT1568	Very Low Noise, 4th Order Filter Building Block	Lowpass and Bandpass Filters up to 10 MHz
LTC1569-7	Linear Phase, Tunable 10th Order Lowpass Filter	Single-Resistor Programmable Cut-Off to 300kHz
LT6600-2.5	Very Low Noise Differential 2.5MHz Lowpass Filter	SNR $=86 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-5	Very Low Noise Differential 5MHz Lowpass Filter	SNR $=82 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-10	Very Low Noise Differential 10MHz Lowpass Filter	SNR $=82 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-15	Very Low Noise Differential 15MHz Lowpass Filter	SNR $=76 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-20	Very Low Noise Differential 20MHz Lowpass Filter	SNR $=76 \mathrm{~dB}$ at 3V Supply, 4th Order Filter

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
5962-8851302HA UPC259G2-A MAX4265EUA MAX4351EKA+T MAX4350EXK+T NJM324CG-TE2 LT1809IS6\#TRM LT1801IMS8 LT1993CUD-4\#PBF MAX4203EUA+T MAX4018EEE+T MAX4416EUA+T MAX4362EUB+T MAX4285EUT+T MAX4213ESA+T MAX4022EEE+T NJM3472G-TE2 MAX4213EUA+T LTC6226IS8\#PBF LTC6226HS8\#PBF THS4222DGNR 5962-9098001M2A 59629151901M2A 5962-9325801M2A JM38510/11905BPA ADA4895-2ARMZ-R7 ADA4807-4ARUZ ADA4806-1ARJZ-R7 MAX9001EUB+ MAX4452EXKT MAX4412EXK+T MAX4381EUB+ MAX4220EEE + MAX4031EESD MAX4012ESA + MAX4392EUA+ MAX4390EXT+T MAX4383EUD+ MAX4222EEE+ MAX4022EEE+ OPA2677IDDAR OPA356AQDBVRQ1 THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT1007CS8\#PBF LTC6400IUD-20\#PBF LT1497CS\#PBF LT1007CN8\#PBF

