2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz

feATURES

- $2.2 \mathrm{GHz}-3 \mathrm{~dB}$ Bandwidth
- Fixed Gain of $2.5 \mathrm{~V} / \mathrm{V}$ (8dB)
- -92 dBc IMD3 at 70 MHz (Equivalent 0IP3 $=50 \mathrm{dBm}$)
- -80.5 dBC IMD3 at 140MHz (Equivalent 0 IP3 $=44 \mathrm{dBm}$)
- $1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Internal Op Amp Noise
- 12.1dB Noise Figure
- Differential Inputs and Outputs
- 400Ω Input Impedance
- 2.85 V to 3.5 V Supply Voltage
- 45 mA Supply Current (135 mW)
- 1 V to 1.6 V Output Common Mode, Adjustable
- DC- or AC-Coupled Operation
- Max Differential Output Swing 4.6Vp-p
- Small 16 -Lead $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}$ QFN Package

APPLICATIONS

- Differential ADC Driver
- Differential Driver/Receiver
- Single Ended to Differential Conversion
- IF Sampling Receivers
- SAW Filter Interfacing

DESCRIPTIOn

The LTC ${ }^{\circledR} 6401-8$ is a high-speed differential amplifier targeted at processing signals from DC to 140 MHz . The part has been specifically designed to drive 12 -, 14 - and 16 -bit ADCs with low noise and low distortion, but can also be used as a general-purpose broadband gain block.
The LTC6401-8 is easy to use, with minimal support circuitry required. The output common mode voltage is set using an external pin, independent of the inputs, which eliminates the need for transformers or AC-coupling capacitors in many applications. The gain is internally fixed at $8 \mathrm{~dB}(2.5 \mathrm{~V} / \mathrm{N})$.
The LTC6401-8 saves space and power compared to alternative solutions using IF gain blocks and transformers. The LTC6401-8 is packaged in a compact 16 -lead $3 \mathrm{~mm} \times$ 3 mm QFN package and operates over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range.
$\overline{\boldsymbol{\Sigma Y}}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Equivalent Output IP3 vs Frequency

ABSOLUTE MAXIMUM RATIOGS(Note 1)
Supply Voltage ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ 3.6V
Input Current (Note 2) $\pm 10 \mathrm{~mA}$
Operating Temperature Range (Note 3) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 4) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6401CUD-8\#PBF	LTC6401CUD-8\#TRPBF	LCCY	$16-$ Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic QFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6401IUD-8\#PBF	LTC6401IUD-8\#TRPBF	LCCY	16 -Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LTC6400 AnD LTC6401 SELECTOR GUIDE Please check each datasheet for complete details.

PART NUMBER	GAIN (dB)	GAIN $(\mathbf{V} / \mathbf{V})$	$\mathbf{Z}_{\text {IN }}(\mathrm{DIFFERENTIAL)}$ (Ω)	$\mathbf{I}_{\mathbf{C C}}$ (mA)
LTC6401-8	8	2.5	400	45
LTC6401-20	20	10	200	50
LTC6401-26	26	20	50	45
LTC6400-20	20	10	200	90
LTC6400-26	26	20	50	85

In addition to the LTC6401 family of amplifiers, a lower distortion LTC6400 family is available. The LTC6400 is pin compatible to the LTC6401, and has the same low noise performance. The LTC6400 shows higher linearity especially at input frequency above 140MHz at the expense of higher supply current. Please refer to the separate LTC6400 data sheets for complete details. Other gain versions from 8 dB to 14 dB will follow.

DC ELECTRICAL CHARACTERISTICS The denotes the speciifations which apply veve the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V},+I \mathrm{~N}=-\mathrm{IN}=\mathrm{V}_{0 C M}=1.25 \mathrm{~V}$, ENABLE $=0 \mathrm{~V}$, No RL unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input/Output Characteristic							
GIIFF	Gain	$\mathrm{V}_{\text {IN }}= \pm 400 \mathrm{mV}$ Differential	\bullet	7.5	8	8.5	dB
$\mathrm{TC}_{\text {Gain }}$	Gain Temperature Drift	$V_{\text {IN }}= \pm 400 \mathrm{mV}$ Differential	\bullet		-0.5		$\mathrm{mdB} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {SWINGMIN }}$	Output Swing Low	Each Output, $\mathrm{V}_{\text {IN }}= \pm 1.6 \mathrm{~V}$ Differential	\bullet		89	170	mV
$\mathrm{V}_{\text {swingmax }}$	Output Swing High	Each Output, $\mathrm{V}_{\text {IN }}= \pm 1.6 \mathrm{~V}$ Differential	\bullet	2.3	2.42		V
Voutdifmax	Maximum Differential Output Swing	1dB Compressed	\bullet		4.6		V_{p-p}
IOUT	Output Current Drive	$V_{\text {Out }}>2 V_{\text {P-P,PIFF }}$	\bullet	10			mA
$\mathrm{V}_{0 S}$	Input Offset Voltage	Differential	\bullet	-4		4	mV
TCV ${ }_{\text {OS }}$	Input Offset Voltage Drift	Differential	\bullet		3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ivzmin	Input Common Mode Voltage Range, MIN					1	V
Ivamax	Input Common Mode Voltage Range, MAX			1.6			V
RINDIFF	Input Resistance (+IN, -IN)	Differential	\bullet	340	400	460	Ω
$\mathrm{C}_{\text {Indiff }}$	Input Capacitance (+IN, -IN)	Differential, Includes Parasitic			1		pF
R Outdiff	Output Resistance (+OUT, -OUT)	Differential	\bullet	18	25	32	Ω
$\mathrm{R}_{\text {Outpolff }}$	Filtered Output Resistance (+OUTF, -OUTF)	Differential	\bullet	85	100	115	Ω
Coutediff	Filtered Output Capacitance (+OUTF, -OUTF)	Differential, Includes Parasitic			2.7		pF
CMRR	Common Mode Rejection Ratio	Input Common Mode Voltage 1.1V~1.4V	\bullet	36	55		dB

Output Common Mode Voltage Control

G_{cm}	Common Mode Gain	$\mathrm{V}_{\text {OCM }}=1 \mathrm{~V}$ to 1.6V		1		VN
$V_{\text {ocmmin }}$	Output Common Mode Range, MIN		\bullet		$\stackrel{1}{1.1}$	V
$V_{\text {Ocmax }}$	Output Common Mode Range, MAX		\bullet	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$		V
$\mathrm{V}_{\text {OSCM }}$	Common Mode Offset Voltage	$\mathrm{V}_{\text {Ocm }}=1.1 \mathrm{~V}$ to 1.5 V	\bullet	-15	15	mV
TCV ${ }_{\text {oscm }}$	Common Mode Offset Voltage Drift		\bullet	5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{IV}_{\text {Ocm }}$	$\mathrm{V}_{\text {ocm }}$ Input Current		\bullet	3.6	15	$\mu \mathrm{A}$

ENABLE Pin

VIL	ENABLE Input Low Voltage		\bullet		0.8	V
V_{IH}	$\overline{\text { ENABLE }}$ Input High Voltage		\bullet	2.4		V
IL	$\overline{\text { ENABLE }}$ Input Low Current	$\overline{\text { ENABLE }}=0.8 \mathrm{~V}$	\bullet		0.5	$\mu \mathrm{A}$
$1{ }_{\text {IH }}$	$\overline{\text { ENABLE }}$ Input High Current	$\overline{\text { ENABLE }}=2.4 \mathrm{~V}$	\bullet	1.4	4	$\mu \mathrm{A}$

Power Supply

V_{S}	Operating Supply Range		$\bullet .85$	3	3.5	V	
I_{S}	Supply Current	$\overline{\text { ENABLE }}=0.8 \mathrm{~V}$, Input and Output Floating	\bullet	36	45	60	mA
ISHDN	Shutdown Supply Current	ENABLE $=2.4 \mathrm{~V}$, Input and Output Floating	\bullet	0.8	3	mA	
PSRR	Power Supply Rejection Ratio (Differential Outputs)	$\mathrm{V}^{+}=2.85 \mathrm{~V}$ to 3.5 V	\bullet	50	73.5		dB

AC ELECTRICAL CHARACTGRISTICS
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{0 C \mathrm{M}}=1.25 \mathrm{~V}$,
ENABLE $=0 V$, No R_{L} unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
-3dBBW	-3dB Bandwidth	200mV P-P,OUT (Note 6)	1	2.22		GHz
0.5 dBBW	Bandwidth for 0.5dB Flatness	$200 \mathrm{mV} \mathrm{P}_{\text {P-P,OUT }}$ (Note 6)		0.43		GHz
0.1 dBBW	Bandwidth for 0.1dB Flatness	$200 \mathrm{mV} \mathrm{P}_{\text {P-P,OUT }}$ (Note 6)		0.22		GHz
1/f	1/f Noise Corner			12.2		kHz
SR	Slew Rate	$V_{\text {OUT }}=2 V$ Step (Note 6)		3400		V/us
$\mathrm{t}_{\text {S1\% }}$	1\% Settling Time	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ (Note 6)		2.3		ns
$\mathrm{t}_{\text {OVDR }}$	Overdrive Recovery Time	$\mathrm{V}_{\text {OUT }}=1.9 \mathrm{~V}_{\text {P-P }}($ Note 6)		18		ns
t_{ON}	Turn-On Time	$V_{\text {Out }}$ Within 10\% of Final Values		79		ns
toff	Turn-Off Time	ICC Falls to 10\% of Nominal		193		ns
-3dBBW Vocm	V ${ }_{\text {Ocm }}$ Pin Small Signal -3dB BW	$0.1 \mathrm{~V}_{\text {P-p }}$ at $\mathrm{V}_{\text {ocm }}$, Measured Single-Ended at Output (Note 6)		14		MHz

10MHz Input Signal

HD2,10M/HD3,10M	Second/Third Order Harmonic Distortion	$V_{\text {OUT }}=2 V_{\text {P-p }}, \mathrm{R}_{\mathrm{L}}=200 \Omega$	-109/-88	dBc
		$V_{\text {OUT }}=2 V_{\text {P-p, }}$, No R_{L}	-118/-100	dBc
IMD3,10M	Third-Order Intermodulation $(\mathrm{f} 1=9.5 \mathrm{MHz} \mathrm{f} 2=10.5 \mathrm{MHz})$	$V_{\text {OUT }}=2 V_{\text {P-p }}$ Composite, $\mathrm{R}_{\mathrm{L}}=200 \Omega$	-88	dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}$ Composite, No R_{L}	-93	dBC
OIP3,10M	Equivalent Third-Order Output Intercept Point ($\mathrm{f} 1=9.5 \mathrm{MHz} \mathrm{f} 2=10.5 \mathrm{MHz}$)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}$ Composite, No R R_{L} (Note 7)	50.7	dBm
P1dB,10M	1dB Compression Point	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Notes 5, 7)	17.8	dBm
NF10M	Noise Figure	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Note 5)	12.1	dB
$\mathrm{elin}, 10 \mathrm{M}^{\text {l }}$	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)	3.2	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
${ }^{\text {e ON,10M }}$	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)	8	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

70MHz Input Signal

HD2,70M/HD3,70M	Second/Third Order Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, \mathrm{R}_{\mathrm{L}}=200 \Omega$	-91/-72	dBC
		$V_{\text {OUT }}=2 V_{\text {P-p, }}$, No R_{L}	-100/-87	dBC
IMD3,70M	Third-Order Intermodulation (f1 $=69.5 \mathrm{MHz} f 2=70.5 \mathrm{MHz}$)	$V_{\text {OUT }}=2 V_{\text {P-p }}$ Composite, $\mathrm{R}_{\mathrm{L}}=200 \Omega$	-83	dBC
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ Composite, No R_{L}	-92	dBC
OIP3,70M	Equivalent Third-Order Output Intercept Point ($\mathrm{f} 1=69.5 \mathrm{MHz} \mathrm{f} 2=70.5 \mathrm{MHz}$)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}$ Composite, No R_{L} (Note 7)	50	dBm
P1dB,70M	1dB Compression Point	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Notes 5, 7)	18.3	dBm
NF70M	Noise Figure	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Note 5)	12.2	dB
- ${ }_{\text {IN,70M }}$	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)	3.2	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
e ${ }_{\text {ON,70M }}$	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)	7.9	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

aC ELECTRICAL CHARACTGRISTICS
ENABLE $=0 V$, No R unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
140MHz Input Signal						
$\begin{aligned} & \hline \text { HD2,140M/ } \\ & \text { HD3,140M } \end{aligned}$	Second/Third Order Harmonic Distortion	$V_{\text {OUT }}=2 V_{\text {P-P }}, R_{L}=200 \Omega$		-78/-59		dBc
		$V_{\text {OUT }}=2 V_{\text {P-p, }}$, No R_{L}		-87/-70		dBc
IMD3,140M	Third-Order Intermodulation (f1 = 139.5MHz f2 = 140.5MHz)	$V_{\text {OUT }}=2 V_{\text {P-P }}$ Composite, $\mathrm{R}_{\mathrm{L}}=200 \Omega$		-71		dBc
		$V_{\text {OUT }}=2 V_{\text {P-p }}$ Composite, No R_{L}		-80		dBc
OIP3,140M	Equivalent Third-Order Output Intercept Point (f1 $=139.5 \mathrm{MHz} f 2=140.5 \mathrm{MHz}$)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}$ Composite, No R_{L} (Note 7)		44.2		dBm
P1dB,140M	1dB Compression Point	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Notes 5, 7)		18.7		dBm
NF140M	Noise Figure	$\mathrm{R}_{\mathrm{L}}=375 \Omega$ (Note 5)		12.3		dB
$\mathrm{e}_{\text {IN, }, 140 \mathrm{M}}$	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)		3.1		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{e}_{\text {ON, } 140 \mathrm{M}}$	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)		7.9		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
IMD3,130M/150M	Third-Order Intermodulation ($\mathrm{f1} 1=130 \mathrm{MHz} \mathrm{f} 2=150 \mathrm{MHz}$) Measure at 170MHz	$V_{\text {OUT }}=2 V_{\text {P-p }}$ Composite, $\mathrm{R}_{\mathrm{L}}=375 \Omega$		-75	-67	dBc

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Input pins (+IN, -IN) are protected by steering diodes to either supply. If the inputs go beyond either supply rail, the input current should be limited to less than 10 mA .
Note 3: The LTC6401C and LTC6401I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 4: The LTC6401C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. It is designed, characterized and expected to meet specified
performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LTC6401I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: Input and output baluns used. See Test Circuit A.
Note 6: Measured using Test Circuit B. $\mathrm{R}_{\mathrm{L}}=87.5 \Omega$ per output.
Note 7: Since the LTC6401-8 is a feedback amplifier with low output impedance, a resistive load is not required when driving an AD converter. Therefore, typical output power is very small. In order to compare the LTC6401-8 with amplifiers that require 50Ω output load, the LTC6401-8 output voltage swing driving a given R_{L} is converted to OIP3 and $P_{1 d B}$ as if it were driving a 50Ω load. Using this modified convention, $2 V_{\text {P-p }}$ is by definition equal to 10 dBm , regardless of actual R_{L}.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

Input and Output Impedance vs Frequency

64018G05

Noise Figure and Input Referred Noise Voltage vs Frequency

Overdrive Recovery Response

1\% Settling Time for 2V Output Step

PSRR and CMRR vs Frequency

Large Signal Transient Response

Harmonic Distortion vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Third Order Intermodulation Distortion vs Frequency

Turn-On Time

Equivalent Output Third Order Intercept Point vs Frequency

Turn-Off Time

PIn fUnCTIOnS

\mathbf{V}^{+}(Pins 1, 3, 10): Positive Power Supply (Normally tied to 3 V or 3.3 V). All three pins must be tied to the same voltage. Bypass each pin with 1000 pF and $0.1 \mu \mathrm{~F}$ capacitors as close to the pins as possible.
$V_{\text {OCM }}$ (Pin 2): This pin sets the output common mode voltage. A $0.1 \mu \mathrm{~F}$ external bypass capacitor is recommended.

V- (Pins 4, 9, 12, 17): Negative Power Supply. All four pins must be connected to same voltage/ground.
-OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins have series resistors, ROUT 12.5Ω.
-OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins have 50Ω series resistors and a 2.7 pF shunt capacitor.
$\overline{\text { ENABLE (Pin 11): This pin is a logic input referenced to }}$ V_{EE}. If low, the part is enabled. If high, the part is disabled and draws very low standby current while the internal op amp has high output impedance.
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are internally shorted together.
-IN (Pins 15, 16): Negative Input. Pins 15 and 16 are internally shorted together.
Exposed Pad (Pin 17): V^{-}. The Exposed Pad must be connected to same voltage/ground as pins 4, 9, 12.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

Circuit Operation

The LTC6401-8 is a low noise and low distortion fully differential op amp/ADC driver with:

- Operation from DC to $2.2 \mathrm{GHz}-3 \mathrm{~dB}$ bandwidth
- Fixed gain of $2.5 \mathrm{~V} / \mathrm{V}(8 \mathrm{~dB})$
- Differential input impedance 400Ω
- Differential output impedance 25Ω
- Differential impedance of output filter 100Ω

The LTC6401-8 is composed of a fully differential amplifier with on chip feedback and output common mode voltage control circuitry. Differential gain and input impedance are set by $200 \Omega / 500 \Omega$ resistors in the feedback network. Small output resistors of 12.5Ω improve the circuit stability over various load conditions. They also provide a possible external filtering option, which is often desirable when the load is an ADC.

Filter resistors of 50Ω are available for additional filtering. Lowpass/bandpass filters are easily implemented with just a couple of external components. Moreover, they offer single-ended 50Ω matching in wideband applications and no external resistor is needed.

The LTC6401-8 is very flexible in terms of I/O coupling. It can be AC- or DC-coupled at the inputs, the outputs or both. Due to the internal connection between input and output, users are advised to keep input common mode voltage between 1 V and 1.6 V for proper operation. If the inputs are AC-coupled, the input common mode voltage is automatically biased approximately 250 mV above $\mathrm{V}_{\text {OCM }}$ and thus no external circuitry is needed for bias. The LTC6401-8 provides an output common mode voltage set by $V_{0 C M}$, which allows driving ADC directly without external components such as transformer or AC coupling capacitors. The input signal can be either single-ended or differential with only minor difference in distortion performance.

Input Impedance and Matching

The differential input impedance of the LTC6401-8 is 400Ω. Usually the differential inputs need to be terminated to a lower value impedance, e.g. 50Ω, in order to provide an impedance match for the source. Several choices are available. One approach is to use a differential shunt resistor (Figure 1). Another approach is to employ a wideband transformer and shunt resistor (Figure 2). Both methods provide a wideband match. The termination resistor or the transformer must be placed close to the input pins in order to minimize the reflection due to input mismatch. Alternatively, one could apply a narrowband impedance match at the inputs of the LTC6401-8 for frequency selection and/or noise reduction.

Figure 1. Input Termination for Differential 50Ω Input Impedance Using Shunt Resistor

Figure 2. Input Termination for Differential 50Ω Input Impedance Using a Balun

APPLICATIONS InFORMATION

Referring to Figure 3, LTC6401-8 can be easily configured for single-ended input and differential output without a balun. The signal is fed to one of the inputs through a matching network while the other input is connected to the same matching network and a source resistor. Because the return ratios of the two feedback paths are equal, the two outputs have the same gain and thus symmetrical swing. In general, the single-ended input impedance and termination resistor R_{\top} are determined by the combination of R_{S}, R_{G} and R_{F} For example, when R_{S} is 50Ω, it is found that the single-ended input impedance is 322Ω and R_{T} is 59Ω in order to match to a 50Ω source impedance.

Figure 3. Input Termination for Single-Ended 50Ω Input Impedance

The LTC6401-8 is unconditionally stable, i.e. differential stability factor $\mathrm{Kf}>1$ and stability measure $\mathrm{B} 1>0$. However, the overall differential gain is affected by both source impedance and load impedance as shown in Figure 4:

$$
A_{V}=\left|\frac{V_{O U T}}{V_{I N}}\right|=\frac{1000}{R_{S}+400} \cdot \frac{R_{L}}{25+R_{L}}
$$

The noise performance of the LTC6401-8 also depends upon the source impedance and termination. For example, an input 1:4 transformer in Figure 2 improves SNR by adding 6 dB gain at the inputs. A trade-off between gain

Figure 4. Calculate Differential Gain
and noise is obvious when constant noise figure circle and constant gain circle are plotted within the input Smith Chart, based on which users can choose the optimal source impedance for a given gain and noise requirement.

Output Impedance Match and Filter

The LTC6401-8 can drive an ADC directly without external output impedance matching. Alternatively, the differential output impedance of 25Ω can be made larger, e.g. 50Ω, by series resistors or LC network.
The internal low pass filter outputs at +OUTF/-OUTF have a -3 dB bandwidth of 590 MHz . External capacitors can reduce the lowpass filter bandwidth as shown in Figure 5. A bandpass filter is easily implemented with

Figure 5. LTC6401-8 Internal Filter Topology Modified for Low Filter Bandwidth (Three External Capacitors)

APPLICATIONS InFORMATION

only a few components as shown in Figure 6. Three 39pF capacitors and a 16 nH inductor create a bandpass filter with 165MHz center frequency, -3dB frequencies at 138MHz and 200MHz.

Figure 6. LTC6401-8 Modified 165MHz for Bandpass Filtering (Three External Capacitors, One External Inductor)

Output Common Mode Adjustment

The LTC6401-8's output common mode voltage is set by the $\mathrm{V}_{0 \mathrm{CM}}$ pin, which is a high impedance input. The output common mode voltage is capable of tracking $\mathrm{V}_{\text {OCM }}$ in a range from 1 V to 1.6 V . Bandwidth of $\mathrm{V}_{\text {Ocm }}$ control is typically 14 MHz , which is dominated by a low pass filter connected to the $\mathrm{V}_{0<m}$ pin and is aimed to reduce common mode noise generation at the outputs. The internal common mode feedback loop has a -3dB bandwidth around 400 MHz , allowing fast rejection of any common mode output voltage disturbance. The $\mathrm{V}_{0 \mathrm{Cm}}$ pin should be tied to a DC bias voltage with a $0.1 \mu \mathrm{~F}$ bypass capacitor. When interfacing with 3 V A/D converters such as the LT22xx families, the $V_{\text {OCM }}$ pin can be connected to the $V_{C M}$ pin of the ADC.

Driving A/D Converters

The LTC6401-8 has been specifically designed to interface directly with high speed A/D converters. Figure 7 shows the

Figure 7. Single-Ended Input to LTC6401-8 and LTC2208
LTC6401-8 with single-ended input driving the LTC2208, which is a 16-bit, 130Msps ADC. Two external 5Ω resistors help eliminate potential resonance associated with bond wires of either the ADC input or the driver output. $V_{0 C M}$ of the LTC6401-8 is connected to V_{CM} of the LTC2208 at 1.25 V . Alternatively, an input single-ended signal can be converted to differential signal via a balun and fed to the input of the LTC6401-8.
Figure 8 summarizes the IMD3 performance of the whole system as shown in Figure 7.

Figure 8. IMD3 for the Combination of LTC6401-8 and LTC2208

APPLICATIONS INFORMATION

Test Circuits
Due to the fully-differential design of the LTC6401 and its usefulness in applications with differing characteristic specifications, two test circuits are used to generate the information in this datasheet. Test Circuit A is DC987B, a two-port demonstration circuit for the LTC6401 family. The silkscreen is shown in Figure 9. This circuit includes input and output transformers (baluns) for single-ended-to-differential conversion and impedance transformation, allowing direct hook-up to a 2-port network analyzer. There are also series resistors at the output to present the LTC6401 with a 375Ω differential load, optimizing distortion performance. Due to the input and output transformers, the -3 dB bandwidth is reduced from 2.2 GHz to approximately 1.65 GHz .

Test Circuit B uses a 4-port network analyzer to measure S-parameters and gain/phase response. This removes the effects of the wideband baluns and associated circuitry, for a true picture of the $>1 \mathrm{GHz}$ S-parameters and AC characteristics.

Figure 9. Top Silkscreen for DC987B. Test Circuit A

TYPICAL APPLICATIONS

Demo Circuit 987B Schematic (Test Circuit A)

TYPICAL APPLICATIONS
Test Circuit B, 4-Port Analysis

UD Package

16-Lead Plastic QFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1691)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
High-Speed Differential Amplifiers/Differential Op Amps		
LT-1993-2	800MHz Differential Amplifier/ADC Driver	$\mathrm{A}_{\mathrm{V}}=2 \mathrm{~V} / \mathrm{V}, \mathrm{OIP3}=38 \mathrm{dBm}$ at 70 MHz
LT1993-4	900MHz Differential Amplifier/ADC Driver	$A_{V}=4 \mathrm{~V} / \mathrm{V}, 01 \mathrm{P} 3=40 \mathrm{dBm}$ at 70 MHz
LT1993-10	700MHz Differential Amplifier/ADC Driver	$\mathrm{A}_{V}=10 \mathrm{~V} / \mathrm{V}, \mathrm{OIP} 3=40 \mathrm{dBm}$ at 70 MHz
LT1994	Low Noise, Low Distortion Differential Op Amp	16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs
LT5514	Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain	OIP3 $=47 \mathrm{dBm}$ at 100MHz, Gain Control Range 10.5dB to 33dB
LT5524	Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain	OIP3 $=40 \mathrm{dBm}$ at 100 MHz , Gain Control Range 4.5 dB to 37 dB
LTC6400-20	1.8GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{V}=20 \mathrm{~dB}$, 90mA Supply Current, IMD3 $=-65 \mathrm{dBc}$ at 300 MHz
LTC6400-26	1.9GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{V}=26 \mathrm{~dB}, 85 \mathrm{~mA}$ Supply Current, IMD3 $=-71 \mathrm{dBc}$ at 300 MHz
LTC6401-20	1.3GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{V}=20 \mathrm{~dB}, 50 \mathrm{~mA}$ Supply Current, IMD3 $=-74 \mathrm{dBc}$ at 140MHz
LTC6401-26	1.6GHz Low Noise, Low Distortion, Differential ADC Driver	$\mathrm{A}_{V}=26 \mathrm{~dB}, 45 \mathrm{~mA}$ Supply Current, IMD3 $=-72 \mathrm{dBc}$ at 140 MHz
LT6402-6	300MHz Differential Amplifier/ADC Driver	$\mathrm{A}_{V}=6 \mathrm{~dB}$, Distortion $<-80 \mathrm{dBc}$ at 25 MHz
LT6402-12	300MHz Differential Amplifier/ADC Driver	$A_{V}=12 \mathrm{~dB}$, Distortion $<-80 \mathrm{dBc}$ at 25MHz
LT6402-20	300MHz Differential Amplifier/ADC Driver	$\mathrm{A}_{\mathrm{V}}=20 \mathrm{~dB}$, Distortion $<-80 \mathrm{dBc}$ at 25MHz
LTC6404-1	600MHz Low Noise Differential ADC Driver	$\mathrm{e}_{\mathrm{n}}=1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, Rail-to-Rail Outputs
LTC6406	3GHz Rail-to-Rail Input Differential Op Amp	$1.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, -72 dBc Distortion at $50 \mathrm{MHz}, 18 \mathrm{~mA}$
LT6411	Low Power Differential ADC Driver/Dual Selectable Gain Amplifier	16 mA Supply Current, IMD3 $=-83 \mathrm{dBc}$ at $70 \mathrm{MHz}, \mathrm{A}_{V}=1,-1$ or 2

High-Speed Single-Ended Output Op Amps

LT1812/LT1813/ LT1814	High Slew Rate Low Cost Single/Dual/Quad Op Amps	$8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, $750 \mathrm{~V} / \mathrm{\mu s}, 3 \mathrm{~mA}$ Supply Current
LT1815/LT1816/ LT1817	Very High Slew Rate Low Cost Single/Dual/Quad Op Amps	$6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 1500V/us, 6.5 mA Supply Current
LT1818/LT1819	Ultra High Slew Rate Low Cost Single/Dual Op Amps	$6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 2500V/us, 9mA Supply Current
LT6200/LT6201	Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps	$0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 165MHz GBW, Distortion $=-80 \mathrm{dBc}$ at 1 MHz
LT6202/LT6203/ LT6204	Rail-to-Rail Input and Output Low Noise Single/Dual/Quad Op Amps	$1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 3mA Supply Current, 100MHz GBW
LT6230/LT6231/ LT6232	Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps	$1.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 3.5mA Supply Current, 215MHz GBW
LT6233/LT6234/	Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps	$1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, 1.2mA Supply Current, 60MHz GBW

Integrated Filters

LTC1562-2	Very Low Noise, 8th Order Filter Building Block	Lowpass and Bandpass Filters up to 300kHz
LT1568	Very Low Noise, 4th Order Filter Building Block	Lowpass and Bandpass Filters up to 10MHz
LTC1569-7	Linear Phase, Tunable 10th Order Lowpass Filter	Single-Resistor Programmable Cut-0ff to 300kHz
LT6600-2.5	Very Low Noise Differential 2.5MHz Lowpass Filter	SNR $=86 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-5	Very Low Noise Differential 5MHz Lowpass Filter	SNR $=82 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-10	Very Low Noise Differential 10MHz Lowpass Filter	SNR $=82 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-15	Very Low Noise Differential 15MHz Lowpass Filter	SNR $=76 \mathrm{~dB}$ at 3V Supply, 4th Order Filter
LT6600-20	Very Low Noise Differential 20MHz Lowpass Filter	SNR $=76 \mathrm{~dB}$ at 3V Supply, 4th Order Filter

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NJU7047RB1-TE2 LTC6226IS8\#PBF LTC6226HS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LTC6253CMS8\#PBF LT1813CDD\#PBF ADA4851-4YRUZ-RL LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LTC6401IUD-26\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT6203CDD\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF OP27EN8\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LTC6253IMS8\#PBF LT1360CS8 OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7 AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZREEL7 AD8010ANZ

