LTM4602

FEATURES

- Complete Switch Mode Power Supply
- Wide Input Voltage Range: 4.5 V to 20 V
- 6A DC, 8A Peak Output Current
- 0.6 V to 5 V Output Voltage
- 1.5\% Output Voltage Regulation
- Ultrafast Transient Response
- Current Mode Control
- Pb-Free (e4) RoHS Compliant Package with GoldPad Finish
- Pin Compatible with the LTM4600
- Up to 92% Efficiency
- Programmable Soft-Start
- Output Overvoltage Protection
- Optional Short-Circuit Shutdown Timer
- See the LTM4602HV for Operation Up to $28 \mathrm{~V}_{\text {IN }}$
- Small Footprint, Low Profile ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times$ 2.8 mm) Surface Mount LGA Package

APPLICATIONS

- Telecom and Networking Equipment
- Servers
- Industrial Equipment
- Point of Load Regulation

DESCRIPTIOn

The LTM ${ }^{\circledR} 4602$ is a complete 6A DC/DC step down power supply. Included in the package are the switching controller, power FETs, inductor, and all support components. Operating over an input voltage range of 4.5 V to 20 V , the LTM4602 supports an output voltage range of 0.6 V to 5 V , set by a single resistor. This high efficiency design delivers 6 A continuous current (8 A peak), needing no heat sinks or airflow to meet power specifications. Only bulk input and output capacitors are needed to finish the design.
The low profile package (2.8 mm) enables utilization of unused space on the bottom of PC boards for high density point of load regulation. High switching frequency and an adaptive on-time current mode architecture enables a very fast transient response to line and load changes without sacrificing stability. Fault protection features include integrated overvoltage and short circuit protection with a defeatable shutdown timer. A built-in soft-start timer is adjustable with a small capacitor.
The LTM4602 is packaged in athermally enhanced, compact ($15 \mathrm{~mm} \times 15 \mathrm{~mm}$) and low profile $(2.8 \mathrm{~mm})$ over-molded Land Grid Array (LGA) package suitable for automated assembly by standard surface mount equipment. For the 4.5 V to 28 V input range version, refer to the LTM4602HV.
$\overline{\mathbf{L T}}, \mathrm{LT}, \mathrm{LTC}$ and LTM are registered trademarks of Linear Technology Corporation. μ Module is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 5481178, 6100678, 6580258, 5847554, 6304066.

TYPICAL APPLICATION

6A μ Module $^{\text {TM }}$ Power Supply with 4.5 V to 20V Input

Efficiency vs Load Current with $12 V_{\text {IN }}($ FCB $=0)$

ABSOLUTE MAXIMUM RATIOGS

(Note 1)
FCB, EXTV ${ }_{\text {CC }}$, PGOOD, RUN/SS, V ${ }_{\text {OUt }} \ldots-0.3 \mathrm{~V}$ to 6 V

VOSET, COMP .. -0.3 V to 2.7 V
Operating Temperature Range (Note 2).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature .. $125^{\circ} \mathrm{C}$
Storage Temperature Range................... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

LGA PACKAGE
104-LEAD ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm}$)
$T_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=15^{\circ} \mathrm{C} / \mathrm{W}, \theta_{J C}=6^{\circ} \mathrm{C} / \mathrm{W}$, θ_{JA} DERIVED FROM $95 \mathrm{~mm} \times 76 \mathrm{~mm}$ PCB WITH 4 LAYERS WEIGHT $=1.7 \mathrm{~g}$

ORDER INFORMATION

LEAD FREE FINISH	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTM4602EV\#PBF	LTM4602V	$104-$ Lead $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm})$ LGA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTM4602IV\#PBF	LTM4602V	$104-$ Lead $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm})$ LGA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=12 \mathrm{~V}$. External $\mathrm{C}_{I N}=120 \mu \mathrm{~F}$, $\mathrm{C}_{O U T}=200 \mu \mathrm{~F} /$ Ceramic per typical application (front page) configuration.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN(DC) }}$	Input DC Voltage		\bullet	4.5		20	V
$\mathrm{V}_{\text {OUT(DC) }}$	Output Voltage	$\begin{aligned} & \text { FCB }=0 \mathrm{~V} \\ & V_{\text {IN }}=5 \mathrm{~V} \text { or } 12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 1.478 \\ & 1.470 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.522 \\ & 1.530 \end{aligned}$	V

Input Specifications

$\mathrm{V}_{\text {IN(UVLO) }}$	Under Voltage Lockout Threshold	$\mathrm{I}_{\text {IUt }}=0 \mathrm{~A}$	3.4	4	v
IINRUSH(VIIN)	Input Inrush Current at Startup	$\begin{aligned} & \text { Iout }=0 \mathrm{OA} . \mathrm{V} \text { OUT }=1.5 \mathrm{~V}, \mathrm{FCB}=0 \\ & V_{\text {IN }}=5 \mathrm{~V} \\ & V_{\text {IN }}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$		A
$\mathrm{I}_{\text {a(vin) }}$	Input Supply Bias Current		$\begin{aligned} & 1.2 \\ & 42 \\ & 1.0 \\ & 52 \\ & 50 \\ & \hline \end{aligned}$	100	mA $m A$ $m A$ $m A$ μA

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply vver the $-40^{\circ} \mathrm{c}$ to $85^{\circ} \mathrm{C}$ temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=12 \mathrm{~V}$. Per typical application (front page) configuration.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
UNITS					
$I_{\text {S(VIN) }}$	Input Supply Current	$V_{\text {IN }}=12 V, V_{\text {OUT }}=1.5 \mathrm{~V}, I_{\text {OUT }}=6 \mathrm{~A}$	0.88		A
		$V_{\text {IN }}=12 V, V_{\text {OUT }}=3.3 V I_{\text {OUT }}=6 \mathrm{~A}$	1.80	A	
		$V_{\text {IN }}=5 V, V_{\text {OUT }}=1.5 \mathrm{~V}, I_{\text {OUT }}=6 \mathrm{~A}$	2.08	A	

Output Specifications

$\mathrm{I}_{\text {OUTDC }}$	Output Continuous Current Range (See Output Current Derating Curves for Different $V_{\text {IN }}, V_{\text {OUT }}$ and T_{A})	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$		0		6	A
$\frac{\overline{\Delta \mathrm{V}_{\text {OUT(LINE) }}}}{\mathrm{V}_{\text {OUT }}}$	Line Regulation Accuracy	$\begin{aligned} & V_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{FCB}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V} \text { to } 20 \mathrm{~V} \end{aligned}$	\bullet		0.15	0.3	\%
$\frac{\Delta \mathrm{V}_{\text {OUT(LOAD) }}}{\mathrm{V}_{\text {OUT }}}$	Load Regulation Accuracy	$\begin{aligned} & V_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \text { to } 6 \mathrm{~A}, \mathrm{FCB}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}(\text { Note } 3) \end{aligned}$	\bullet		$\begin{aligned} & \pm 0.25 \\ & \pm 0.15 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	\%
$\mathrm{V}_{\text {OUT(AC) }}$	Output Ripple Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{FCB}=0 \mathrm{~V}$			10	15	$\mathrm{mV} \mathrm{P}_{\text {- }}$
fs	Output Ripple Voltage Frequency	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}, \mathrm{FCB}=0 \mathrm{~V}$			850		kHz
$\mathrm{t}_{\text {START }}$	Turn-On Time	$\begin{gathered} V_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A} \\ V_{\text {IN }}=12 \mathrm{~V} \\ V_{\text {IN }}=5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$		ms ms
$\Delta \mathrm{V}_{\text {OUTLS }}$	Voltage Drop for Dynamic Load Step	$\mathrm{V}_{\text {Out }}=1.5 \mathrm{~V}$, Load Step: $0 \mathrm{~A} / \mathrm{\mu s}$ to $3 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{C}_{\text {OUT }}=22 \mu \mathrm{~F} 6.3 \mathrm{~V}, 330 \mu \mathrm{~F} 4 \mathrm{~V}$ POSCAP, See Table 2			30		mV
${ }_{\text {t SETLE }}$	Settling Time for Dynamic Load Step	Load: 10\% to 50\% to 10\% of Full Load			25		$\mu \mathrm{S}$
I OUTPK	Output Current Limit	Output Voltage in Foldback $\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, V_{\text {OUT }}=1.5 \mathrm{~V} \\ & V_{\text {IN }}=5 \mathrm{~V}, V_{\text {OUT }}=1.5 \mathrm{l} \end{aligned}$			$\begin{aligned} & 9 \\ & 9 \end{aligned}$		A A

Control Stage

$\mathrm{V}_{\text {OSET }}$	Voltage at $\mathrm{V}_{\text {OSET }}$ Pin	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$	\bullet	0.591	0.6	0.609	V
$\mathrm{V}_{\text {RUN/SS }}$	RUN ON/OFF Threshold			0.8	1.5	2	V
IRUN(C)/SS	Soft-Start Charging Current	$\mathrm{V}_{\text {RUN/SS }}=0 \mathrm{~V}$		-0.5	-1.2	-3	$\mu \mathrm{A}$
IRUN(D)/SS	Soft-Start Discharging Current	$\mathrm{V}_{\text {RUN/SS }}=4 \mathrm{~V}$		0.8	1.8	3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IN }}-\mathrm{SV}_{\text {IN }}$		$\mathrm{EXTV}_{\text {CC }}=0 \mathrm{~V}, \mathrm{FCB}=0 \mathrm{~V}$			100		mV
IEXTVCC	Current into EXTV ${ }_{\text {CC }}$ Pin	$\begin{aligned} & \mathrm{EXTV}_{\text {CC }}=5 \mathrm{~V}, \mathrm{FCB}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \end{aligned}$			16		mA
$\mathrm{R}_{\text {FBHI }}$	Resistor Between $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {OSET }}$ Pins				100		$\mathrm{k} \Omega$
$\mathrm{V}_{\text {FCB }}$	Forced Continuous Threshold			0.57	0.6	0.63	V
$l_{\text {FCB }}$	Forced Continuous Pin Current	$\mathrm{V}_{\mathrm{FCB}}=0.6 \mathrm{~V}$			-1	-2	$\mu \mathrm{A}$

PGOOD Output

$\Delta V_{\text {OSETH }}$	PGOOD Upper Threshold	V OSET Rising	7.5	10	12.5	$\%$
$\Delta V_{\text {OSETL }}$	PGOOD Lower Threshold	$V_{\text {OSET }}$ Falling	-7.5	-10	-12.5	$\%$
$\Delta V_{\text {OSET(HYS) }}$	PGOOD Hysteresis	$V_{\text {OSET }}$ Returning		2		$\%$
$V_{\text {PGL }}$	PGOOD Low Voltage	IPGOOD $=5 \mathrm{~mA}$		0.15	0.4	V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LTM4602E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4602I is guaranteed over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range.
Note 3: Test assumes current derating versus temperature.

TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 21 tor all curves)

$4602 G 01$

Light Load Efficiency vs
Load Current with $12 \mathrm{~V}_{\mathrm{IN}}$
(FCB > 0.7V, <5V)

$4602 G 04$

$4602 \mathrm{GO2}$

1.2V Transient Response

1.2V AT 3A/ $\mu \mathrm{S}$ LOAD STEP

COUT $=1 \times 22 \mu \mathrm{~F}, 6.3 \mathrm{~V}$ CERAMICS
$330 \mu \mathrm{~F}, 4 \mathrm{~V}$ SANYO POSCAP

Efficiency vs Load Current with $20 \mathrm{~V}_{\text {IN }}(\mathrm{FCB}=0)$

4602 GO3
1.5V Transient Response

1.5V AT 3A/us LOAD STEP
$\mathrm{C}_{\text {OUT }}=1 \times 22 \mu \mathrm{~F}, 6.3 \mathrm{~V}$ CERAMICS
$330 \mu \mathrm{~F}, 4 \mathrm{~V}$ SANYO POSCAP

3.3V Transient Response

3.3V AT 3A/us LOAD STEP
$\mathrm{C}_{\text {OUT }}=1 \times 22 \mu \mathrm{~F}, 6.3 \mathrm{~V}$ CERAMICS
$330 \mu \mathrm{~F}, 4 \mathrm{~V}$ SANYO POSCAP

LTM4602

TYPICAL PERFORMAOCE CHARACTERISTICS (See Figure 21 tor all curves)

SEE FREQUENCY ADJUSTMENT DISCUSSION
FOR $12 V_{\text {IN }}$ TO 5V $V_{\text {OUT }}$ AND $5 V_{\text {IN }}$ TO $3.3 V_{\text {OUT }}$ CONVERSION

PIn FUnCTIOnS (See Package Description for Pin Assignment)

$V_{\text {IN }}$ (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between $\mathrm{V}_{\text {IN }}$ pins and PGND pins.
$\mathrm{f}_{\text {ADJ }}$ (Pin A15): A 110k resistor from $\mathrm{V}_{\text {IN }}$ to this pin sets the one-shot timer current, thereby setting the switching frequency. The LTM4602 switching frequency is typically 850 kHz . An external resistor to ground can be selected to reduce the one-shottimer current, thus lower the switching frequency to accommodate a higher duty cycle step down requirement. See the applications section.

SV IN (Pin A17): SupplyPinfor Internal PWMController.Leave this pin open or add additional decoupling capacitance.
EXTV ${ }_{\text {CC }}$ (Pin A19): External 5V supply pin for controller. If left open or grounded, the internal 5 V linear regulator will power the controller and MOSFET drivers. For high input voltage applications, connecting this pin to an external 5 V will reduce the power loss in the power module. The EXTV ${ }_{C C}$ voltage should never be higher than V_{IN}.
$V_{\text {OSET }}$ (Pin A21): The Negative Input of The Error Amplifier. Internally, this pin is connected to $\mathrm{V}_{\text {OUT }}$ with a 100 k precision resistor. Different output voltages can be programmed with additional resistors between the $V_{\text {OSET }}$ and SGND pins.
COMP (Pin B23): Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0 V to 2.4 V with 0.8 V corresponding to zero sense voltage (zero current).

SGND (Pin D23): Signal Ground Pin. All small-signal components should connect to this ground, which in turn connects to PGND at one point.
RUN/SS (Pin F23): Run and Soft-Start Control. Forcing this pin below 0.8 V will shut down the power supply. Inside the power module, there is a 1000pF capacitor which provides approximately 0.7 ms soft-start time with $200 \mu \mathrm{~F}$ output capacitance. Additional soft-start time can be achieved by adding additional capacitance between the RUN/SS and SGND pins. The internal short-circuit latchoff can be disabled by adding a resistor between this pin and the $\mathrm{V}_{\text {IN }}$ pin. This pullup resistor must supply a minimum 5μ A pull up current.
FCB (Pin G23): Forced Continuous Input. Grounding this pin enables forced continuous mode operation regardless of load conditions. Tying this pin above 0.63 V enables discontinuous conduction mode to achieve high efficiency operation at light loads. There is an internal 4.75 k resistor between the FCB and SGND pins.

PGOOD (Pin J23): Output Voltage Power Good Indicator. When the output voltage is within 10% of the nominal voltage, the PGOOD is open drain output. Otherwise, this pin is pulled to ground.
PGND (Bank 2): Power ground pins for both input and output returns.
$V_{\text {OUT }}$ (Bank 3): Power Output Pins. Apply output Ioad between these pins and PGND pins. Recommend placing High Frequency output decoupling capacitance directly between these pins and PGND pins.

SIMPLIFIGD BLOCK DIAGRAM

Figure 1. Simplified LTM4602 Block Diagram

DECOUPLING REQUIREMEПTS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{IN}}=12 \mathrm{~V}$. Use Figure 1 contiguration.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{C}_{\text {IN }}$	External Input Capacitor Requirement $\left(\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}\right.$ to 20 V , $\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$)	$\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}$	20			$\mu \mathrm{F}$
$\mathrm{Cout}^{\text {O }}$	External Output Capacitor Requirement $\left(\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}\right.$ to $\left.20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}\right)$	$\mathrm{I}_{\text {Out }}=6 \mathrm{~A}$, Refer to Table 2 in the Applications Information Section	100	200		$\mu \mathrm{F}$

LTM4602

OPERATION

μ Module Description

The LTM4602 is a standalone nonisolated synchronous switching DC/DC power supply. It can deliver up to 6A of DC output current with only bulk external input and output capacitors. This module provides a precisely regulated outputvoltage programmablevia one external resistor from $0.6 V_{D C}$ to $5.0 V_{D C}$, not to exceed 80% of the input voltage. The input voltage range is 4.5 V to 20 V . A simplified block diagram is shown in Figure 1 and the typical application schematic is shown in Figure 21.
The LTM4602 contains an integrated LTC constant on-time current-mode regulator, ultralow $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ FETs with fast switching speed and integrated Schottky diode. The typical switching frequency is 850 kHz at full load. With current mode control and internal feedback loop compensation, the LTM4602 module has sufficient stability margins and good transient performance under a wide range of operating conditions and with a wide range of output capacitors, even all ceramic output capacitors (X5R or X7R).
Current mode control provides cycle-by-cycle fast current limit. In addition, foldback current limiting is provided in an overcurrent condition while $\mathrm{V}_{\text {OSET }}$ drops. Also, the LTM4602 has defeatable short-circuit latch off. Internal overvoltage and undervoltage comparators pull the opendrain PGOOD outputlow ifthe outputfeedback voltage exits $\mathrm{a} \pm 10 \%$ window around the regulation point. Furthermore,
in an overvoltage condition, internal top FET Q1 is turned off and bottom FET Q2 is turned on and held on until the overvoltage condition clears.

Pulling the RUN/SS pin low forces the controller into its shutdown state, turning off both Q1 and Q2. Releasing the pin allows an internal $1.2 \mu \mathrm{~A}$ current source to charge up the soft-start capacitor. When this voltage reaches 1.5 V , the controller turns on and begins switching.

At low load current the module works in continuous current mode by default to achieve minimum output voltage ripple. It can be programmed to operate in discontinuous current mode for improved light load efficiency when the FCB pin is pulled up above 0.8 V and no higher than 6 V . The FCB pin has a 4.75 k resistor to ground, so a resistor to $\mathrm{V}_{\text {IN }}$ can set the voltage on the FCB pin.
When EXTV ${ }_{\text {CC }}$ pin is grounded or open, an integrated 5 V linear regulator powers the controller and MOSFET gate drivers. If a minimum 4.7 V external bias supply is applied on the EXTV ${ }_{\text {CC }}$ pin, the internal regulator is turned off, and an internal switch connects EXTV ${ }_{\text {CC }}$ to the gate driver voltage. This eliminates the linear regulator power loss with high input voltage, reducing the thermal stress on the controller. The maximum voltage on EXTV ${ }_{C C}$ pin is 6 V . The EXTV ${ }_{c c}$ voltage should never be higher than the $\mathrm{V}_{\text {IN }}$ voltage. Also EXTV CC must be sequenced after $\mathrm{V}_{\text {IN }}$.

APPLICATIONS INFORMATION

The typical LTM4602 application circuit is shown in Figure 21. External component selection is primarily determined by the maximum load current and output voltage.

Output Voltage Programming and Margining

The PWM controller of the LTM4602 has an internal 0.6 V reference voltage. As shown in the block diagram, a $100 \mathrm{k} / 0.5 \%$ internal feedback resistor connects $V_{\text {OUT }}$ and $\mathrm{V}_{\text {OSET }}$ pins. Adding a resistor $\mathrm{R}_{\text {SET }}$ from $\mathrm{V}_{\text {OSET }}$ pin to SGND pin programs the output voltage:

$$
\mathrm{V}_{\text {OUT }}=0.6 \mathrm{~V} \cdot \frac{.00 \mathrm{k}+\mathrm{R}_{\text {SET }}}{\mathrm{R}_{\text {SET }}}
$$

Table 1 shows the standard values of $1 \% \mathrm{R}_{\text {SET }}$ resistor for typical output voltages:
Table 1

RSET (k $\Omega)$	Open	100	66.5	49.9	43.2	31.6	22.1	13.7
$\mathbf{V}_{\text {OUT }}$ (V)	0.6	1.2	1.5	1.8	2	2.5	3.3	5

Voltage margining is the dynamic adjustment of the output voltage to its worst case operating range in production testing to stress the load circuitry, verify control/protection functionality of the board and improve the system reliability. Figure 2 shows how to implement margining function with the LTM4602. In addition to the feedback resistor $\mathrm{R}_{\text {SET }}$, several external components are added. Turn off both transistor $Q_{U P}$ and $Q_{\text {DOWN }}$ to disable the margining. When $Q_{U P}$ is on and $Q_{D O W N}$ is off, the output voltage is margined up. The output voltage is margined down when $Q_{D O W N}$ is on and $Q_{U P}$ is off. If the output

Figure 2. LTM4602 Margining Implementation
voltage $V_{\text {OUT }}$ needs to be margined up/down by $\pm M \%$, the resistor values of $R_{U P}$ and $R_{\text {DOWN }}$ can be calculated from the following equations:

$$
\begin{aligned}
& \frac{\left(\mathrm{R}_{\text {SET }} \| \mathrm{R}_{\mathrm{UP}}\right) \cdot \mathrm{V}_{\text {OUT }} \cdot(1+\mathrm{M} \%)}{\left(\mathrm{R}_{\text {SET }} \| \mathrm{R}_{\text {UP }}\right)+100 \mathrm{k} \Omega}=0.6 \mathrm{~V} \\
& \frac{\mathrm{R}_{\text {SET }} \cdot \mathrm{V}_{\text {OUT }} \cdot(1-\mathrm{M} \%)}{\mathrm{R}_{\text {SET }}+\left(100 \mathrm{k} \Omega \| \mathrm{R}_{\text {DOWN }}\right)}=0.6 \mathrm{~V}
\end{aligned}
$$

Input Capacitors

The LTM4602 μ Module should be connected to a low AC-impedance DC source. High frequency, Iow ESR input capacitors are required to be placed adjacent to the module. In Figure 21, the bulk input capacitor C_{IN} is selected for its ability to handle the large RMS current into the converter. For a buck converter, the switching duty cycle can be estimated as:

$$
D=\frac{V_{0 U T}}{V_{\text {IN }}}
$$

Without considering the inductor current ripple, the RMS current of the input capacitor can be estimated as:

$$
I_{\mathrm{CIN}(\mathrm{RMS})}=\frac{I_{\text {OUT(MAX) }}}{\eta \%} \cdot \sqrt{D \cdot(1-D)}
$$

In the above equation, $\eta \%$ is the estimated efficiency of the power module. C1 can be a switcher-rated electrolytic aluminum capacitor, OS-CON capacitor or high volume ceramic capacitors. Note the capacitor ripple current ratings are often based on only 2000 hours of life. This makes it advisable to properly derate the input capacitor, or choose a capacitor rated at a higher temperature than required. Always contact the capacitor manufacturer for derating requirements.
In Figure 21, the inputcapacitors are used as high frequency input decoupling capacitors. In atypical 6A output application, 1-2 pieces of very low ESR X5R or X7R, 10 $\mu \mathrm{F}$ ceramic capacitors are recommended. This decoupling capacitor should be placed directly adjacent the module input pins in the PCB layout to minimize the trace inductance and high frequency AC noise.

APPLICATIONS INFORMATION

Output Capacitors

The LTM4602 is designed for low output voltage ripple. The bulk output capacitors $\mathrm{C}_{\text {OUT }}$ is chosen with low enough effective series resistance (ESR) to meet the output voltage ripple and transient requirements. Cout can be low ESR tantalum capacitor, low ESR polymer capacitor or ceramic capacitor (X5R or X7R). The typical capacitance is $200 \mu \mathrm{~F}$ if all ceramic output capacitors are used. The internally optimized loop compensation provides sufficient stability margin for all ceramic capacitors applications. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. Refer to Table 2 for an output capacitance matrix for each output voltage droop, peak to peak deviation and recovery time during a $3 \mathrm{~A} / \mu$ s transient with a specific output capacitance.

Fault Conditions: Current Limit and Overcurrent Foldback

The LTM4602 has a current mode controller, which inherently limits the cycle-by-cycle inductor current not only in steady-state operation, but also in transient.

To further limit current in the event of an over load condition, the LTM4602 provides foldback current limiting. If the output voltage falls by more than 50%, then the maximum output current is progressively lowered to about one sixth of its full current limit value.

Soft-Start and Latchoff with the RUN/SS pin

The RUN/SS pin provides a means to shut down the LTM4602 as well as a timer for soft-start and overcurrent latchoff. Pulling the RUN/SS pin below 0.8 V puts the LTM4602 into a low quiescent current shutdown ($\mathrm{I}_{\mathrm{Q}} \leq$ $100 \mu \mathrm{~A})$. Releasing the pin allows an internal $1.2 \mu \mathrm{~A}$ current source to charge up the timing capacitor $\mathrm{C}_{S s}$. Inside LTM4602, there is an internal 1000pF capacitor from RUN/ SS pin to ground. If RUN/SS pin has an external capacitor $\mathrm{C}_{\text {SS_EXT }}$ to ground, the delay before starting is about:

$$
\mathrm{t}_{\mathrm{DELAY}}=\frac{1.5 \mathrm{~V}}{1.2 \mu \mathrm{~A}} \cdot\left(\mathrm{C}_{\text {SS_EXT }}+1000 \mathrm{pF}\right)
$$

When the voltage on RUN/SS pin reaches 1.5V, the LTM4602 internal switches are operating with a clamping of the maximum output inductor current limited by the RUN/SS pin total soft-start capacitance. As the RUN/SS pin voltage rises to 3 V , the soft-start clamping of the inductor current is released.

V_{IN} to $\mathrm{V}_{\text {OUT }}$ Step-Down Ratios

There are restrictions in the maximum $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ step down ratio that can be achieved for a given input voltage. These constraints are shown in the Typical Performance Characteristics curves labeled " $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ Step-Down Ratio". Note that additional thermal derating may apply. See the Thermal Considerations and Output Current Derating sections of this data sheet.

APPLICATIONS INFORMATION

Table 2．Output Voltage Response Versus Component Matrix（Refer to Figure 21），OA to 3A Step（Typical Values） TYPICAL MEASURED VALUES

COUT1 VENDORS	PART NUMBER	Cout2 VENDORS	PART NUMBER
TDK	C4532X5R0J107MZ（100んF6．3V）	SANYO POSCAP	6TPE330MIL（330यF，6．3V）
TAIYO YUDEN	JMK432BJ107MU－T（ 100 HF ，6．3V）	SANYO POSCAP	2R5TPE470M9（470 ${ }^{\text {F }}$ ，2．5V）
TAIYO YUDEN	JMK316BJ226ML－T501（ 22 2 F，6．3V）	SANYO POSCAP	4TPE470MCL（470 $\mathrm{HF}, 4 \mathrm{~V}$ ）

$\begin{gathered} V_{\text {OUT }} \\ (V) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathbb{N}} \\ \text { (CERAMIC) } \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathbb{N}} \\ \text { (BULK) } \end{gathered}$	$\mathrm{C}_{\text {OUT1 }}$ （CERAMIC）	$\begin{gathered} C_{\text {CUTT }} \\ \text { (BULK) } \end{gathered}$	$\mathrm{C}_{\text {COMP }}$	C3	$\begin{aligned} & \hline V_{I N} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \hline \text { DROOP } \\ (\mathrm{mV}) \end{gathered}$	PEAK TO PEAK （mV）	RECOVERY TIME （ $\mathrm{\mu s}$ ）	$\begin{gathered} \hline \text { LOAD STEP } \\ (\mathrm{A} / \mu \mathrm{s}) \end{gathered}$
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 $\mathrm{F}^{\text {4V }}$	NONE	100pF	5	50	60	25	3
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150ıF 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470HF 2.5 V	NONE	100pF	5	30	60	20	3
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150ıF 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330HF6．3V	NONE	100pF	5	25	54	20	3
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150ㅆF 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	5	25	55	20	3
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150uF 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 $\mathrm{F}^{\text {F } 4 \mathrm{~V}}$	NONE	100pF	12	30	60	25	3
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470～F 2.5 V	NONE	100pF	12	25	54	20	3
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330んF 6.3 V	NONE	100pF	12	25	50	20	3
1.2	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	12	25	55	20	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 $\mathrm{F}^{\text {F } 4 \mathrm{~V}}$	NONE	100pF	5	25	50	25	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 FF 2.5 V	NONE	100pF	5	25	54	20	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	$330 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	100pF	5	28	59	20	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	5	26	59	20	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 $\mathrm{F}^{\text {F } 4 \mathrm{~V}}$	NONE	100pF	12	25	55	25	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 $\mu \mathrm{F} 2.5 \mathrm{~V}$	NONE	100pF	12	25	54	20	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330 FF 6.3 V	NONE	100pF	12	28	59	20	3
1.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	12	26	59	20	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 $\mathrm{F}^{\text {F } 4 \mathrm{~V}}$	NONE	100pF	5	25	54	30	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 $\mu \mathrm{F} 2.5 \mathrm{~V}$	NONE	100pF	5	25	50	20	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330んF 6.3 V	NONE	100pF	5	25	50	20	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	5	29	60	20	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 HF 4V	NONE	100pF	12	25	50	30	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150ıF 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470山F 2.5 V	NONE	100pF	12	25	50	20	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$2 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	330HF 6.3 V	NONE	100pF	12	25	50	20	3
1.8	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$4 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	NONE	NONE	100pF	12	29	60	20	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150ㅆF 35V	$1 \times 100 \mathrm{HF} 6.3 \mathrm{~V}$	470¢F 4V	NONE	220pF	5	25	50	30	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$2 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	330＾F 6.3 V	NONE	220 pF	5	25	50	30	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	220 pF	5	25	50	30	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	220pF	5	25	50	25	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	220 pF	12	25	50	30	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	220pF	12	25	50	30	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$2 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	330uF 6．3V	NONE	220pF	12	25	50	30	3
2.5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150ㅆF 35V	$4 \times 100 \mathrm{HF} 6.3 \mathrm{~V}$	NONE	NONE	220pF	12	27	54	25	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	3304F 6．3V	NONE	220pF	7	32	64	30	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	220 pF	7	30	60	30	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	220pF	7	30	60	35	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	220 pF	7	32	64	25	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150FF 35V	$1 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	470¢F 4V	NONE	220pF	12	38	58	30	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470＾F 4V	NONE	220pF	12	30	60	35	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150］F 35V	$2 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	330uF 6.3 V	NONE	220pF	12	30	60	30	3
3.3	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$4 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	NONE	NONE	220pF	12	32	64	25	3
5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$1 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	NONE	NONE	100pF	15	80	160	25	3
5	$2 \times 10 \mu \mathrm{~F} 25 \mathrm{~V}$	150＾F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	20	80	160	25	3

APPLICATIONS INFORMATION

After the controller has been started and given adequate time to charge up the output capacitor, $\mathrm{C}_{S S}$ is used as a short-circuit timer. After the RUN/SS pin charges above $4 V$, if the output voltage falls below 75% of its regulated value, then a short-circuit fault is assumed. A $1.8 \mu \mathrm{~A}$ current then begins discharging $\mathrm{C}_{S S}$. If the fault condition persists until the RUN/SS pin drops to 3.5 V , then the controller turns off both power MOSFETs, shutting down the converter permanently. The RUN/SS pin must be actively pulled down to ground in order to restart operation.
The overcurrent protection timer requires the soft-start timing capacitor $\mathrm{C}_{S S}$ be made large enough to guarantee that the output regulation by the time $\mathrm{C}_{S S}$ has reached the 4 V threshold. In general, this will depend upon the size of the output capacitance, output voltage and load current characteristic. A minimum external soft-start capacitor can be estimated from:

$$
\mathrm{C}_{\text {SS_EXT }}+1000 \mathrm{pF}>\mathrm{C}_{\text {OUT }} \cdot \mathrm{V}_{\text {OUT }}\left(10^{-3}\left[\mathrm{~F} / \mathrm{V}_{\mathrm{S}}\right]\right)
$$

Generally $0.1 \mu \mathrm{~F}$ is more than sufficient.
Since the load current is already limited by the current mode control and current foldback circuitry during a short circuit, overcurrent latchoff operation is NOT always needed or desired, especially if the output has large capacitance or the load draws high current during start up. The latchoff feature can be overridden by a pull-up current greater than $5 \mu \mathrm{~A}$ but less than $80 \mu \mathrm{~A}$ to the RUN/SS pin. The additional current prevents the discharge of $\mathrm{C}_{S S}$ during a fault and also shortens the soft-start period. Using a resistor from RUN/SS pinto $\mathrm{V}_{\text {IN }}$ is a simple solution to defeat latchoff. Any pull-up network must be able to maintain RUN/SS above

4 V maximum latchoff threshold and overcome the $4 \mu \mathrm{~A}$ maximum discharge current. Figure 3 shows a conceptual drawing of $V_{\text {RUN }}$ during start-up and short circuit.

Figure 3. RUN/SS Pin Voltage During Startup and Short-Circuit Protection

RECOMMENDED VALUES FOR R Run/ss

V IN	R RUN/SS
4.5 V TO 5.5V	50 k
10.8V T0 13.8V	150 k
16V T0 20V	330 k

Figure 4. Defeat Short-Circuit Latchoff with a Pull-Up Resistor to V_{IN}

APPLICATIONS INFORMATION

Enable

The RUN/SS pin can be driven from logic as shown in Figure 5. This function allows the LTM4602 to be turned on or off remotely. The $\overline{\mathrm{ON}}$ signal can also control the sequence of the output voltage.

Figure 5. Enable Circuit with External Logic

Output Voltage Tracking

For the applications that require output voltage tracking, several LTM4602 modules can be programmed by the power supply tracking controller such as the LTC2923. Figure 6 shows a typical schematic with LTC2923. Coincident, ratiometric and offset tracking for $\mathrm{V}_{\text {OUT }}$ rising and falling can be implemented with different sets of resistor values. See the LTC2923 data sheet for more details.

Figure 6. Output Voltage Tracking with the LTC2923 Controller

EXTV $_{\text {CC }}$ Connection

An internal low dropout regulator produces an internal 5 V supply that powers the control circuitry and FET drivers. Therefore, if the system does not have a 5 V power rail, the LTM4602 can be directly powered by V_{IN}. The gate driver current through LDO is about 18mA. The internal LDO power dissipation can be calculated as:

$$
P_{\text {LDO_LOSS }}=18 \mathrm{~mA} \cdot\left(\mathrm{~V}_{\text {IN }}-5 \mathrm{~V}\right)
$$

The LTM4602 also provides an external gate driver voltage pin EXTV ${ }_{\text {Cc }}$. If there is a 5 V rail in the system, it is recommended to connect EXTV CC pin to the external 5 V rail. Whenever the EXTV CC pin is above 4.7 V , the internal 5V LDO is shut off and an internal 50 mA P-channel switch connects the EXTV ${ }_{C C}$ to internal 5 V . Internal 5 V is supplied from EXTV ${ }_{C C}$ until this pin drops below 4.5V. Do not apply more than 6V to the EXTV CC pin and ensure that $\mathrm{EXTV}_{\text {CC }}<\mathrm{V}_{\text {IN }}$. The following list summaries the possible connections for EXTV ${ }_{\text {CC }}$:

1. EXTV ${ }_{\text {CC }}$ grounded. Internal 5 V LDO is always powered from the internal 5 V regulator.
2. EXTV ${ }_{\text {CC }}$ connected to an external supply. Internal LDO is shut off. A high efficiency supply compatible with the MOSFET gate drive requirements (typically 5 V) can improve overall efficiency. With this connection, it is always required that the EXTV ${ }_{\text {CC }}$ voltage can not be higher than $V_{\text {IN }}$ pin voltage.

Discontinuous Operation and FCB Pin

The FCB pin determines whether the internal bottom MOSFET remains on when the inductor current reverses. There is an internal 4.75k pull-down resistor connecting this pin to ground. The default light load operation mode is forced continuous (PWM) current mode. This mode provides minimum output voltage ripple.

In the application where the light load efficiency is important, tying the FCB pin above 0.6 V threshold enables discontinuous operation where the bottom MOSFET turns off when inductor current reverses. Therefore, the conduc-

APPLICATIONS INFORMATION

tion loss is minimized and light load efficiency is improved. The penalty is that the controller may skip cycle and the output voltage ripple increases at light load.

Paralleling Operation with Load Sharing

Two or more LTM4602 modules can be paralleled to provide higher than 6A output current. Figure 7 shows the necessary interconnection betweentwo paralleled modules. The OPTI-LOOP ${ }^{\circledR}$ current mode control ensures good current sharing among modules to balance the thermal stress. The new feedback equation for two or more LTM4602s in parallel is:

$$
V_{\text {OUT }}=0.6 \mathrm{~V} \cdot \frac{\frac{100 \mathrm{k}}{\mathrm{~N}}+\mathrm{R}_{\text {SET }}}{\mathrm{R}_{\text {SET }}}
$$

where N is the number of LTM4602s in parallel.

Thermal Considerations and Output Current Derating

The power loss curves in Figures 8 and 13 can be used in coordination with the load current derating curves in Figures 9 to 12, and Figures 14 to 15 for calculating an approximate θ_{JA} for the module with various heat
sinking methods. Thermal models are derived from several temperature measurements at the bench, and thermal modeling analysis. Application Note 103 provides a detailed explanation of the analysis for the thermal models, and the derating curves. Tables 3 and 4 provide a summary of the equivalent θ_{JA} for the noted conditions. These equivalent θ_{JA} parameters are correlated to the measured values, and improve with air-flow. The case temperature is maintained at $100^{\circ} \mathrm{C}$ or below for the derating curves. This allows for 4W maximum power dissipation in the total module with top and bottom heat sinking, and 2W power dissipation through the top of the module with an approximate θ_{Jc} between $6^{\circ} \mathrm{C} / \mathrm{W}$ to $9^{\circ} \mathrm{C} / \mathrm{W}$. This equates to a total of $124^{\circ} \mathrm{C}$ at the junction of the device. The θ_{JA} values in Tables 3 and 4 can be used to derive the derating curves for other output voltages.

Safety Considerations

The LTM4602 modules do not provide isolation from $\mathrm{V}_{\text {IN }}$ to $V_{\text {Out }}$ There is nointernal fuse. If required, aslow blow fuse with a rating twice the maximum input current should be provided to protect each unit from catastrophic failure.

OPTI-LOOP is a registered trademark of Linear Technology Corporation.

Figure 7. Parallel Two μ Modules with Load Sharing

APPLICATIONS INFORMATION

Figure 8. 1.5V Power Loss vs Load Current

Figure 9. 5V to 1.5V, No Heat Sink

Figure 12. 12v to 1.5V, BGA Heat Sink

Figure 10. 5 V to 1.5V, BGA Heat Sink

Figure 13. 3.3V Power Loss vs Load Current

Figure 14. 5V to 3.3V, No Heat Sink

Figure 15. 5V to 3.3V, BGA Heat Sink

LTM4602

APPLICATIONS INFORMATION

Figure 16. 12V to 3.3V, No Heat Sink
Table 3. 1.5V Output

AIR FLOW (LFM)	HEAT SINK	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
0	None	15.2
200	None	14
400	None	12
0	BGA Heat Sink	13.9
200	BGA Heat Sink	11.3
400	BGA Heat Sink	10.25

Layout Checklist/Example

The high integration of the LTM4602 makes the PCB board layout very simple and easy. However, to optimize its electrical and thermal performance, some layout considerations are still necessary.

- Use large PCB copper areas for high current path, including $V_{\text {IN }}$, PGND and $V_{\text {OUT }}$. It helps to minimize the PCB conduction loss and thermal stress.
- Place high frequency ceramic input and output capacitors next to the $\mathrm{V}_{\text {IN }}$, PGND and $\mathrm{V}_{\text {OUT }}$ pins to minimize high frequency noise.
- Place a dedicated power ground layer underneath the unit.
- To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers.
- Do not put vias directly on pads unless they are capped.

Figure 17. 12V to 3.3V, BGA Heat Sink
Table 4. 3.3V Output

AIR FLOW (LFM)	HEAT SINK	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
0	None	15.2
200	None	14.6
400	None	13.4
0	BGA Heat Sink	13.9
200	BGA Heat Sink	11.1
400	BGA Heat Sink	10.5

- Use a separated SGND ground copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit.

Figure 18 gives a good example of the recommended layout.

LTM4602 Frequency Adjustment

The LTM4602 is designed to typically operate at 850 kHz across most input and output conditions. The control architecture is constant on time valley mode current control. The $f_{\text {ADJ }}$ pin is typically left open or decoupled with an optional 1000pF capacitor. The switching frequency has been optimized to maintain constant output ripple over the operating conditions. The equations for setting the operating frequency are set around a programmable constant on time. This ontime is developed by a programmable current into an on board 10pF capacitor that establishes a ramp that is compared to a voltage threshold equal to the output voltage up to a 2.4 V clamp. This I_{ON} current is equal to: $\mathrm{I}_{\mathrm{ON}}=\left(\mathrm{V}_{\mathrm{IN}}-0.7 \mathrm{~V}\right) / 110 \mathrm{k}$, with the 110 k onboard resistor

APPLICATIONS INFORMATION

Figure 18. Recommended PCB Layout
from $\mathrm{V}_{\text {IN }}$ to $f_{\text {ADJ }}$. The on time is equal to $\mathrm{t}_{\mathrm{ON}}=\left(\mathrm{V}_{\text {OUT }} / I_{O N}\right)$ - 10 pF and $\mathrm{t}_{0 \mathrm{FF}}=\mathrm{t}_{\mathrm{S}}-\mathrm{t}_{\mathrm{ON}}$. The frequency is equal to: Freq. $=\mathrm{DC} / \mathrm{t}_{\mathrm{ON}}$. The I_{ON} current is proportional to V_{IN}, and the regulator duty cycle is inversely proportional to V_{IN}, therefore the step-down regulator will remain relatively constant frequency as the duty cycle adjustment takes place with lowering $\mathrm{V}_{\text {IN }}$. The on time is proportional to $\mathrm{V}_{\text {OUt }}$ up to a 2.4 V clamp. This will hold frequency relatively constant with different output voltages up to 2.4 V . The regulator switching period is comprised of the on time and off time as depicted in Figure 19.
(DC) DUTY CYCLE $=\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{s}}}$

Figure 19. LTM4602 Switching Period
The LTM4602 has a minimum (t_{ON}) on time of 100 nanoseconds and a minimum (toff) off time of 400 nanoseconds. The 2.4 V clamp on the ramp threshold as a function of $V_{\text {Out }}$ will cause the switching frequency to increase by the ratio of $\mathrm{V}_{\text {Out }} / 2.4 \mathrm{~V}$ for 3.3 V and 5 V outputs. This is due to the fact the on time will not increase as $V_{\text {out }}$ increases past 2.4 V . Therefore, if the nominal switching frequency is 850 kHz , then the switching frequency will increase
to $\sim 1.2 \mathrm{MHz}$ for 3.3 V , and $\sim 1.7 \mathrm{MHz}$ for 5 V outputs due to Frequency $=\left(\mathrm{DC} / \mathrm{t}_{0 \mathrm{~N}}\right)$ When the switching frequency increases to 1.2 MHz , then the time period t_{s} is reduced to ~ 833 nanoseconds and at 1.7 MHz the switching period reduces to ~ 588 nanoseconds. When higher duty cycle conversions like 5 V to 3.3 V and 12 V to 5 V need to be accommodated, then the switching frequency can be lowered to alleviate the violation of the 400 ns minimum off time. Since the total switching period is $\mathrm{t}_{\mathrm{S}}=\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\text {OFF }}$ $t_{0 F F}$ will be below the 400 ns minimum off time. A resistor from the $\mathrm{f}_{\text {ADJ }}$ pin to ground can shunt current away from the on time generator, thus allowing for a longer on time and a lower switching frequency. 12 V to 5 V and 5 V to 3.3V derivations are explained in the data sheet to lower switching frequency and accommodate these step-down conversions.

Equations for setting frequency for 12 V to 5 V :

$$
\begin{aligned}
& I_{O N}=\left(V_{\text {IN }}-0.7 \mathrm{~V}\right) / 110 \mathrm{k} ; \mathrm{I}_{\mathrm{ON}}=103 \mu \mathrm{~A} \\
& \text { frequency }=\left(\mathrm{I}_{\mathrm{ON}} /[2.4 \mathrm{~V} \cdot 10 \mathrm{pF}]\right) \cdot \mathrm{DC}=1.79 \mathrm{MHz} ; \\
& \mathrm{DC}=\text { duty cycle, duty cycle is }\left(\mathrm{V}_{O U T} / \mathrm{V}_{\text {IN }}\right) \\
& \mathrm{t}_{\mathrm{S}}=\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}} \mathrm{t}_{\mathrm{ON}}=\text { on-time, } \mathrm{t}_{0 F F}=\text { off-time of the } \\
& \text { switching period; } \mathrm{t}_{\mathrm{S}}=1 / \text { frequency }
\end{aligned}
$$

$t_{\text {OFF }}$ must be greater than 400 ns , or $\mathrm{t}_{\mathrm{S}}-\mathrm{t}_{\mathrm{ON}}>400 \mathrm{~ns}$.

$$
t_{O N}=D C \cdot t_{S}
$$

1 MHz frequency or 1μ s period is chosen for 12 V to 5 V .

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{ON}}=0.41 \cdot 1 \mu \mathrm{~s} \cong 410 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{OFF}}=1 \mu \mathrm{~s}-410 \mathrm{~ns} \cong 590 \mathrm{~ns}
\end{aligned}
$$

$t_{\text {ON }}$ and $t_{\text {OFF }}$ are above the minimums with adequate guard band.

Using the frequency $=\left(\mathrm{I}_{\mathrm{ON}} /[2.4 \mathrm{~V} \cdot 10 \mathrm{pF}]\right) \bullet \mathrm{DC}$, solve for $\mathrm{I}_{\mathrm{ON}}=(1 \mathrm{MHz} \cdot 2.4 \mathrm{~V} \cdot 10 \mathrm{pF}) \cdot(1 / 0.41) \cong 58 \mu \mathrm{~A}$. I_{N} current calculated from 12 V input was $103 \mu \mathrm{~A}$, so a resistor from $\mathrm{f}_{\text {ADJ }}$ to ground $=(0.7 \mathrm{~V} / 15 \mathrm{k})=46 \mu \mathrm{~A} .103 \mu \mathrm{~A}-46 \mu \mathrm{~A}=$ $57 \mu \mathrm{~A}$, sets the adequate $\mathrm{I}_{0 \mathrm{~N}}$ current for proper frequency range for the higher duty cycle conversion of 12 V to 5 V . Input voltage range is limited to 9 V to 16 V . Higher input voltages can be used without the 15 k on $\mathrm{f}_{\mathrm{ADJ}}$. The inductor ripple current gets too high above 16 V , and the 400 ns minimum off-time is limited below 9 V .

APPLICATIONS INFORMATION

Equations for setting frequency for 5 V to 3.3 V :
$I_{O N}=\left(V_{I N}-0.7 \mathrm{~V}\right) / 110 \mathrm{k} ; \mathrm{I}_{\mathrm{ON}}=39 \mu \mathrm{~A}$
frequency $=\left(l_{0 N} /[2.4 \mathrm{~V} \cdot 10 \mathrm{pF}]\right) \cdot \mathrm{DC}=1.07 \mathrm{MHz}$; DC = duty cycle, duty cycle is $\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
$\mathrm{t}_{\mathrm{S}}=\mathrm{t}_{\text {ON }}+\mathrm{t}_{\text {OFF }} \mathrm{t}_{\text {ON }}=$ on-time, $\mathrm{t}_{\text {OFF }}=$ off-time of the switching period; $\mathrm{ts}_{\mathrm{S}}=1 /$ frequency
$t_{\text {OFF }}$ must be greater than 400 ns , or $\mathrm{t}_{\mathrm{S}}-\mathrm{t}_{\mathrm{ON}}>400 \mathrm{~ns}$.
$t_{0 N}=D C \cdot t_{S}$
$\sim 450 \mathrm{kHz}$ frequency or $2.22 \mu \mathrm{~s}$ period is chosen for 5 V to 3.3 V . Frequency range is about 450 kHz to 650 kHz from 4.5 V to 7 V input.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{ON}}=0.66 \cdot 2.22 \mu \mathrm{~s} \cong 1.46 \mu \mathrm{~s} \\
& \mathrm{t}_{\mathrm{OFF}}=2.22 \mu \mathrm{~s}-1.46 \mu \mathrm{~s} \cong 760 \mathrm{~ns}
\end{aligned}
$$

$t_{\text {ON }}$ and $t_{\text {OFF }}$ are above the minimums with adequate guard band.

Using the frequency $=\left(\mathrm{I}_{\mathrm{ON}} /[2.4 \mathrm{~V} \bullet 10 \mathrm{pF}]\right) \bullet \mathrm{DC}$, solve for $I_{O N}=(450 \mathrm{kHz} \cdot 2.4 \mathrm{~V} \cdot 10 \mathrm{pF}) \cdot(1 / 0.66) \cong 16 \mu \mathrm{~A}$. $\mathrm{I}_{\text {ON }}$ current calculated from 5 V input was $39 \mu \mathrm{~A}$, so a resistor from $f_{\text {ADJ }}$ to ground $=(0.7 \mathrm{~V} / 30.1 \mathrm{k})=23 \mu \mathrm{~A} .39 \mu \mathrm{~A}-23 \mu \mathrm{~A}=16 \mu \mathrm{~A}$, sets the adequate I_{ON} current for proper frequency range for the higher duty cycle conversion of 5V to 3.3V. Input voltage range is limited to 4.5 V to 7 V . Higher input voltages can be used without the 30.1 k on $\mathrm{f}_{\text {ADJ }}$. The inductor ripple current gets too high above 7 V , and the 400 ns minimum off-time is limited below 4.5V.
In 12 V to 3.3 V applications, if a 35 k resistor is added from the $f_{A D J}$ pin to ground, then a 2% efficiency gain will be achieved as shown in the 12 V efficiency graph in the Typical Performance Characteristics. This is due to the lower transition losses in the power MOSFETs after lowering the switching frequency down from 1.3 MHz to 950 kHz .

APPLICATIONS INFORMATION

5 V to 3.3 V at 5 A

12 V to 5 V at 5 A

Figure 20. $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ Step-Down Ratio for $12 \mathrm{~V}_{\text {IN }}$ to $5 \mathrm{~V}_{\text {OUT }}$ and $5 \mathrm{~V}_{\text {IN }}$ to $3.3 \mathrm{~V}_{\text {OUT }}$

Figure 21. Typical Application, 5 V to 20 V Input, 0.6 V to 5 V Output, 6 A Max

LTM4602

TYPICAL APPLICATION

Parallel Operation and Load Sharing

Current Sharing Between Two LTM4602 Modules

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION
Pin Assignment Tables
(Arranged by Pin Number)

PIN NAME															
A1	-	B1	$\mathrm{V}_{\text {IN }}$	C1	-	D1	$\mathrm{V}_{\text {IN }}$	E1	-	F1	$\mathrm{V}_{\text {IN }}$	G1	PGND	H1	-
A2	-	B2	-	C2	-	D2	-	E2	-	F2	-	G2	-	H2	-
A3	$\mathrm{V}_{\text {IN }}$	B3	-	C3	-	D3	-	E3	-	F3	-	G3	-	H3	-
A4	-	B4	-	C4	-	D4	-	E4	-	F4	-	G4	-	H4	-
A5	$\mathrm{V}_{\text {IN }}$	B5	-	C5	-	D5	-	E5	-	F5	-	G5	-	H5	-
A6	-	B6	-	C6	-	D6	-	E6	-	F6	-	G6	-	H6	-
A7	$\mathrm{V}_{\text {IN }}$	B7	-	C7	-	D7	-	E7	-	F7	-	G7	-	H7	PGND
A8	-	B8	-	C8	-	D8	-	E8	-	F8	-	G8	-	H8	-
A9	$\mathrm{V}_{\text {IN }}$	B9	-	C9	-	D9	-	E9	-	F9	-	G9	-	H9	PGND
A10	-	B10	-	C10	$\mathrm{V}_{\text {IN }}$	D10	-	E10	$\mathrm{V}_{\text {IN }}$	F10	-	G10	-	H10	-
A11	$\mathrm{V}_{\text {IN }}$	B11	-	C 11	-	D11	-	E11	-	F11	-	G11	-	H11	PGND
A12	-	B12	-	C12	$\mathrm{V}_{\text {IN }}$	D12	-	E12	$\mathrm{V}_{\text {IN }}$	F12	-	G12	-	H12	-
A13	$\mathrm{V}_{\text {IN }}$	B13	-	C13	-	D13	-	E13	-	F13	-	G13	-	H13	PGND
A14	-	B14	-	C14	$\mathrm{V}_{\text {IN }}$	D14	-	E14	$\mathrm{V}_{\text {IN }}$	F14	-	G14	-	H14	-
A15	$\mathrm{f}_{\mathrm{ADJ}}$	B15	-	C15	-	D15	-	E15	-	F15	-	G15	-	H15	PGND
A16	-	B16	-	C16	-	D16	-	E16	-	F16	-	G16	-	H16	-
A17	$\mathrm{SV}_{\text {IN }}$	B17	-	C17	-	D17	-	E17	-	F17	-	G17	-	H17	PGND
A18	-	B18	-	C18	-	D18	-	E18	-	F18	-	G18	-	H18	-
A19	EXTV ${ }_{\text {c }}$	B19	-	C19	-	D19	-	E19	-	F19	-	G19	-	H19	-
A20	-	B20	-	C20	-	D20	-	E20	-	F20	-	G20	-	H2O	-
A21	$V_{\text {OSET }}$	B21	-	C21	-	D21	-	E21	-	F21	-	G21	-	H21	-
A22	-	B22	-	C22	-	D22	-	E22	-	F22	-	G22	-	H22	-
A23	-	B23	COMP	C23	-	D23	SGND	E23	-	F23	RUN/SS	G23	FCB	H23	-

PIN NAME		PIN NAME		PIN NAME		PIN NAME		PIN NAME		PIN NAME		PIN NAME		PIN NAME	
J1	PGND	K1	-	L1	-	M1	-	N1	-	P1	-	R1	-	T1	-
J2	-	K2	-	L2	PGND	M2	PGND	N2	PGND	P2	$\mathrm{V}_{\text {OUT }}$	R2	$\mathrm{V}_{\text {OUT }}$	T2	$V_{\text {OUT }}$
J3	-	K3	-	L3	-	M3	-	N3	-	P3	-	R3	-	T3	-
J4	-	K4	-	L4	PGND	M4	PGND	N4	PGND	P4	$\mathrm{V}_{\text {OUT }}$	R4	$\mathrm{V}_{\text {OUT }}$	T4	$V_{\text {OUT }}$
J5	-	K5	-	L5	-	M5	-	N5	-	P5	-	R5	-	T5	-
J6	-	K6	-	L6	PGND	M6	PGND	N6	PGND	P6	$V_{\text {OUT }}$	R6	$V_{\text {OUT }}$	T6	$V_{\text {OUT }}$
J7	-	K7	PGND	L7	-	M7	-	N7	-	P7	-	R7	-	T7	-
J8	-	K8		L8	PGND	M8	PGND	N8	PGND	P8	$\mathrm{V}_{\text {OUT }}$	R8	$\mathrm{V}_{\text {OUT }}$	T8	$V_{\text {OUT }}$
J9	-	K9	PGND	L9	-	M9	-	N9	-	P9	-	R9	-	T9	-
J10	-	K10		L10	PGND	M10	PGND	N10	PGND	P10	$\mathrm{V}_{\text {OUT }}$	R10	$\mathrm{V}_{\text {OUT }}$	T10	$\mathrm{V}_{\text {OUT }}$
J11	-	K11	PGND	L11	-	M11	-	N11	-	P11	-	R11	-	T11	-
J12	-	K12	-	L12	PGND	M12	PGND	N12	PGND	P12	$\mathrm{V}_{\text {OUT }}$	R12	$\mathrm{V}_{\text {OUT }}$	T12	$V_{\text {OUT }}$
J13	-	K13	PGND	L13	-	M13	-	N13	-	P13	-	R13	-	T13	-
J14	-	K14	-	L14	PGND	M14	PGND	N14	PGND	P14	$\mathrm{V}_{\text {OUT }}$	R14	$\mathrm{V}_{\text {OUT }}$	T14	$\mathrm{V}_{\text {OUT }}$
J15	-	K15	PGND	L15	-	M15	-	N15	-	P15	-	R15	-	T15	-
J16	-	K16	-	L16	PGND	M16	PGND	N16	PGND	P16	$\mathrm{V}_{\text {OUT }}$	R16	$\mathrm{V}_{\text {OUT }}$	T16	$\mathrm{V}_{\text {OUT }}$
J17	-	K17	PGND	L17	-	M17	-	N17	-	P17	-	R17	-	T17	-
J18	-	K18	-	L18	PGND	M18	PGND	N18	PGND	P18	$\mathrm{V}_{\text {OUT }}$	R18	$\mathrm{V}_{\text {OUT }}$	T18	$\mathrm{V}_{\text {OUT }}$
J19	-	K19	-	L19	-	M19	-	N19	-	P19	-	R19	-	T19	-
J20	-	K20	-	L20	PGND	M20	PGND	N20	PGND	P20	$\mathrm{V}_{\text {OUT }}$	R20	$\mathrm{V}_{\text {OUT }}$	T20	$\mathrm{V}_{\text {OUT }}$
J21	-	K21	-	L21	-	M21	-	N21	-	P21	-	R21	-	T21	-
J22	-	K22	-	L22	PGND	M22	PGND	N22	PGND	P22	$\mathrm{V}_{\text {OUT }}$	R22	$\mathrm{V}_{\text {OUT }}$	T22	$\mathrm{V}_{\text {OUT }}$
J23	PGOOD	K23	-	L23	-	M23	-	N23	-	P23	-	R23	-	T23	-

PACKAGE DESCRIPTION

Pin Assignment Tables (Arranged by Pin Number)

PIN NAME	
G1	PGND
H7	PGND
H9	PGND
H11	PGND
H13	PGND
H15	PGND
H17	PGND
J1	PGND
K7	PGND
K9	PGND
K11	PGND
K13	PGND
K15	PGND
K17	PGND
L2	PGND
L4	PGND
L6	PGND
L8	PGND
L10	PGND
L12	PGND
L14	PGND
L16	PGND
L18	PGND
L20	PGND
L22	PGND
M2	PGND
N20	PGND
N18	PG
M6	PGND
M8	PGNND
M10	PGND
M12	PGND
M14	PGND
M16	PGND
M18	PGND
M20	PGND
M22	PGND
N2	PGND
N4	PGND
N6	PGND
N8	PGND
N12	PGND
PGND	
PGND	
NGND	

PIN NAME	
P2	$\mathrm{V}_{\text {OUT }}$
P4	$\mathrm{V}_{\text {Out }}$
P6	Vout
P8	$V_{\text {OUT }}$
P10	Vout
P12	Vout
P14	V out
P16	Vout
P18	Vout
P20	Vout
P22	Vout
R2	$\mathrm{V}_{\text {OUT }}$
R4	Vout
R6	$V_{\text {OUT }}$
R8	Vout
R10	Vout
R12	Vout
R14	Vout
R16	V OUT
R18	Vout
R20	Vout
R22	$\mathrm{V}_{\text {OUT }}$
T2	$\mathrm{V}_{\text {OUT }}$
T4	$V_{\text {OUT }}$
T6	$\mathrm{V}_{\text {OUT }}$
T8	Vout
T10	$\mathrm{V}_{\text {OUT }}$
T12	$V_{\text {OUT }}$
T14	Vout
T16	$\mathrm{V}_{\text {OUT }}$
T18	$V_{\text {OUT }}$
T20	$\mathrm{V}_{\text {Out }}$
T22	Vout

PIN NAME	
A3	$V_{\text {IN }}$
A5	$V_{\text {IN }}$
A7	$V_{\text {IN }}$
A9	$V_{\text {IN }}$
A11	$V_{\text {IN }}$
A13	$V_{\text {IN }}$
B1	$V_{\text {IN }}$
C10	$V_{\text {IN }}$
C12	$V_{\text {IN }}$
C14	$V_{\text {IN }}$
D1	$V_{\text {IN }}$
E10	$V_{\text {IN }}$
E12	$V_{\text {IN }}$
E14	$V_{\text {IN }}$
F1	$V_{\text {IN }}$

PIN NAME	
A15	f $_{\text {ADJ }}$
A17	SV $_{\text {IN }}$
A19	EXTV $_{\text {CC }}$
A21	$\mathrm{V}_{\text {OSET }}$
B23	COMP
D23	SGND
F23	RUN/SS
G23	FCB
J23	PGOOD

1.8V, 6A Regulator

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC2900	Quad Supply Monitor with Adjustable Reset Timer	Monitors Four Supplies; Adjustable Reset Timer
LTC2923	Power Supply Tracking Controller	Tracks Both Up and Down; Power Supply Sequencing
LT3825/LT3837	Synchronous Isolated Flyback Controllers	No Optocoupler Required; 3.3V, 12A Output; Simple Design
LTM4600	10A DC/DC μ Module	10A Basic DC/DC Module
LTM4601	12A DC/DC $\mu M o d u l e ~ w i t h ~ P L L, ~ O u t p u t ~ T r a c k i n g / ~$ Margining and Remote Sensing	Synchronizable, PolyPhase Sensing, Fast Transient Response
LTM4603	6A DC/DC μ Module with PLL and Output Tracking/ Margining and Remote Sensing	Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote Sensing, Fast Transient Response

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G MP3416GJ-P MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

[^0]: PolyPhase is a registered trademark of Linear Technology Corporation.

