

Matched Monolithic Quad Transistor

FEATURES

Low offset voltage: 400 µV maximum High current gain: 300 minimum Excellent current gain match: 4% maximum Low voltage noise density at 100 Hz, 1 mA 3 nV/√Hz maximum Excellent log conformance

Bulk resistance (r_{BE}) = 0.6 Ω maximum Guaranteed matching for all transistors

APPLICATIONS

Low noise op amp front end Current mirror and current sink/source Low noise instrumentation amplifiers Voltage controlled attenuators Log amplifiers

GENERAL DESCRIPTION

The MAT14 is a quad monolithic NPN transistor that offers excellent parametric matching for precision amplifier and nonlinear circuit applications. Performance characteristics of the MAT14 include high gain (300 minimum) over a wide range of collector current, low noise (3 nV/ $\sqrt{\text{Hz}}$ maximum at 100 Hz, I_c = 1 mA), and excellent logarithmic conformance. The MAT14 also features a low offset voltage of 100 μ V typical and tight current gain matching to within 4%. Each transistor of the MAT14 is individually tested to data sheet specifications. For matching parameters (offset voltage, input offset current, and gain match), each of the dual transistor combinations are

PIN CONFIGURATION

MAT14

verified to meet stated limits. Device performance is guaranteed at an ambient temperature of 25°C and over the industrial temperature range.

The long-term stability of matching parameters is guaranteed by the protection diodes across the base emitter junction of each transistor. These diodes prevent degradation of beta and matching characteristics due to reverse bias, base emitter current. The superior logarithmic conformance and accurate matching characteristics of the MAT14 make it an excellent choice for use in log and antilog circuits. The MAT14 is an ideal choice in applications where low noise and high gain are required.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Pin Configuration	. 1
General Description	. 1
Revision History	. 2
Specifications	. 3
Electrical Characteristics	. 3
Absolute Maximum Ratings	. 4

Thermal Resistance	4
ESD Caution	
Typical Performance Characteristics	5
Theory of Operation	8
Applications Information	8
Outline Dimensions	9
Ordering Guide	9

REVISION HISTORY

12/10—Rev. 0 to Rev. A

Changes to General Description	1
Changes to Operating Temperature Range in Table 2	4
Updated Outline Dimensions	9
Changes to Ordering Guide	9

10/10—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 $\rm T_{A}$ = 25°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
DC AND AC CHARACTERISTICS						
Current Gain	h _{FE}	$10 \ \mu A \le I_C \le 1 \ mA$				
		$0 V \le V_{CB} \le 30 V^1$	300	600		
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	200	500		
Current Gain Match	Δh_{FE}	$I_{c} = 100 \mu A^{2}$		1	4	%
		$0 \text{ V} \leq \text{V}_{CB} \leq 30 \text{ V}$				
Noise Voltage Density	e _N	$I_{c} = 1 \text{ mA}, V_{cB} = 0^{3}$				
		$f_0 = 10 \text{ Hz}$		2	4	nV/√Hz
		$f_0 = 100 \text{ Hz}$		1.8	3	nV/√Hz
		$f_0 = 1 \text{ kHz}$		1.8	3	nV/√Hz
Offset Voltage	V _{os}	$10 \ \mu A \le I_C \le 1 \ m A^4$				
5	03	$0 \text{ V} \leq \text{V}_{CB} \leq 30 \text{ V}$		100	400	μV
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		120	520	μV
Offset Voltage Change vs. V _{cs} Change	$\Delta V_{OS} / \Delta V_{CB}$	$0 V \le V_{CB} \le 30 V^4$				P. 1
		$10 \mu\text{A} \le I_c \le 1 \text{mA}$		100	200	μV
Offset Voltage Change vs. I _c Change	$\Delta V_{os} / \Delta I_{c}$	$10 \ \mu A \le I_C \le 1 \ m A^4$, $V_{CB} = 0 \ V$		10	50	μV
Offset Voltage Drift	$\Delta V_{OS} \Delta T$	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		10	50	μ ν
onservolage blire		$I_{c} = 100 \ \mu A, V_{CB} = 0 V$		0.4	2	μV/°C
Breakdown Voltage	BV _{CEO}	$I_{c} = 100 \mu\text{A}$	40	0.4	2	V V
Diculture	DVCEO	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	40			v
Gain-Bandwidth Product	f _T	$I_c = 1 \text{ mA}, V_{ce} = 10 \text{ V}$	-0	300		MHz
Collector Leakage Current	'T	$r_{\rm C} = 1.000$		500		
Base		$V_{CB} = 40 \text{ V}$		5		pА
Dase	I _{CBO}	$v_{CB} = 40 v$ -40°C $\leq T_{A} \leq +85°C$		0.5		nA
Substrate		$V_{cs} = 40 \text{ V}$		0.5		nA
Substrate	I _{cs}	$v_{cs} = 40 v$ -40°C ≤ T _A ≤ +85°C		0.5		
Emittor						nA
Emitter	I _{CES}	$V_{CE} = 40 V$		3		nA
land to Comment		$-40^{\circ}C \le T_A \le +85^{\circ}C$		5		nA
Input Current				165	220	
Bias	I _B	$I_{c} = 100 \ \mu\text{A}, 0 \ \text{V} \le V_{CB} \le 30 \ \text{V}$		165	330	nA
011		$-40^{\circ}C \le T_A \le +85^{\circ}C$		200	500	nA
Offset	I _{os}	$I_{c} = 100 \ \mu A, V_{CB} = 0 \ V$		2	13	nA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$		8	40	nA
Offset Drift	$\Delta I_{os}/\Delta T$	$I_c = 100 \mu\text{A}$				
		$-40^{\circ}C \le T_A \le +85^{\circ}C$		100	_	pA/°C
Collector Saturation Voltage	V _{CE(SAT)}	$I_{c} = 1 \text{ mA}, I_{B} = 100 \mu\text{A}$		0.03	0.06	V
Output Capacitance	C _{OBO}	$V_{CB} = 15 \text{ V}, I_{E}^{5} = 0, f = 1 \text{ MHz}$		10		pF
Bulk Resistance	r _{BE}	$10 \ \mu A \le I_C \le 10 \ mA, V_{CB} = 0 \ V^6$		0.4	0.6	Ω
Input Capacitance	C _{EBO}	$V_{CB} = 15 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$		40		pF

¹ Current gain measured at I_C = 10 μA, 100 μA, and 1 mA. ² Current gain match (Δh_{FE}) defined as: $\Delta h_{FE} = (100(\Delta I_B)(h_{FE min})/I_C)$. ³ Sample tested. ⁴ Measured at I_C = 10 μA and guaranteed by design over the specified range of I_C. ⁵ See Table 2 for the emitter current rating.

⁶ Guaranteed by design.

ABSOLUTE MAXIMUM RATINGS

Table 2.

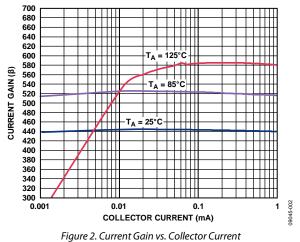
Parameter	Rating		
Voltage			
Collector-to-Base Voltage (BV _{CBO})	40 V		
Collector-to-Emitter Voltage (BV _{CEO})	40 V		
Collector-to-Collector Voltage (BV _{cc})	40 V		
Emitter-to-Emitter Voltage (BV _{EE})	40 V		
Current			
Collector Current (I _c)	30 mA		
Emitter Current (I _E)	30 mA		
Temperature			
Storage Temperature Range	-65°C to +150°C		
Operating Temperature Range	-40°C to +85°C		
Junction Temperature Range	-65°C to +150°C		

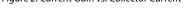
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

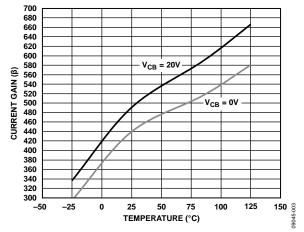
THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance


Package Type	θ _{JA}	θ _{JC}	Unit
14-Lead SOIC	115	36	°C/W


ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

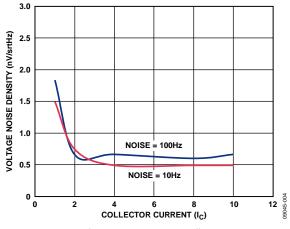
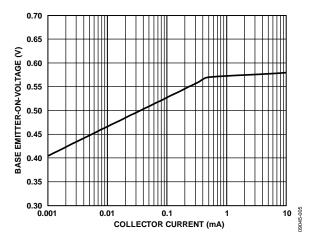
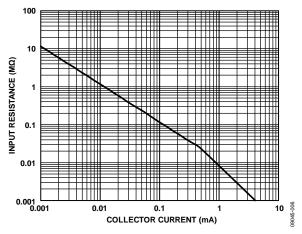
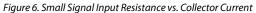
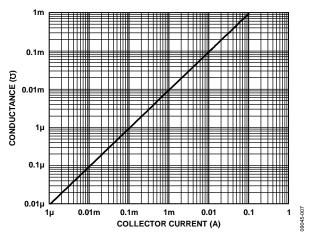
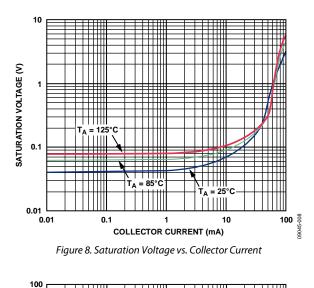
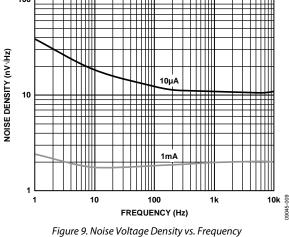
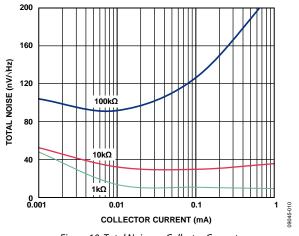


Figure 4. Voltage Noise Density vs. Collector Current


Figure 5. Base Emitter-On-Voltage vs. Collector Current





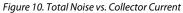


Figure 7. Small Signal Output Conductance vs. Collector Current

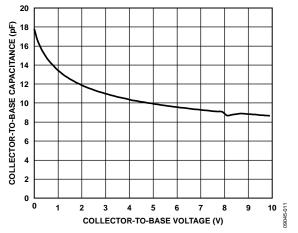


Figure 11. Collector-to-Base Capacitance vs. Collector-to-Base Voltage

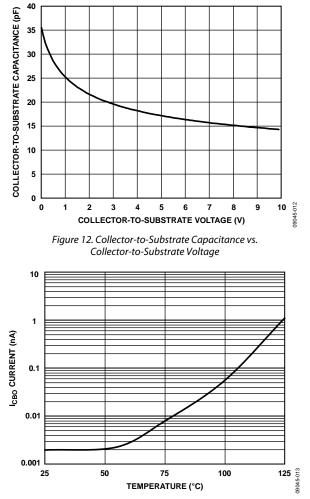


Figure 13. Collector-to-Base Leakage vs. Temperature

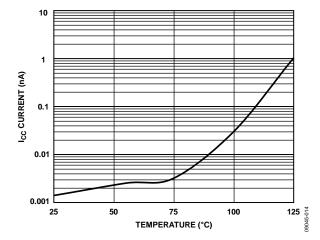


Figure 14. Collector-to-Collector Leakage vs. Temperature

THEORY OF OPERATION APPLICATIONS INFORMATION

To minimize coupling between devices, tie one of the substrate pins (Pin 4 or Pin 11) to the most negative circuit potential. Note that Pin 4 and Pin 11 are internally connected.

Applications Current Sources

MAT14 can be used to implement a variety of high impedance current mirrors as shown in Figure 15, Figure 16, and Figure 17. These current mirrors can be used as biasing elements and load devices for amplifier stages.

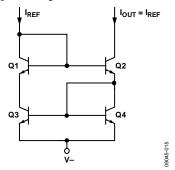


Figure 15. Unity-Gain Current Mirror, $I_{OUT} = I_{REF}$

The unity-gain current mirror shown in Figure 15 has an accuracy of better than 1% and an output impedance of more than 100 M Ω at 100 $\mu A.$

Figure 16 and Figure 17 each show a modified current mirror; Figure 16 is designed for a current gain of two (2), and Figure 17 is designed for a current gain of one-half (½). The accuracy of these mirrors is reduced from that of the unity-gain source due to base current errors but remains better than 2%.

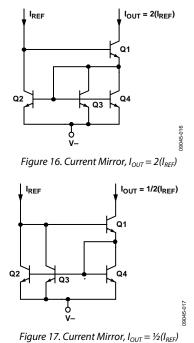


Figure 18 is a temperature independent current sink that has an accuracy of better than 1% at an output current of 100 μ A to 1 mA. A Schottky diode acts as a clamp to ensure correct circuit startup at power-on. Use 1% metal film type resistors in this circuit.

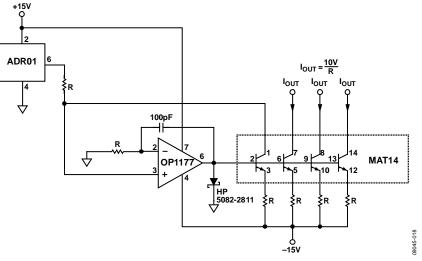
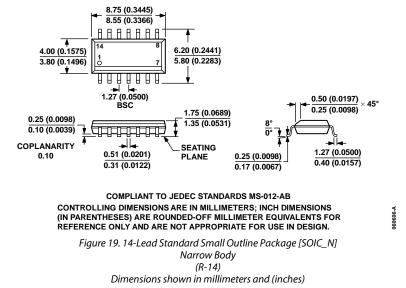



Figure 18. Temperature Independent Current Sink, $I_{OUT} = 10 V/R$

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
MAT14ARZ	-40°C to +85°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14
MAT14ARZ-R7	-40°C to +85°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14
MAT14ARZ-RL	-40°C to +85°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14

¹ Z = RoHS Compliant Part.

NOTES

NOTES

NOTES

©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09045-0-12/10(A)

www.analog.com

Rev. A | Page 12 of 12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001