MAX14919

General Description

The MAX14919 industrial-protected quad-channel lowside switch features $140 \mathrm{~m} \Omega$ (typ) on-resistance (R_{ON}) per channel with integrated $\pm 1 \mathrm{kV} / 42 \Omega$ surge protection for robust operation.
Resistor-settable accurate current limiting provides guaranteed operating currents in the range of 100 mA to 800 mA . Loads that draw large activation or inrush currents are supported using the $2 x$ inrush load-current option. The outputs can be connected in parallel to achieve higher load currents. The four switches are pin-controlled to allow for simple and fast switching of up to 200 kHz .
MAX14919 features reverse-current detection to prevent damage against load-supply miswiring faults. This feature is disabled in MAX14919A.
Inductive loads are turned off rapidly using the internal high-voltage clamps. The switches are short-circuit and overload protected.
The MAX14919 quad low-side switch is available in a $6.5 \mathrm{~mm} \times 6.4 \mathrm{~mm}$ footprint $20-$ TSSOP package and a 4 mm x 5 mm footprint 20 -TQFN package specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.

Applications

- Industrial Digital Outputs
- Relay and Solenoid Drivers
- PLC and DCS Systems
- Motor Control

Industrial-Protected Quad-Channel Low-Side Switch

Benefits and Features

- 5 V or 7 V to 60 V Supply Voltage
- 800 mA Load Current per OUT
- Integrated 5V/30mA Linear Regulator
- 5 V to 48 V Load Voltage Range
- Up to 200 kHz (min) Switching Rates
- Reduces Power and Heat Dissipation
- 140m (typ) On-Resistance per channel
- 1.7 mA (typ) Supply Current
- Settable Load Current Limit
- 2x Inrush Load Current Option for 10 ms
- Robust Design Features
- Internal inductive Energy Clamp at 55V(typ)
- Short-Circuit Protection
- Reverse Current Detection for Protection against Load-Supply Miswiring
- $\pm 1 \mathrm{kV} / 42 \Omega, 8 \mu \mathrm{~s} / 20 \mu \mathrm{~s}$ Surge Protection
- $\pm 8 \mathrm{kV}$ Contact and $\pm 25 \mathrm{kV}$ Airgap ESD Protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Ambient Temperature
- FAULT Indication for:
- Thermal Overload
- Reverse Load Current Detection
- Undervoltage Lockout on V_{5} Supply
- Compact 20-pin, $6.5 \mathrm{~mm} \times 6.4 \mathrm{~mm}$ TSSOP Package
- Compact $20-\mathrm{pin}, 4 \mathrm{~mm} \times 5 \mathrm{~mm}$ TQFN Package

Ordering Information appears at end of data sheet.

MAX14919

Simplified Low-Side Switch Application

Absolute Maximum Ratings

$V_{\text {DD }} . ~-~ 0.3 V ~ t o ~ 65 V ~$
V_{5} …... 0.3 V to +6 V
$\mathrm{V}_{\mathrm{L}}, \overline{\text { FAULT }} . ~-0.3 V ~ t o ~+6 V ~$
REV , RCLIM ... -0.3 V to ($\mathrm{V}_{5}+0.3 \mathrm{~V}$)
IN_.. -0.3V to +6V
OUT1, OUT2, OUT3, OUT4-0.3V to VCLAMPV
OUT_ Load Current (Current limit defined by RLIM resistor).. Internally Limited
Continuous Current (any other terminal) $\pm 100 \mathrm{~mA}$

Continuous Power Dissipation (Single-Layer Board) (20-TSSOP) $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right.$, derate $65 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1739 mW Continuous Power Dissipation (Multilayer Board) (20-TSSOP) $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right.$, derate $55 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2122 mW Continuous Power Dissipation (Multilayer Board) (20-TQFN) (TA $=+70^{\circ} \mathrm{C}$, derate $32.96 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... .2636 .78 mW Operating Temperature Range $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Junction Temperature Internally Limited Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Soldering Temperature (reflow) $260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

20 TSSOP

Package Code	U20E +3 C
Outline Number	$\underline{21-100132}$
Land Pattern Number	$\underline{90-100049}$
THERMAL RESISTANCE, SINGLE-LAYER BOARD	$46^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient $\left(\theta_{\mathrm{JA}}\right)$	$2^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance $\left(\theta_{\mathrm{JC}}\right)$	$37^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	$2^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient $\left(\theta_{\mathrm{JA}}\right)$	
Junction-to-Case Thermal Resistance $\left(\theta_{\mathrm{JC}}\right)$	

20 TQFN

Package Code	T2045+1C
Outline Number	$\underline{21-0726}$
Land Pattern Number	$\underline{90-100091}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	$30.34^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient $\left(\theta_{\mathrm{JA}}\right)$	$1.98^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance $\left(\theta_{\mathrm{JC}}\right)$	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}\right.$ to $60 \mathrm{~V}, \mathrm{~V}_{5}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ and $\left.\mathrm{V}_{\mathrm{DD}}=+24.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{5}\right)($ (Note 1)

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}\right.$ to $60 \mathrm{~V}, \mathrm{~V}_{5}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ and $\left.\mathrm{V}_{\mathrm{DD}}=+24.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{5}\right)($ Note 1 $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Switch Turn-Off Propagation Delay (Low-to-High)	toff	Delay from IN_ switching low to OUT rising by $0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=48 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}$, $\mathrm{V}_{\text {LOAD }}=24 \mathrm{~V}$ (see Figure 1)		105	300	ns
Switch Turn-On Propagation Delay (High-to-Low)	ton	Delay between IN_switching high to OUT_falling by $0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=48 \Omega$, $\mathrm{V}_{\text {LOAD }}=$ 24 V (see Figure 1)		70	300	ns
Output Fall-Time	t_{F}	Output falling 80% to 20% of final value, $V_{\text {LOAD }}=24 \mathrm{~V}, R_{\mathrm{L}}=48 \Omega \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}$ (see Figure 2)		160	250	ns

LOAD SUPPLY REVERSE POLARITY DETECT (REV)

Reverse Current-Detect Threshold	ITH_OUT_REV ON	$\mathrm{V}_{5}>\mathrm{V}_{5}$ UVLO, $\mathrm{IN}_{-}=$high, current flow out of any OUT_	-190	-150	-115	mA
	ITH_OUT_REV OFF	$\mathrm{V}_{5}>\mathrm{V}_{5}$ UVLO, $\mathrm{IN}_{-}=$low, current flow out of any OUT_	-185	-150	-95	
REV Output-Pullup Current	IREV_ON	(MAX14919 only) $\mathrm{V}_{5}>\mathrm{V}_{5}$ UVLO, IOUT_> $I_{\text {TH_OUT_REV }}, V_{\text {REV }}=V_{5}^{-}-1 V$	25	45		$\mu \mathrm{A}$
REV Output-Pulldown Resistance	RREV_OFF	$\mathrm{V}_{5}>\mathrm{V}_{5}$ UUVLO, IOUT_{-}< ITH_OUT_REV		10		Ω
Auto-Retry Delay	trev_AR	Delay until REV output is turned back on after reverse-detection turn-off		2		s
LOGIC INPUTS (IN_, INRUSH)						
Input-Voltage High	V_{IH}		$0.8 \times \mathrm{V}_{\mathrm{L}}$			V
Input-Voltage Low	V_{IL}				$0.2 \times \mathrm{V}_{\mathrm{L}}$	V
Input-Threshold Hysteresis	VI_TH			0.1		V
Input-Pulldown Resistor	RPULLDOWN	All logic input pins		200		k Ω
LOGIC OUTPUT ($\overline{\text { FAULT }}$)						
Output Logic Low	V OL	ILOAD $=5 \mathrm{~mA}$			0.33	V
Three-State Leakage	ILKG	Open-drain output off, $\mathrm{V}_{\text {PULLUP }}=5 \mathrm{~V}$ (Note 2)	-1		+1	$\mu \mathrm{A}$
THERMAL PROTECTION						
Channel Thermal- Shutdown Temperature	TJSHDN	Junction temperature rising, per channel		160		${ }^{\circ} \mathrm{C}$
Channel ThermalShutdown Hysteresis	TJSHDN_HYST			15		${ }^{\circ} \mathrm{C}$
Chip Thermal Shutdown	TCSHDN	Temperature rising		150		${ }^{\circ} \mathrm{C}$
Chip Thermal-Shutdown Hysteresis	$\begin{gathered} \text { TCSHDN_HYS } \\ T \end{gathered}$			10		${ }^{\circ} \mathrm{C}$
LDO Shutdown Temperature	TDSHDN	Temperature rising		160		${ }^{\circ} \mathrm{C}$
EMC						
Surge Tolerance	VSURGE	OUT_ to GND, IEC 61000-4-5 with 42Ω		± 1		kV

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}\right.$ to $60 \mathrm{~V}, \mathrm{~V}_{5}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ and $\left.\mathrm{V}_{\mathrm{DD}}=+24.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{5}\right)($ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
ESD IEC Contact Discharge	VESD_C	OUT_ to GND, IEC 61000-4-2	± 8	UNITS
ESD IEC Air Discharge	VESD_A	OUT_ to GND, IEC 61000-4-2	± 25	kV
ESD	V ESD	All other pins. Human Body Model	± 2	kV

Note 1: All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25 \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Current into the device is positive and current out of the device is negative.

Figure 1. IN_ to OUT_ Propagation Times

Figure 2. Output Channel Rise and Fall Times

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}\right.$, INRUSH $=\mathrm{LOW}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}\right.$, INRUSH $=\mathrm{LOW}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. $)$

Pin Configurations

20-TSSOP

20-TQFN

Pin Description

PIN		NAME	FUNCTION
20-TSSOP	20-TQFN		
POWER SUPPLY			
20	18	$V_{D D}$	24 V Supply Input to Linear Regulator. Bypass V_{DD} to GND using a $1 \mu \mathrm{~F}$ ceramic capacitor. If the MAX14919 is powered by an external V_{5} supply and not $V_{D D}$, the $V_{D D}$ input must either be connected to GND or left unconnected.
3, 4, 7, 8	1,2,5,6	PGND	Power Ground. Connect to Exposed Pad (EP).
16	14	AGND	Analog Ground. Connect to Exposed Pad (EP).
19	17	V_{5}	5 V Supply Input or 5V Linear Regulator Output. Bypass V_{5} to GND using a $1 \mu \mathrm{~F}$ ceramic capacitor. V_{5} is the primary chip supply and is required for normal operation
10	8	V_{L}	Logic Supply. Connect a supply voltage between 1.6 V and 5.5 V to V_{L}. Connect a 100nF bypass cap to V_{L}
SWITCH CONTROL			
18	16	IN1	Switch 1 Control Logic Input. IN1 has a weak pulldown to GND. Drive IN1 high to close the OUT1 switch.
17	15	IN2	Switch 2 Control Logic Input. IN2 has a weak pulldown to GND. Drive IN2 high to close the OUT2 switch.
15	13	IN3	Switch 3 Control Logic Input. IN3 has a weak pulldown to GND. Drive IN3 high to close the OUT3 switch.
14	12	IN4	Switch 4 Control Logic Input. IN4 has a weak pulldown to GND. Drive IN4 high to close the OUT4 switch.
SWITCH OUTPUTS			
2	20	OUT1	Low-Side Switch 1 Output
5	3	OUT2	Low-Side Switch 2 Output
6	4	OUT3	Low-Side Switch 3 Output
9	7	OUT4	Low-Side Switch 4 Output
Configuration			
1	19	INRUSH	Inrush-Enable Logic Input. Drive INRUSH high to enable $2 x$ current limiting for $100 \mathrm{~mA}(\mathrm{~min})$ after any switch is turned on (using IN_). Drive INRUSH low to disable inrush current.
11	9	RCLIM	Load Current-Limit Control Resistor. Connect a resistor between RCLIM and GND to define the maximum load current through each switch. See the Current Limiting section for details.
DIAGNOSTICS SIGNALLING			
12	10	REV	REV Logic Output. On MAX14919, connect REV to the gate of an external nMOS transistor for supply-load reverse-polarity protection. On MAX14919A, if an external nMOS is not used for load reverse protection, REV becomes an opendrain pulldown.
13	11	$\overline{\text { FAULT }}$	Global Overload Open-Drain Output. The FAULT transistor turns on low when any of the OUT_ switches are in thermal overload or the chip is in thermal shutdown. Connect a pullup resistor to V_{L}.
EXPOSED PAD			
-	-	EP	Exposed Pad. Connect EP to GND, PGND1, or PGND2.

Functional Diagrams

MAX14919

Detailed Description

The MAX14919 is a quad industrial low-side switch. Each low-side switch has $140 \mathrm{~m} \Omega$ (typ) on-resistance at up to 800 mA load current. The four switches are pin-controlled, allowing parallel interface and high switching rates of over 200 kHz on each channel. The maximum load current allowed through the switches can be set to fit different system needs. The switch outputs are protected against short circuits to voltages in the range of 0 V to 49 V and are protected against thermal overload. Integrated line-to-GND surge protection of up to $\pm 1 \mathrm{kV} / 42 \Omega$ makes external TVS protection unnecessary.
The device offers additional control for protection and diagnostics indicating thermal overload, reverse-load detect, V_{5} supply undervoltage, and faults on the RCLIM current-limit setting pin.
The internal active clamps limit the OUT_ voltage to +55 V (typ) enabling fast turn-off of inductive loads.

Supply Inputs

Supply Powering Options with $\mathbf{V}_{\text {DD }}$ and $\mathbf{V}_{\mathbf{5}}$

The MAX14919 offers flexible powering options. It can either be powered by $V_{D D}$ or by V_{5}.The $V_{D D}$ power-supply input is able to support a wide supply-voltage range from +7 V to +60 V with a typical case of +24 V industrial power. The internal low-dropout regulator (LDO) handles the wide input to provide a stable +5 V output. Applications with limited available system power or unregulated supplies are able to power MAX14919 without the need of external power converters.
In the presence of a stable +5 V external supply, the internal LDO can be bypassed and the MAX14919 only powered by 5 V . The V_{5} power pin acts as a supply input when V_{DD} is grounded/unconnected and handles input with +4.5 V to +5.5 V supplies. V_{5} is the primary power supply for MAX14919 powering the internal control and analog blocks. The internal LDO can be bypassed by either connecting $V_{D D}$ to GND or by leaving $V_{D D}$ unconnected.

5V Linear Regulator

The integrated 5 V linear regulator $\left(\mathrm{V}_{5}\right)$ can supply up to 30 mA load current. Note that linear regulators have high power dissipation when high load currents are drawn while powered from high supply voltage. Calculate the power dissipation in the regulator as $P_{\text {DIS }}(W)=\left(V_{D D}-V_{5}\right) \times l_{V 5}$. The power dissipation might be excessive for high V_{5} load currents in combination with high $V_{D D}$ supply voltage resulting in self-heating of the device. Verify that the MAX14919 maximum thermal ratings are not exceeded at the highest operating temperatures.
When the MAX14919 enters thermal shutdown, the V_{5} linear regulator is automatically turned off at $160^{\circ} \mathrm{C}$. The regulator turns on automatically when the chip temperature drops by $15^{\circ} \mathrm{C}$ (typ).

Logic Supply Input $\mathbf{V}_{\mathbf{L}}$

The V_{L} logic-supply input supports a wide logic-voltage range of +1.62 V to +5.5 V . V_{L} can either be powered by V_{5} or externally supplied by +1.8 V (typ) or +3.3 V (typ) to enable interface with microcontrollers, FPGAs, or digital isolators. This supply input powers internal interface and logic blocks of MAX14919.

Undervoltage Lockout

When the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{5}$, or V_{L} supply voltages are under their respective UVLO thresholds, all OUT_switches are off.

Logic Interface

The logic interface requires a V_{L} supply in the range of +1.62 V to +5.5 V . This ensures that the logic levels on logic $\mathrm{I} /$ O pins are CMOS-compliant. If used, connect pullup resistors to the open-drain logic outputs. If not used, connect the open-drain logic outputs to GND.

$\overline{\text { FAULT }}$ Signaling

$\overline{\text { FAULT }}$ is a global fault indication that is an open drain logic output that transitions active low when the MAX14919 detects a fault condition. When the MAX14919 exits fault status and all switches are in normal operation, the FAULT pin transitions passive high. $\overline{\mathrm{FAULT}}$ is asserted for any of these conditions:

- Chip thermal shutdown
- Any of the OUT switches are in thermal overloads; thus, are turned off.
- Reverse current detected at OUT_
- V_{5} UVLO
- Short-circuit detected on the RCLIM pin.

During power-up of the device, $\overline{\mathrm{FAULT}}$ is asserted until V_{5} goes above its undervoltage-lockout condition (V_{5} UVLO). $\overline{F A U L T}$ is indicated if any one of the switch output has thermal overload or reverse-load connection, while the other channels are operating normally. The $\overline{\text { FAULT }}$ output is independent of the $I N _$pin logic.

Chip Thermal Protection

All switches are constantly monitored while the MAX14919 is powered with $\mathrm{V}_{5}>\mathrm{V}_{5}$ UVLO. When the MAX14919 chip temperature rises above the thermal shutdown threshold of $150^{\circ} \mathrm{C}$ (TCSHDN), the chip enters thermal shutdown protection and all OUT switches are turned off until the chip temperature drops below $140^{\circ} \mathrm{C}$ ($\mathrm{T}_{\text {CSHDN }}$ - TCSHDN_HYS). In this condition, the FAULT output is set.
If an output switch temperature rises above $160^{\circ} \mathrm{C}$ (channel thermal-shutdown temperature $\mathrm{T}_{\mathrm{JSHDN}}$), that switch output (OUTx) is shut off. When the chip temperature falls by the hysteresis amount (TJSHDN_HYS), the OUT_ switch is restored to normal operation.
The integrated low dropout regulator features a separate temperature sensor that monitors the internal temperature due to the LDO power dissipation. If the internal LDO temperature rises above $160^{\circ} \mathrm{C}$ ($\mathrm{T}_{\mathrm{DSHDN}}$) the LDO is turned off. The LDO wakes up after cooling down by (TCSHDN_HYST).

Current Limiting

The MAX14919 has a settable current limiting common to all four output switches (OUT1 to OUT4). The load current limiting can be set to between 100 mA and 800 mA depending on the value of the resistor applied at the RCLIM pin.
Connect a resistor ($R_{\text {LIM }}$) from RCLIM to GND to set the required current limit. The equation to determine $R_{\text {LIM }}$ for a known current to be limited (l/LM) is given by:
$R_{\text {LIM }}(\mathrm{k} \Omega)=\frac{V_{\mathrm{CLIM}} \times K 1}{\left({ }_{\mathrm{LIM}}-K 2\right)(\mathrm{mA})}$
where,
$\mathrm{V}_{\mathrm{CLIM}}=1.2 \mathrm{~V}$
K1 = 17260 (min), 18000 (typ), 19418 (max)
K2 (mA) $=-67.1$ (min), 0 (typ), 36.98 (max)
For example, the $R_{\text {LIM }}$ resistor to ensure the current limit is always higher than 600 mA , which is the maximum operating load current of system is:
$R_{\mathrm{LIM}}(\mathrm{k} \Omega)=\frac{V_{\mathrm{CLIM}} \times K 1(\mathrm{~min})}{\left(I_{\mathrm{LIM}}-K 2(\mathrm{~min})\right)(\mathrm{mA})}=\frac{1.2 \times 17260}{(600-(-67.1))(\mathrm{mA})}=31.05 \mathrm{k} \Omega$
If no resistor is connected to the RCLIM input (i.e., RCLIM is unconnected) or $R_{\text {LIM }}$ is more than $650 \mathrm{k} \Omega$, the $\mathrm{I}_{\text {LIM }}$ is internally set to 800 mA . If the $\mathrm{R}_{\text {LIM }}$ resistor is less than $6.5 \mathrm{k} \Omega$ (typ), all OUT_ switches are turned off. RCLIM is shortcircuit protected.
When the load current is higher than the set ILIM current in any of the outputs, the device forces the associated switch to limit the current to the $\mathrm{I}_{\text {LIM }}(\mathrm{mA})$ value. In current-limit operation, the OUT_ voltage rises and the OUT_ switch
consequentially heats up proportionally to the VOUT \times ILIM power dissipation. The limiting is done indefinitely until the channel is turned-off or the fault condition is removed.

Inrush Current Mode

The MAX14919 offers inrush mode that supports loads that draw higher currents during turn-on. In INRUSH mode, each switch provides at least double of the current set by the RLIM resistor for the INRUSH duration of 10 ms (min). Setting the INRUSH logic-input high enables the inrush mode allowing $2 x$ l LIM for up to 10 ms . After the INRUSH period, the switch current limiting reverts to the value set by lLIM

System Protection

Reverse-Current Detection

In case of reverse currents flowing out of OUT_due to a load-supply miswiring fault, the MAX14919 offers reverse-current detection (REV) to protect the device against damage caused by high reverse currents. Reverse currents are drawn out of OUT_ when a negative voltage is applied to OUT with respect to GND/PGND and the switch OUT_ is in an on or off state. The reverse currents are typically large due to the OUT_ switch low-resistance both in on and off states. When a reverse current larger than 150 mA is detected on any of the OUT_ pins, the REV output is immediately driven low and all the output channels are forced off with high output impedance. $\overline{\mathrm{R} E V}$ can be used to turn off the external nFET, which opens the GND connection to the external load field-supply unit.
After a reverse current is detected, REV stays low with outputs forced off and is automatically set high after 2 seconds. This auto-retry scheme continues indefinitely until the reverse connection is removed. When REV goes high after the auto-retry time, the outputs are driven to their appropriate $I N_{\text {_ }}$ input state. The REV output can be used to turn on/off an external nFET to disconnect the MAX14919 from the load in case of reverse-current detection. The on-resistance of the external nFET should be chosen such that it does not contribute significantly to a channel RoN since all four OUT_ currents flow through the reverse-protecting nFET. Its RON should be significantly less than $(1 / 4)^{\text {th }}$ of the RON of the OUT_ (less than $35 \mathrm{~m} \Omega$ typ).
The MAX14919A version does not have internal reverse protection and the REV pin output is an open-drain status that signals when a reverse condition is detected. When a reverse current is detected, the open-drain REV output is pulled low without any internal action. The auto-retry feature is also not available in MAX14919A. As soon as the reverse condition disappears, the REV output goes back to logic high, indicating a return to normal operation.

Transient Energy Protection

The MAX14919 features an integrated clamp at each of its four channel outputs. In typical applications, the integrated clamp avoids an external clamp on each of its outputs reducing component cost and board space. In case of an overvoltage event caused by surge, ESD, or inductive load turn-off, the clamp turns on at +55 V (typ) to dissipate the energy.

Short-Circuit and Overcurrent Protection

The device outputs are designed to handle hard short-circuits as well as overcurrents. In case of a short-circuit at OUT_ to field supply with the switch turned on, the device actively regulates the current to llim. The shorted switch channel temperature increases at a rate determined by the power dissipation: OUT_ voltage \times llim. The switch enters thermal shutdown when its temperature is greater than $160^{\circ} \mathrm{C}$. After the device cools down by TJSHDN_HYS (${ }^{\circ} \mathrm{C}$), the switch is automatically turned on if its associated IN_ input is high. The MAX14919 switch outputs indefinitely cycle into and out of thermal shutdown until the switch is turned off or the short-circuit is removed.

Applications Information

Output Parallelization

The MAX14919 device supports paralleling of channels in applications with a higher load-current requirement. The channels that are paralleled should be connected together at the output and input, respectively. When multiple outputs are connected in parallel, the resulting current limit is the sum of the each output's current limit. For example, paralleling of two channels doubles the available load current.
When multiple outputs OUT_ are paralleled, an external zener-diode (ZD) clamp might be required per output for quenching the energy during inductive load turnoff. The external ZD-clamp voltage must be lower than the minimum internal-clamp voltage (49 V min).

Board Layout

High-current, low Ron switches require proper layout and design procedures for optimum performance. Ensure that power-supply bypass capacitors are placed as close as possible to the device. Ensure that the PGND and GND pins are interconnected to have the least on-board resistance. In this case, a $1 \mu \mathrm{~F}$ capacitor should be placed to the ground plane as close to the V_{DD} pin as possible.
Connect the exposed pad to a large GND plane to dissipate heat in case of large load currents. Either the top layer or an inner or the bottom PCB layer is used for heat conduction. Use many vias under the exposed pad ("via farm") to efficiently contact the inner and bottom layers.

Surge Protection

Each OUT_ (OUT1 to OUT4) of the MAX14919 is protected against IEC 61000-4-5 (1.2 $\mu \mathrm{s} / 50 \mu \mathrm{~s}$) surges of up to $\pm 1 \mathrm{kV} /(42 \Omega+0.5 \mu \mathrm{~F})$ without the need for external protection diodes from OUT_ to PGND.

Inductive Demagnetization

During turn-off of inductive loads by an OUT_ low-side switch, the kickback voltage generated by the inductance is clamped by the internal clamp to a voltage of +55 V (typ) relative to PGND allowing fast demagnetization. Large load inductance and higher load currents in the inductive load increase the time until the inductance is demagnetized. This increases the energy in the clamp; hence, the internal temperature of MAX14919 and can result in a thermal overload with FAULT set low. Since large energy is dissipated in the MAX14919 device through the voltage clamp, the user must design the system keeping in mind the inductance of the load and its operating current. Failure to do so results in damage to the device.
Each switch is able to dissipate up to 200 mJ of clamp energy during inductive load clamping at $+125^{\circ} \mathrm{C}$ junction temperature (T_{J}).

Typical Application Circuits

Isolated Quad-Channel Digital-Output Application with Reverse-Load Polarity Protection

This Typical Application Circuit illustrates an isolated quad-channel low-side digital output with reverse-load polarity protection with a 800 mA current limit. An unregulated supply from the transformer driver (MAX258) is supplied to the V_{DD} input of MAX14919. The internal +5 V LDO output is connected to the V_{L} logic-supply input. MAX14919 V_{5} output powers the MAX14483 isolator. MAX14483 enables a +3.3 V to +5 V interface while providing 3.75 kV RMS isolation. The field power-ok signal is a diagnostic provided by MAX14483 to ensure field-side power is present while transmitting signals to the MAX14919 device. An external nFET (NTTFS5820NLTAG) along with the REV output provides reverse-load polarity protection. When OUT_ and COM terminals are miswired, the currents flows into COM and out of OUT_channel. When the magnitude of current is greater than 150 mA , the REV output is forced low, which switches off the nFET; thereby, cutting the path between COM and OUT_. The unipolar TVS (SMCJ36A) protects the external nFET for surge when the nFET is off.

MAX14919

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX14919AUP+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TSSOP-EP*
MAX14919AUP+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TSSOP-EP ${ }^{*}$
MAX14919ATP+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN
MAX14919ATP+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN
MAX14919AAUP+**	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TSSOP-EP ${ }^{*}$
MAX14919AAUP+T*	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TSSOP-EP ${ }^{*}$

+Denotes lead(Pb)-free/RoHS-compliance.
T = Tape and reel.
*EP = Exposed pad.
**Future product—contact factory for availability.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 20$	Release for Market Intro	-
1	$2 / 21$	Updated the General Description, Benefits and Features, Absolute Maximum Ratings, Package Description, Pin Configurations, and Reverse-Current Detection sections; removed future product designation from MAX14919ATP+ and added MAX14919AAUP+ and MAX14919AAUP+T as future parts in the Ordering Information	1-2,8,13,16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG AP22953CW12-7 MAX14919AUP+T MAX14919ATP+ KTS1697AEOAB-TR TCK207AN,LF BD2227G-LBTR TCK126BG,LF XC8111AAA010R-G MPQ5072GG-AEC1-P TCK128BG,LF XC8110AA018R-G XC8110AA010R-G XC8111AA018R-G MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR

