General Description

The MAX20012B is a dual-output, high-efficiency synchronous step-down controller IC that operates with a 3.0 V to 5.5 V input voltage range and provides a 0.5 V to 1.5875 V output voltage range. The controller architecture enables up to 12A of load current per phase. Channel 1 has an option to operate with two phases to deliver higher load current, making this device ideal for automotive point-of-load (PoL) and post-regulation applications.
The IC achieves $\pm 2 \%$ output error over load, line, and temperature ranges. The IC features a 2.2 MHz fixed-frequency PWM mode for better noise immunity and load-transient response, and a pulse-frequency modulation mode (skip) for increased efficiency during light-load operation. The 2.2 MHz frequency operation allows the use of allceramic capacitors and minimizes external components. The programmable spread-spectrum frequency modulation minimizes radiated electromagnetic emissions.
The MAX20012B is offered with factory-preset output voltages (see the Selector Guide for options). The I ${ }^{2} \mathrm{C}$ interface supports dynamic voltage adjustment with programmable slew rates for each channel. Other features include programmable soft-start, overcurrent, and overtemperature protections.

Applications

- Automotive

Benefits and Features

- 2-Channel High-Efficiency DC-DC Controller in a Small Solution Size
- 3.0V to 5.5 V Operating Supply Voltage
- OUT1 Supports 24A (with Two Phases)
- OUT2 Supports 12A
- High-Precision Regulator for Applications Processors
- $\pm 2 \%$ Output-Voltage Accuracy
- Differential Remote Voltage Sensing
- $1^{2} \mathrm{C}$-Controlled Output Voltage: 0.5 V to 1.27 V in 10 mV Steps
- 0.625 V to 1.5875 V in 12.5 mV Steps
- Excellent Load-Transient Performance
- Low-Noise Features Reduce EMI
- 2.2 MHz Operation
- Spread-Spectrum Option
- Frequency-Synchronization Input/Output
- Current-Mode, Forced-PWM, and Skip Operation
- Robust for the Automotive Environment
- Individual Enable Inputs and PGOOD Outputs
- Low RDS(ON) External FETs
- Overtemperature and Short-Circuit Protection
- 32-Pin ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) TQFN with Exposed Pad
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range
- AECQ-100 Qualified

Typical Operating Circuit

Automotive Low-Voltage 2-Channel Step-Down Controller

Absolute Maximum Ratings

V1, PV2 to PGND	3V to +6 V
PV to GND.	-0.3V to +6V
EN_, RS_+, RS_-, SYNC to GND	-0.3V to PV + 0.3V
PG_, ADDR, SDA, SCL to GND. -0.3V to +6V
DH_ to LX	-0.3V to BST_+ 0.3 V
DL to PGND	-0.3 V to $\mathrm{PV}-0.3 \mathrm{~V}$
BST to LX	-0.3 V to +6V
LX to PGND	-0.3V to +18 V
CS1+ to CS1-, CS2+ to CS2-	-0.3V to +0.3 V
CS -, CS1X+ to G	-0.3V to +6V

PWM1X to GND... 0.3 V to $\mathrm{PV}+0.3 \mathrm{~V}$
GND to PGND ...-0.3V to +0.3V
Output Short-Circuit Duration......................................Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) (Multilayer Board)
32-Pin TQFN (derate $34.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . .2758 .6 \mathrm{~mW}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)................................... $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) .. $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE: 32-PIN TQFN	
Package Code	T3255+6
Outline Number	$\underline{21-0140}$
Land Pattern Number	$\underline{90-0603}$
PACKAGE TYPE: 32-PIN SW TQFN	$\mathrm{T} 3255 \mathrm{Y}+6$
Package Code	$\underline{21-100041}$
Outline Number	$\underline{90-100066}$
Land Pattern Number	$36^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE, FOUR-LAYER BOARD:	$3^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ under normal conditions, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	$\mathrm{V}_{\text {IN }}$	Fully operational	3.0		5.5	V
Undervoltage Lockout (UVLO)		Rising		2.9	3	V
		Falling	2.6	2.7		
UVLO Hysteresis				200		mV
Supply Current (Skip Mode)	I_{1}	$\begin{aligned} & \text { EN1 = high, EN2 = low, } \mathrm{V}_{\mathrm{CS}} 1 \mathrm{X}+ \\ & =\mathrm{V}_{\mathrm{PV}}, \mathrm{~V}_{\mathrm{CS} 1}=0 \mathrm{~V} \text { (Note 2) } \end{aligned}$		570		$\mu \mathrm{A}$
		$\begin{aligned} & \text { EN1 }=\text { EN2 }=\text { high, } \mathrm{V}_{\mathrm{CS}} 1 \mathrm{X}_{+}=\mathrm{V}_{\mathrm{PV}}, \mathrm{~V}_{\mathrm{CS} 1} \\ & =\mathrm{V}_{\mathrm{CS} 2}=0 \mathrm{~V}(\text { Note 2) } \end{aligned}$		1100		

Automotive Low-Voltage 2-Channel Step-Down Controller

Electrical Characteristics (continued)

$\left(V_{P V}=V_{P V}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ under normal conditions, unless otherwise noted.) (Note 1)

Automotive Low-Voltage 2-Channel Step-Down Controller

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ under normal conditions, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (EN_, ADDR)						
Input High Level	$\mathrm{V}_{\text {IH }}$		1.5			V
Input Low Level	$\mathrm{V}_{\text {IL }}$				0.5	V
Input Hysteresis				0.1		V
Input Leakage Current		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV}} \leq 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1		$\mu \mathrm{A}$
Enable Time		Rising EN_ to first rising DH_		140		$\mu \mathrm{s}$
PWM1X						
Output Low	V_{OL}	ISINK $=3 \mathrm{~mA}$			0.4	V
Output High	V_{OH}	$\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV}}=5.0 \mathrm{~V}$, $\mathrm{I}_{\text {SOURCE }}=3 \mathrm{~mA}$	4.2			V
DIGITAL INPUT (SYNC)						
Input High Level	$\mathrm{V}_{\text {IH }}$		1.8			V
Input Low Level	$\mathrm{V}_{\text {IL }}$				0.4	V
Input Hysteresis				0.1		V
Input Pulldown				100		k Ω
Input Frequency Range			1.8		2.6	MHz
SYNC OUTPUT (CONFIG.SO[1:0] = 10)						
Output Low	V_{OL}	$\mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$			0.4	V
Output High	V_{OH}	$\mathrm{V}_{\text {PV_ }}=\mathrm{V}_{\text {PV }}=5.0 \mathrm{~V}$, $\mathrm{I}_{\text {SOURCE }}=3 \mathrm{~mA}$	4.2			V
DIGITAL INPUTS (SDA, SCL)						
Input High Level	$\mathrm{V}_{\text {IH_I2C }}$		1.2			V
Input Low Level	$\mathrm{V}_{\text {IL_I2 }}$				0.5	V
Input Hysteresis				0.1		V
Input Leakage Current		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PV}} \leq 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1		$\mu \mathrm{A}$
$\mathrm{I}^{2} \mathrm{C}$ INTERFACE						
Clock Frequency	fSCL				1	MHz
Setup Time (Repeated) START	tsu:STA	(Note 3)	160			ns
Hold Time (Repeated) START	$t_{\text {thD }}$ STA	(Note 3)	160			ns
SCL Low Time	tow	(Note 3)	160			ns
SCL High Time	$\mathrm{t}_{\text {HIGH }}$	(Note 3)	60			ns
Data Setup Time	tsu:DAT	(Note 3)	50			ns
Data Hold Time	$\mathrm{t}_{\mathrm{HD} \text { : DAT }}$	(Note 3)	0		70	ns
Setup Time for STOP Condition	tsu:STO	(Note 3)	160			ns
Spike Suppression				20		ns
SDA Output Low	VOL_SDA	ISINK $=13 \mathrm{~mA}$			0.4	V

Note 1: All units are 100% production tested at $+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: $\mathrm{V}_{\mathrm{CS}_{-}}=\left(\mathrm{V}_{\mathrm{CS}_{-}+}\right)$- ($\left.\mathrm{V}_{\mathrm{CS}_{-}}\right)$.
Note 3: Specifications are guaranteed by design, not production tested.

Automotive Low-Voltage 2-Channel Step-Down
 Controller

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Automotive Low-Voltage 2-Channel Step-Down Controller

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	GND	Analog Ground
2	PV	Analog Input Supply. Connect a 1μ F ceramic capacitor from PV to GND. Connect PV to PV1 and PV2 through a 10Ω resistor.
3	SDA	${ }^{2}{ }^{2} \mathrm{C}$ Data I/O
4	SCL	${ }^{2} \mathrm{C}$ C Clock Input
5	EN2	Active-High Digital Enable Input for DCDC2. Drive EN2 high for normal operation. Connect EN2 to GND if DCDC2 is not used.
6	RS2-	DCDC2 Remote Voltage-Sense Negative Input
7	RS2+	DCDC2 Remote Voltage-Sense Positive Input
8	CS2-	Current-Sense Negative Input for DCDC2. Connect CS2- to the negative side of the current-sense element.
9	CS2+	Current-Sense Positive Input for DCDC2. Connect CS2+ to the positive side of the current-sense element. See the Current-Limit/Short-Circuit Protection section.
10	PG2	Open-Drain DCDC2 Reset Output. This output remains low for $120 \mu \mathrm{~s}$ after the output has reached its regulation level (see the Electrical Characteristics table). To obtain a logic signal, pull up PG2 with an external resistor.
11	PGND2	Power Ground for DCDC2
12	DL2	Low-Side Gate Drive for DCDC2
13	PV2	Input-Voltage Pin for DCDC2. Bypass this pin with enough input capacitance to supply current to the buck controller. Connect PV1 and PV2 together externally. See the Input Capacitor section.
14	BST2	Bootstrap Capacitor for High-Side Driver of Buck 2. Connect a $0.1 \mu \mathrm{~F}$ from LX2 to BST2.
15	DH2	High-Side Gate Drive for DCDC2

Automotive Low-Voltage 2-Channel Step-Down Controller

Pin Description (continued)

PIN	NAME	FUNCTION
16	LX2	Inductor Connection for DCDC2. Connect LX2 to the switched side of the inductor. LX2 serves as the lower supply rail for the DH2 high-side gate driver.
17	SYNC	SYNC I/O. When configured as an input, connect SYNC to GND or leave unconnected to enable skip-mode operation under light loads. Connect SYNC to PV or an external clock to enable fixedfrequency forced-PWM mode operation. When configured as an output, connect SYNC to other devices' SYNC inputs.
18	PWM1X	PWM Output for Optional 2nd Phase of DCDC1. Connect to the MAX15492 PWM pin. If unused, leave PWM1X unconnected.
19	ADDR	$\mathrm{I}^{2} \mathrm{C}$ Address Select. Connect to GND or PV to select between two different $\mathrm{I}^{2} \mathrm{C}$ addresses. See the Selector Guide for default $\mathrm{I}^{2} \mathrm{C}$ settings.
20	CS1X+	Current-Sense Positive Input for the 2nd Phase of DCDC1. Connect CS1X+ to the positive side of the current-sense element. To disable phase 2, short CS1X+ to PV.
21	EN1	Active-High Digital Enable Input for DCDC1. Drive EN1 high for normal operation. Connect EN1 to GND if DCDC1 is not used.
22	RS1-	DCDC1 Remote Voltage-Sense Negative Input
23	RS1+	DCDC1 Remote Voltage-Sense Positive Input
24	CS1-	Current-Sense Negative Input for DCDC1. Connect CS1- to the negative side of the current-sense element.
25	CS1+	Current-Sense Positive Input for DCDC1. Connect CS1+ to the positive side of the current-sense element. See the Current-Limit/Short-Circuit Protection section.
26	PG1	Open-Drain DCDC1 Reset Output. This output remains low for 120μ s after the output has reached its regulation level (see the Electrical Characteristics table). To obtain a logic signal, pull up PG1 with an external resistor.
27	PGND1	Power Ground for DCDC1
28	DL1	Low-Side Gate Drive for DCDC1
29	PV1	Input-Voltage Pin for DCDC1. Bypass this pin with enough input capacitance to supply current to the buck controller. Connect PV1 and PV2 together externally. See the Input Capacitor section.
30	BST1	Bootstrap Capacitor for High-Side Driver of DCDC1. Connect a $0.1 \mu \mathrm{~F}$ from LX1 to BST1.
31	DH1	High-Side Gate Drive of DCDC1
32	LX1	Inductor Connection for DCDC1. Connect LX1 to the switched side of the inductor. LX1 serves as the lower supply rail for the DH1 high-side gate driver.
-	EP	Exposed Pad. Connect EP to ground. Connecting the exposed pad to ground does not remove the requirement for proper ground connections to PGND1, PGND2, and GND. The exposed pad is attached with epoxy to the substrate of the die, making it an excellent path to remove heat from the IC.

Internal Block Diagram

Figure 1. Internal Block Diagram

Automotive Low-Voltage 2-Channel Step-Down Controller

Detailed Description

The MAX20012B is a dual-output, high-efficiency, synchronous step-down controller IC that operates with a 3.0V to 5.5 V input voltage range and provides a 0.50 V to 1.5875 V output voltage range. The IC delivers up to 12 A of load current per channel and achieves $\pm 2 \%$ output error over load, line, and temperature ranges. The IC can operate as a 2-phase controller to deliver currents in excess of 21A.
The PWM input forces the IC either into a 2.2 MHz fixed-frequency PWM mode or a low-power pulse-frequency modulation mode (skip). Optional spread-spectrum frequency modulation minimizes radiated electromagnetic emissions due to the switching frequency. The $\mathrm{I}^{2} \mathrm{C}$-programmable synchronization I/O (SYNC) enables system synchronization.
The IC is offered with a factory-preset output voltage that is dynamically adjustable through the $\mathrm{I}^{2} \mathrm{C}$ interface. The output voltage can be set to any desired value between 0.50 V to 1.5875 V .

Additional features include fixed power-good delay, overcurrent, and overtemperature protections (Figure 1).

${ }^{12}$ C Interface

The IC features an ${ }^{2} \mathrm{C}$, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to 1 MHz . The master, typically a microcontroller, generates SCL and initiates data transfer on the bus. Figure 2 shows the 2 -wire interface timing diagram.
A master device communicates to the IC by transmitting the proper address followed by the data word. Each transmit sequence is framed by a START (S) or Repeated START (Sr) condition and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.
The IC's SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on the SDA bus. The IC's SCL line operates as an input only. A pullup resistor greater than 500Ω is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. The SDA and SCL inputs suppress noise spikes to assure proper device operation, even on a noisy bus.

Figure 2. $I^{2} C$ Timing Diagram

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the STOP and START Conditions section). SDA and SCL idle high when the $\mathrm{I}^{2} \mathrm{C}$ bus is not busy.

Automotive Low-Voltage 2-Channel Step-Down Controller

STOP and START Conditions

A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 3). A START (S) condition from the master signals the beginning of a transmission to the device. The master terminates transmission, and frees the bus, by issuing a STOP (P) condition. The bus remains active if a Repeated START (Sr) condition is generated instead of a STOP condition.
The device recognizes a STOP condition at any point during data transmission, unless the STOP condition occurs in the same high pulse as a START condition.

Figure 3. START, STOP, and Repeated START Conditions

Clock Stretching

In general, the clock-signal generation for the $I^{2} \mathrm{C}$ bus is the responsibility of the master device. The $\left.\right|^{2} \mathrm{C}$ specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The MAX20012B does not use any form of clock stretching to hold down the clock line.

${ }^{2}{ }^{2}$ C General Call Address

The MAX20012B does not implement the $I^{2} \mathrm{C}$ specifications' "general call address." If the device sees the general call address (0b0000_0000), it does not issue an acknowledge.

Slave Address

Once the device is enabled, the ${ }^{2} \mathrm{C}$ slave address is set by the ADDR pin (Table 1). Each output channel has a unique slave address. The address is defined as the 7 most significant bits (MSBs), followed by the R/W bit. Set the R/W bit to 1 to configure the IC to read mode. Set the R/W bit to 0 to configure the IC to write mode. The address is the first byte of information sent to the devices after the START condition.
Table 1. I^{2} C Slave Addresses

ADDR PIN	A6	A5	A4	A3	A2 *	A1* *	A0	WRITE	READ
0	0	1	1	1	0	0	0	0×70	0×71
1	0	1	1	1	0	0	1	0×72	0×73
0	0	1	1	1	0	1	0	0×74	0×75
1	0	1	1	1	0	1	1	0×76	0×77
0	0	1	1	1	1	0	0	0×78	0×79
1	0	1	1	1	1	0	1	0×77	$0 \times 7 B$

*See the Selector Guide for default settings.

Automotive Low-Voltage 2-Channel Step-Down Controller

Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the device uses to handshake receipt each byte of data (Figure 4). The device pulls down SDA during the master-generated 9th clock pulse. The SDA line must remain stable and low during the high period of the acknowledge clock pulse. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master can reattempt communication.

Figure 4. Acknowledge Condition

Write Data Format

A write to the device includes transmission of a START condition, the slave address with the write bit set to 0 , one byte of data to the register address, one byte of data to the command register, and a STOP condition. Figure 5 illustrates the proper format for one frame.

Read Data Format

A read from the device includes transmission of a START condition, the slave address with the write bit set to 0 , one byte of data to the register address, a restart condition, the slave address with the read bit set to 1 , one byte of data to the command register, and a STOP condition. Figure 5 illustrates the proper format for one frame.

Figure 5. Data Format of ${ }^{2}$ C Interface

Writing to a Single Register

Figure 6 shows the protocol for the I ${ }^{2} \mathrm{C}$ master device to write one byte of data to the MAX20012B. This protocol is the same as the SMBus specification's "write byte" protocol.
The "write byte" protocol is as follows:

Automotive Low-Voltage 2-Channel Step-Down Controller

1. The master sends a START command (S).
2. The master sends the 7 -bit slave address followed by a write bit $(R / W=0)$.
3. The addressed slave asserts an acknowledge (A) by pulling SDA low.
4. The master sends an 8-bit register pointer.
5. The slave acknowledges the register pointer.
6. The master sends a data byte.
7. The slave updates with the new data.
8. The slave acknowledges or not acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active.
9. The master sends a STOP condition (P) or a Repeated START condition (Sr).

LEGEND

Figure 6. Write Byte Format

Writing Multiple Bytes Using Register Data Pairs

Figure 7 shows the protocol for the $I^{2} \mathrm{C}$ master device to write multiple bytes to the MAX20012B using register-data pairs. This protocol allows the $\mathrm{I}^{2} \mathrm{C}$ master device to address the slave only once and then send data to multiple registers in a random order. Registers can be written continuously until the master issues a STOP condition.
The "writing multiple bytes using register-data pairs" protocol is not supported by the RTC functional block.
The "multiple byte register-data pair" protocol is as follows:

1. The master sends a START command.
2. The master sends the 7-bit slave address followed by a write bit.
3. The addressed slave asserts an acknowledge by pulling SDA low.
4. The master sends an 8-bit register pointer.
5. The slave acknowledges the register pointer.
6. The master sends a data byte.
7. The slave acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active.
8. Steps 5-7 are repeated as many times as the master requires.
9. The master sends a STOP condition. During the rising edge of the stop-related SDA edge, the data byte that was previously written is loaded into the target register and becomes active.

LEGEND

Figure 7. Write Register-Data Pair Format
Both outputs have an identical register set, as defined below. They are accessed individually by using each channel's unique $I^{2} \mathrm{C}$ address. Each channel has the same register set accessed through their individual $\mathrm{I}^{2} \mathrm{C}$ address (see Table 1).

Table 2. Register Map

REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	CMD	R/W	POWER-ON RESET
ID	DEV3	DEV2	DEV1	DEV0	R3	R2	R1	R0	0×00	R	$0 \times 24,0 \times 34$
-	-	-	-	-	-	-	-	-	0×01	R/W	0×00

Table 2. Register Map (continued)

VIDMAX	-	VMAX6	VMAX5	VMAX4	VMAX3	VMAX2	VMAX1	VMAX0	0×02	R/W	OTP
TCONFIG	ENTRK	-	-	-	-	-	TA1	TA0	0×03	R/W	0×02
STATUS	INTERR	TRKERR	VRHOT	UV	OV	OC	VMERR	0	0×04	R	0×00
CONFIG	VSTEP	-	-	-	FPWM	SS	SO1	SO0	0×05	R/W	OTP
SLEW	-	-	-	-	SR3	SR2	SR1	SR0	0×06	R/W	OTP
VID	-	VID6	VID5	VID4	VID3	VID2	VID1	VID0	0×07	R/W	OTP
TRACKVID	-	-	TVID5	TVID4	TVID3	TVID2	TVID1	TVID0	$0 \times 2 B$	R/W	0×00

Table 3. Identification Register (ID)

ID								
BIT NO.	7	6	5	4	3	2	1	0
NAME	DEV3	DEV2	DEV1	DEV0	R3	R2	R1	R0
OUT1 POR	0	0	1	0	0	1	0	0
OUT2 POR	0	0	1	1	0	1	0	0

BIT	BIT DESCRIPTION
DEV[3:0]	Device ID:
	MAX20012B OUT1 $=0 \times 2$
MAX20012B OUT2 $=0 \times 3$	

Table 4. Maximum Output-Voltage Register (VIDMAX)

VIDMAX								
BIT NO.	7	6	5	4	3	2	1	0
NAME	-	VMAX6	VMAX5	VMAX4	VMAX3	VMAX2	VMAX1	VMAX0
POR	OTP							
BIT	BIT DESCRIPTION							
VMAX[6:0]	Maximum Voltage Setting. If VID[] > VMAX[], then a fault is set and the actual voltage is capped by VMAX[]. See Table 10 for VID output-voltage selections.							

Table 5. Tracking Mode Register (TCONFIG)

TCONFIG								
BIT NO.	7	6	5	4	3	2	1	0
NAME	ENTRK	-	-	-	-	-	TA1	TA0
POR	0	0	0	0	0	0	1	0

BIT	BIT DESCRIPTION
ENTRK	Enable Tracking Mode. When '1' and VSTEP $=$ ' 1 ' then tracking mode is enabled: $0=$ Disabled $1=$ Enabled
TA[1:0]	The ${ }^{2} \mathrm{C}$ address of the MAX20024 used for LDO4 voltage tracking: $00=0 \times 38$ $01=0 \times 3 \mathrm{C}$ $10=0 \times 78$ $11=0 \times 7 \mathrm{C}$

Table 6. Configuration Register (CONFIG)

CONFIG								
BIT NO.	. 7	6	5	4	3	2	1	0
NAME	VSTEP	-	-	-	FPWM	SS	SO1	SOO
POR	OTP							
BIT	BIT DESCRIPTION							
VSTEP	Voltage Step Size. Sets the voltage step size for the LSB of VID:$\begin{aligned} & 0=10 \mathrm{mV} \\ & 1=12.5 \mathrm{mV} \end{aligned}$							
FPWM	Forced-PWM Mode: $0=$ Mode controlled by SYNC pin. When SYNC is output, device is always in FPWM mode. 1 = Forced-PWM Mode. Overrides SYNC skip mode setting when SYNC is an input.							
SS	Spread-Spectrum Clock Setting: 0 = Disabled $1=+3 \%$ spread							
SO[1:0]	SYNC I/O Select: $00=$ Master: Input, rising edge starts cycle 01 = Master: Input, falling edge starts cycle $10=$ Master: Output, falling edge starts cycle 11 = Unused							

Table 7. Status Register (STATUS)

STATUS								
BIT NO.	7	6	5	4	3	2	1	0
NAME	INTERR	TRKERR	VRHOT	UV	OV	OC	VMERR	0
POR	0	0	0	0	0	0	0	0

BIT	BIT DESCRIPTION
INTERR	Internal Hardware Error: This bit is set to '1' when ATE trimming and testing not complete.
TRKERR	Tracking Address Error: This bit is set to '1' when ENTRK == 1 \& VSTEP == 0.
VRHOT	Thermal Shutdown Indication: A thermal shutdown has occurred since the last time this register was read.
UV	V $_{\text {OUT }}$ Undervoltage: This bit indicates if the output is currently under the target voltage.
OV	VouT Overvoltage: This bit indicates if the output is currently over the target voltage.
OC	VOUT Overcurrent: This bit indicates if an overcurrent event has occurred since the last time the STATUS register was read.
VMERR	VOUTMAX Error. Set to 1 if VID[] > VOUTMAX[] in normal mode, or TVID[] > VOUTMAX[] in tracking mode.

Table 8. Slew-Rate Register (SLEW)

SR[3:0]	SOFT-START SLEW RATE (mV/ms) (NOTE 1)	RISING DVS SLEW RATE (mV/ms) (NOTES 1 AND 2)
XXXX0000	22	22
XXXX0001	11	22
$X X X X 0010$	5.5	22
$X X X X 0011$	11	11
$X X X X 0100$	5.5	11
$X X X X 0101$	22	22
$X X X X 0110$	22	22
$X X X X 0111$	11	22

Table 8. Slew-Rate Register (SLEW) (continued)

SR[3:0]	SOFT-START SLEW RATE (mV/ms) (NOTE 1)	RISING DVS SLEW RATE (mV/ms) (NOTES 1 AND 2)
XXXX1000	5.5	22
XXXX1001	5.5	5.5
XXXX1010 - XXXX1111	Reserved	Reserved

Note 1: VSTEP = ' 0 '; when VSTEP = ' 1 ', increase by a factor of 1.25.
Note 2: Falling DVS slew rate is $-1.375 \mathrm{mV} / \mu \mathrm{s}$.
Table 9. Output-Voltage Register (VID)

VID								
BIT NO.	7	6	5	4	3	2	1	0
NAME	-	VID6	VID5	VID4	VID3	VID2	VID1	VID0
POR	OTP							
BIT								
VID[6:0]	Target Voltage Setting. Vout ramps at the programmed DVS ramp rate until it reaches programmed VID. See Table 10 for VID output-voltage selections.							

Table 10. VID Output-Voltage Selection

VID[6:0]	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ \text { (VSTEP }=0 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ \text { VSTEP }=1 \end{gathered}$	VID[6:0]	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ \text { (VSTEP }=0 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ \text { VSTEP }=1 \end{gathered}$	VID[6:0]	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ \text { (VSTEP }=0 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ \text { VSTEP }=1 \end{gathered}$
0×00	OFF	OFF	0x20	0.810	1.0125	0x40	1.130	1.4125
0×01	0.500	0.6250	0×21	0.820	1.0250	0×41	1.140	1.4250
0×02	0.510	0.6375	0×22	0.830	1.0375	0×42	1.150	1.4375
0×03	0.520	0.6500	0×23	0.840	1.0500	0x43	1.160	1.4500
0×04	0.530	0.6625	0×24	0.850	1.0625	0×44	1.170	1.4625
0x05	0.540	0.6750	0×25	0.860	1.0750	0×45	1.180	1.4750
0×06	0.550	0.6875	0×26	0.870	1.0875	0×46	1.190	1.4875
0x07	0.560	0.7000	0×27	0.880	1.1000	0×47	1.200	1.5000
0×08	0.570	0.7125	0×28	0.890	1.1125	0x48	1.210	1.5125
0×09	0.580	0.7250	0×29	0.900	1.1250	0x49	1.220	1.5250
$0 \times 0 \mathrm{~A}$	0.590	0.7375	$0 \times 2 \mathrm{~A}$	0.910	1.1375	0x4A	1.230	1.5375
$0 \times 0 \mathrm{~B}$	0.600	0.7500	0x2B	0.920	1.1500	0x4B	1.240	1.5500
0x0C	0.610	0.7625	0x2C	0.930	1.1625	0x4C	1.250	1.5625
0x0D	0.620	0.7750	0x2D	0.940	1.1750	0x4D	1.260	1.5750
0x0E	0.630	0.7875	0x2E	0.950	1.1875	0x4E	1.270	1.5875
0x0F	0.640	0.8000	0x2F	0.960	1.2000	-	-	-
0×10	0.650	0.8125	0×30	0.970	1.2125	-	-	-
0×11	0.660	0.8250	0×31	0.980	1.2250	-	-	-
0×12	0.670	0.8375	0×32	0.990	1.2375	-	-	-
0×13	0.680	0.8500	0×33	1.000	1.2500	-	-	-
0x14	0.690	0.8625	0×34	1.010	1.2625	-	-	-
0x15	0.700	0.8750	0×35	1.020	1.2750	-	-	-
0x16	0.710	0.8875	0×36	1.030	1.2875	-	-	-

Table 10. VID Output-VoItage Selection (continued)

VID[6:0]	$\begin{gathered} \text { VOUT (V) } \\ \text { (VSTEP = } 0 \text {) } \end{gathered}$	$\begin{gathered} \text { VOUT (V) } \\ \text { VSTEP }=1 \end{gathered}$	VID[6:0]	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ \text { (VSTEP }=0) \end{gathered}$	$\begin{gathered} \text { VOUT (V) } \\ \text { VSTEP }=1 \end{gathered}$	VID[6:0]	$\begin{gathered} \mathrm{V}_{\text {OUT }}(\mathrm{V}) \\ (\mathrm{VSTEP}=0) \end{gathered}$	$\begin{gathered} \text { VOUT (V) } \\ \text { VSTEP }=1 \end{gathered}$
0×17	0.720	0.9000	0×37	1.040	1.3000	-	-	-
0×18	0.730	0.9125	0×38	1.050	1.3125	-	-	-
0x19	0.740	0.9250	0×39	1.060	1.3250	-	-	-
0x1A	0.750	0.9375	0x3A	1.070	1.3375	-	-	-
0x1B	0.760	0.9500	0x3B	1.080	1.3500	-	-	-
$0 \times 1 \mathrm{C}$	0.770	0.9625	0x3C	1.090	1.3625	-	-	-
0x1D	0.780	0.9750	0x3D	1.100	1.3750	-	-	-
0x1E	0.790	0.9875	0x3E	1.110	1.3875	-	-	-
0x1F	0.800	1.0000	0x3F	1.120	1.4000	-	-	-

Table 11. Tracking Voltage Register (TRACKVID)

TVID								
BIT NO.	7	6	5	4	3	2	1	0
NAME	0	0	TVID5	TVID4	TVID3	TVID2	TVID1	TVID0
POR	0	0	0	0	0	0	0	0
BIT								
TVID[5:0]	Tracking VID: This is used to calculate the new VID when in tracking mode. See Table 12 for TRACKVID output-voltage selections.							

Table 12. TRACKVID Output-Voltage Selections

| TVID[5:0] | V | OUT | TVID[5:0] | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Voltage-Tracking Mode

The MAX20012B features a special voltage-tracking mode where the device listens to ${ }^{2} \mathrm{C}$ write commands targeted at LDO4 of the MAX20024 PMIC. Any time the CNFG1_L4.TV_L4[5:0] (register 0x2B) is updated, the value is copied to the TRACKVID register. When tracking is enabled (TCONFIG.ENTRK = 1 and CONFIG.VSTEP $=1$), the TRACKVID value is used instead of the VID register to set the output voltage. The $I^{2} \mathrm{C}$ address of the MAX20024 PMIC must be selected
in the TCONFIG register for tracking to work properly.

Enable (EN1/2)

EN1/2 high triggers soft-start and EN1/2 low starts soft-shutdown of OUT1/2.

PG Output

The IC features open-drain PGOOD outputs (PG1/2) that become high impedance when the respective output voltage is between the PG_UV and PG_OV thresholds. PG_ is high impedance after the power-good active timeout period. An additional $220 \mu \mathrm{~s}$ (typ) PG_ delay exists following soft-start or DVS slewing. PG_ is pulled low after UV/OV propagation delay if the output voltage is outside the PG_UV/OV thresholds, or after the first DVS command after soft-start. Connect PG_ to a pullup supply with a $20 \mathrm{k} \Omega$ resistor.

Soft-Start

The IC includes a programmable soft-start rate. Soft-start limits startup inrush current by forcing the output voltage to ramp up towards its regulation point.

Dynamic Voltage Scaling

The step-down regulators feature dynamic voltage scaling (DVS) to allow loads to margin their supply voltage. DVS registers for OUT1 and OUT2 are programmed with VID[6:0]. The rising slew rate during DVS is adjustable with SR[3:0] (see Table 8). The falling slew rate during DVS is fixed at $-1.375 \mathrm{mV} / \mu \mathrm{s}$ for VSTEP $=0$ and $-1.719 \mathrm{mV} / \mu \mathrm{s}$ for VSTEP $=1$. The PG_ comparator is masked to prevent false PG_interrupts during the DVS period. I2C DVS commands should only be issued when the output voltage is no longer slewing and is in a stable state.

Shutdown

During shutdown, the output voltage is ramped down at the $1.375 \mathrm{mV} / \mu$ s slew rate. The CS- pulldown is enabled as needed to assist in the ramp down. When powering down in skip mode under light load, the falling ramp may be based on the RC discharge curve based on COUT and the 5Ω pulldown resistance.

Spread-Spectrum Option

The IC features spread-spectrum (SS) operation by varying the internal operating frequency up by 3% relative to the internally generated operating frequency of 2.2 MHz (typ). This function does not apply to external sync.

Synchronization (SYNC)

SYNC is an I^{2} C-programmable I/O. When configured as an input and the FPWM bit $=0$, driving SYNC low or unconnected places the converter in skip mode. Forcing SYNC logic-high places the IC in forced-PWM (FPWM) mode. Input triggering on the rising edge or falling edge is determined by the setting of registers SO[1:0], see Table 6 . When $S O[1: 0]=2$, SYNC is configured as an output. The output clock is 180° out of phase with the internal clock.

Current-Limit/Short-Circuit Protection

The current-limit circuit uses differential current-sense inputs (CS_+ and CS_-) to limit the peak inductor current. If the magnitude of the current-sense signal exceeds the current-limit threshold (VLIM_=57.4mV (typ), 60mV (typ), 62.8mV (max)), the PWM controller turns off the high-side MOSFET.
The high side turns on again once the inductor current drops below the valley current limit. The actual maximum load current is less than the peak current-limit threshold by an amount equal to half of the inductor ripple current. Therefore, the maximum load capability is a function of the current-sense resistance, inductor value, switching frequency, and duty cycle ($\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$). See Figure 8 for current-sense configurations.
If the inductor current exceeds the maximum current limit programmed at CS_+ and CS_-, the respective driver turns off. In an overcurrent mode, this results in shorter and shorter high-side pulses. A hard short results in a minimum ontime pulse every clock cycle. During a hard short, the IC turns off and repeats soft-start every 4 ms (at 2.2 MHz switching frequency) until the short is removed. For an example, see the short-circuit (PWM mode) waveform (TOC20) in the Typical Operating Characteristics section.

Automotive Low-Voltage 2-Channel Step-Down Controller

PWM/Skip Modes

The IC features an input (SYNC) that puts both converters in either skip mode or forced-PWM mode of operation. See the Pin Description table for mode detail. In PWM mode of operation, the converter switches at a constant frequency with variable on-time. In skip mode of operation, the converter's switching frequency is load dependent until the output load reaches a certain threshold. At higher load current, the switching frequency does not change and the operating mode is similar to the PWM mode. Skip mode helps improve efficiency in light-load applications by allowing the converter to turn on the high-side switch only when the output voltage falls below a set threshold. As such, the converter does not switch MOSFETs on and off as often is the case in the PWM mode. Consequently, the gate charge and switching losses are much lower in skip mode. VID updates while the IC is in skip mode are delayed until the next LX_ switching pulse, which is load dependent. If immediate VID update response is required, switch the IC to PWM mode when updating the VID.

Dual-Phase Operation

With the addition of a MAX15492 gate driver IC connected to PWM1X and CS1X+, OUT1 of the MAX20012B can support two phases to increase the output current by a factor of two. The same inductor, FETs, and current-limit network must be used on both phases to ensure proper current balancing. An additional $100 \mu \mathrm{~F}$ of ceramic output capacitance is required (for a total of $300 \mu \mathrm{~F}$).

Overtemperature Protection

Thermal-overload protection limits the total power dissipation in the IC. When the junction temperature exceeds $+165^{\circ} \mathrm{C}$ (typ), an internal thermal sensor shuts down the internal bias regulator and the step-down controller, allowing the IC to cool. The thermal sensor turns on the IC again after the junction temperature cools by $15^{\circ} \mathrm{C}$.

Figure 8. Current-Sense Configurations

Lossless Inductor DCR Sensing

High-power applications that do not require highly accurate current-limit protection can reduce the overall power dissipation by connecting a series RC circuit across the inductor with an equivalent time constant:
$R_{\text {CSEQ }}=\left(\frac{R 1}{R_{1}+R_{2}}\right) R_{\text {DCR }}$
and:
$R_{\mathrm{DCR}}=\frac{L}{C_{\mathrm{EQ}}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
where $R_{\text {CSEQ }}$ is the required current-sense resistor and $R_{D C R}$ is the inductor's series $D C$ resistance. Use the inductance and $R_{D C R}$ values provided by the inductor manufacturer.
Carefully observe the PCB layout guidelines to ensure that noise and DC errors do not corrupt the differential current-
sense signals seen by CS_+ and CS_-. Place the sense network close to the device with short, direct traces, making a Kelvin-sense connection to the current-sense network.

High-Side Gate-Drive Supply (BST1)

The high-side MOSFET is turned on by closing an internal switch between BST1 and DH1 and transferring the bootstrap capacitor's (at BST1) charge to the gate of the high-side MOSFET. This charge refreshes when the high-side MOSFET turns off and the LX1 voltage drops down to ground potential, taking the negative terminal of the capacitor to the same potential. At this time the bootstrap diode recharges the positive terminal of the bootstrap capacitor. The selected n-channel high-side MOSFET determines the appropriate boost-capacitance values ($\mathrm{C}_{\mathrm{BS}} \mathrm{T}_{-}$in the Typical Operating Circuit) according to the following equation:
$C_{\mathrm{BST}_{-}}=\frac{Q_{G}}{\Delta V_{\mathrm{BST} 1}}$
where Q_{G} is the total gate charge of the high-side MOSFET and $\Delta \mathrm{V}_{\mathrm{BST}}$ is the voltage variation allowed on the high-side MOSFET driver after turn-on. Choose $\Delta \mathrm{V}_{\mathrm{BST}} 1$ such that the available gate-drive voltage is not significantly degraded (e.g., $\Delta \mathrm{V}_{\mathrm{BST}}=100 \mathrm{mV}$ to 300 mV) when determining $\mathrm{C}_{\mathrm{BST}}$. The boost capacitor should be a low-ESR ceramic capacitor. A minimum value of 100 nF works in most cases. $\mathrm{C}_{\mathrm{BST}}-$ is calculated using the same method described for CBST1.

MAX20012B

Automotive Low-Voltage 2-Channel Step-Down Controller

Applications Information

Input Capacitor

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching.
The input capacitor RMS current requirement (l $\mathrm{I}_{\mathrm{RMS}}$) is defined by the following equation:
$I_{\mathrm{RMS}}=I_{\mathrm{LOAD}(\mathrm{MAX})} \frac{\sqrt{V_{\mathrm{OUT}}\left(V_{\mathrm{PV}}-V_{\mathrm{OUT}}\right)}}{V_{\mathrm{PV}}}$
$\mathrm{I}_{\mathrm{RMS}}$ has a maximum value when the input voltage equals twice the output voltage $\left(\mathrm{V}_{\mathrm{PV}}=2 \mathrm{~V}_{\mathrm{OUT}}\right)$, so $\mathrm{I}_{\mathrm{RMS}}(\mathrm{MAX})=$ ILOAD(MAX)/2.
Choose an input capacitor that exhibits less than $+10^{\circ} \mathrm{C}$ self-heating temperature rise at the RMS input current for optimal long-term reliability.
The input-voltage ripple is comprised of $\Delta \mathrm{V}_{\mathrm{Q}}$ (caused by the capacitor discharge) and $\Delta \mathrm{V}_{\mathrm{ESR}}$ (caused by the ESR of the capacitor). Use low-ESR ceramic capacitors with high ripple-current capability at the input. Assume the contribution from the ESR and capacitor discharge equal to 50%. Calculate the input capacitance and ESR required for a specified input-voltage ripple using the following equations:
$\mathrm{ESR}_{\mathrm{IN}}=\frac{\Delta V_{\mathrm{ESR}}}{I_{\mathrm{OUT}^{+}}+\frac{\Delta I_{L}}{2}}$
where:

$$
\Delta I_{L}=\frac{\left(V_{\mathrm{PV}}-V_{\mathrm{OUT}}\right) \times V_{\mathrm{OUT}}}{{\overline{V_{\mathrm{PV}}^{-}}} \times f_{S W} \times L}
$$

and:
$C_{\mathrm{IN}}=\frac{{ }^{\prime} \mathrm{OUT}^{\times D(1-D)}}{\Delta V_{Q} \times f_{\mathrm{SW}}}$
and:
$D=\frac{V_{\mathrm{OUT}}}{V_{\mathrm{PV}}}$
loUt is the maximum output current, D is the duty cycle.

Inductor Selection

Three key inductor parameters must be specified for operation with the MAX20012B: inductance value (L), inductor saturation current (ISAT), and DC resistance ($R_{D C R}$). Use the following formula to determine the minimum inductor value:
$L_{\text {MIN }}=1.3 \times\left[\frac{\left(V_{\text {PVMAX }}-v_{\text {OUT }}\right) \times\left(\frac{v_{\text {OUT }}}{v_{\text {PVMAX }}}\right)}{f_{\text {SW }} \times I_{\text {OUTMAX }} \times K_{\text {INDMAX }}}\right]$
where $\mathrm{f}_{\mathrm{SW}} 1$ is the operating frequency and 1.3 is a coefficient that accounts for inductance initial precision. KINDMAX is the maximum inductor current ripple. A good initial maximum inductor current ripple is 30% peak to peak (KINDMAX $=$ 0.3).

For proper operation, the chosen inductor value must be $\geq L_{\text {MIN }}$. The maximum inductor value recommended is twice the chosen value from the above formula.

MOSFET Selection

The gate drivers drive two external logic-level n-channel MOSFETs as the circuit switch elements. The key selection parameters to choose these MOSFETs are:

MAX20012B

Automotive Low-Voltage 2-Channel Step-Down

 Controller- Drain-to-Source On-Resistance ($\left.\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\right)$
- Maximum Drain-to-Source Voltage (VD(MAX))
- Minimum Threshold Voltage ($\left.\mathrm{V}_{\mathrm{TH}(\mathrm{MIN})}\right)$
- Total Gate Charge $\left(\mathrm{Q}_{\mathrm{G}}\right)$
- Reverse Transfer Capacitance (CRss)
- Power Dissipation

Both n-channel MOSFETs must be logic-level types with guaranteed on-resistance specifications at $\mathrm{V}_{G S}=3.5 \mathrm{~V}$. The conduction losses at minimum input voltage should not exceed MOSFET package thermal limits or violate the overall thermal budget. Also ensure that the conduction losses plus switching losses at the maximum input voltage do not exceed package ratings or violate the overall thermal budget. In particular, check that the dV/dt caused by DH_turning on does not pull up the DL_ gate through its drain-to-gate capacitance. This is the most frequent cause of cross-conduction problems.
Gate-charge losses are dissipated by the driver and do not heat the MOSFET. Therefore, the power dissipation in the IC due to drive losses must be checked. Both MOSFETs must be selected so that their total gate charge is low enough; therefore, $\mathrm{P}_{\mathrm{V}} / \mathrm{V}_{\text {OUT }}$ can power both drivers without overheating the IC:
$P_{\text {DRIVE }}=V_{\text {OUT }} \times\left(Q_{\text {GTOTH }}+Q_{\text {GTOTL }}\right) \times f_{\text {SW }}$
Where $Q_{\text {GTOTL }}$ is the low-side MOSFET total gate charge and $Q_{G T O T H}$ is the high-side MOSFET total gate charge. Select MOSFETs with a Q_{G} TOTAL of less than $15 n C$. The n-channel MOSFETs must deliver the average current to the load and the peak current during switching. Dual MOSFETs in a single package can be an economical solution. To reduce switching noise for smaller MOSFETs, use a series resistor in the DH_ path and additional gate capacitance. Contact the factory for guidance using gate resistors.

Output Capacitor

Use low-ESR ceramic capacitors on the output. Other capacitor types should be verified with a gain and phase analysis. In single-phase configuration, use a nominal value of $200 \mu \mathrm{~F}$; in dual-phase configuration, use a nominal value of $300 \mu \mathrm{~F}$.

Selector Guide

OPTION SUFFIX	$\mathrm{V}_{\text {OUT1 }}(\mathrm{V})$					$\mathrm{V}_{\text {OUT2 }}(\mathrm{V})$				
	VMAX	CONFIG	VID	SLEW	$\mathrm{I}^{2} \mathrm{C}$	VMAX	CONFIG	VID	SLEW	${ }^{2} \mathrm{C}$
A/V+	0x3B (1.08)	0x0C	0x36 (1.03)	0x04	0x74	0x43 (1.45)	0x8C	0x3B (1.35)	0x04	0x70
A/VY+	0x3B (1.08)	0x0C	0x36 (1.03)	0x04	0x74	0x43 (1.45)	0x8C	0x3B (1.35)	0x04	0x70
B/V+	0x4E (1.27)	0×08	0x47 (1.20)	0×03	0x74	0x3D (1.10)	0×08	0x33 (1.00)	0x03	0x70
C/V+	0x4A (1.23)	0×08	0x31 (0.98)	0×03	0x74	0x4A (1.23)	0×08	0x2E (0.95)	0×03	0x70
D/V+	0x42 (1.15)	0×08	0x29 (0.90)	0×00	0x70	0x42 (1.15)	0.08	0x29 (0.90)	0×00	0x74
E/V+	0x2E (0.95)	0x0C	0x22 (0.83)	0x09	0x70	0x47 (1.20)	0x0C	0x3E (1.11)	0x09	0x74
F/V+	0x4A (1.23)	0×08	0x21 (0.82)	0×03	0x74	0x4A (1.23)	0×08	0x21 (0.82)	0×03	0x70
F/VY+	0x4A (1.23)	0×08	0x21 (0.82)	0x03	0x74	0x4A (1.23)	0×08	0x21 (0.82)	0×03	0x70
G/V+	0x36 (1.03)	0x0C	0x33 (1.00)	0x03	0x70	0x36 (1.03)	0x0C	0x33 (1.00)	0x03	0x74
H/V+	0x2A (0.91)	0×05	0x22 (0.83)	0x09	0x74	0x38 (1.05)	0×05	0x2F (0.96)	0x09	0x70
H/VY+	0x2A (0.91)	0×05	0x22 (0.83)	0x09	0x74	0x38 (1.05)	0×05	0x2F (0.96)	0×09	0x70
J/V+	0x33 (1.25)	0×84	0x0F (0.80)	0x00	0x74	0x27 (1.10)	0×84	0x17 (0.90)	0x00	0x70
K/V+	0x2D (0.94)	0×08	0x24 (0.85)	0x09	0x74	0x48 (1.21)	0×08	0x3D (1.10)	0x09	0x70
L/V+	0x2D (0.94)	0x0C	0x24 (0.85)	0x09	0x74	0x48 (1.21)	0x0C	0x3D (1.10)	0x09	0x70

MAX20012B

Automotive Low-Voltage 2-Channel Step-Down

 Controller
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX20012BATJ_ $/ \mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32 TQFN-EP*
MAX20012BATJ_ $\mathrm{VY}+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32 SW TQFN-EP*

Note: Insert the desired suffix option from the Selector Guide into the blank.
N denotes an automotive-qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.
SW = Side-wettable TQFN package.
*EP = Exposed pad.

Automotive Low-Voltage 2-Channel Step-Down Controller

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 17$	Initial release	-
1	$1 / 18$	Updated PG Output section	21
2	$3 / 18$	Updated Selector Guide	25
3	$4 / 18$	Updated Selector Guide	25
4	$5 / 18$	Updated Selector Guide	25
5	$12 / 18$	Updated Selector Guide	25
6	$3 / 19$	Changes to Table 6 on the Bit Description, and Spread Spectrum Option section, updated Selector Guide and Ordering Information section	$18,21,25$, 26
7	$5 / 19$	Updated Package Information and Selector Guide	3,25
8	$8 / 19$	Updated Selector Guide	25
9	$9 / 21$	Added "Enable (EN1/2)" sub-section. Updated "PG Output" subsection. Updated rev ID in "Register Map" table. Updated Typical Operating Characteristics (TOC09 and TOC19)	$6,8,17,21$
10	$12 / 21$	Updated Typical Operating Characteristics and Detailed Description	$6-8,17,19$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH NCP1218AD65R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG SJ6522AG SJE6600 AZ7500BMTR-E1 IR35215MTRPBF SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG UBA2051C NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG TEA19362T/1J NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G iW1760B-10 MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G NCP81599MNTXG NCP1246ALD065R2G AZ494AP-E1 XDPL8219XUMA1 TLD55421QVXUMA1 MP6908LGJ-P

