MAX22204

65V, 3.8A Stepper Motor Driver with Integrated Current-Sense and 128 Usteps Indexer

General Description

The MAX22204 is a two-phase stepper motor driver. It integrates two $65 \mathrm{~V}, 3.8 \mathrm{~A}_{\mathrm{MAX}} \mathrm{H}$-Bridges. The H-Bridge FETs have very low impedance, resulting in high driving efficiency and minimal heat. The typical total RON (highside + low-side) is 0.3Ω. The MAX22204 integrates an accurate current drive regulation circuit and a 128-microstep built-in indexer controlled by a STEP/DIR interface. The high microstep resolution and advanced control technique ensure smooth and quiet operations.
The current flowing into the two low-side FETs is sensed by a non-dissipative Integrated Current Sensing (ICS) and it is then compared with the desired step threshold current. As soon as the bridge current exceeds the threshold (ITRIP), the device enforces the decay for a fixed OFF-time (toff).
The non-dissipative ICS eliminates the bulky external power resistors normally required for this function, resulting in a dramatic space and power saving compared with mainstream applications based on the external sense resistor. Currents proportional to the internally-sensed bridge currents are output to pins ISENA and ISENB. By connecting external resistors to these pins, voltages proportional to the bridge currents are generated. These can be used for diagnostic purposes.
The maximum output current per H -Bridge is $\mathrm{I}_{\mathrm{MAX}}=$ $3.8 \mathrm{~A}_{\text {MAX }}$ limited by the Overcurrent Protection (OCP). The device delivers up to $2 A_{R M S}$ per phase at $\mathrm{V}_{\mathrm{M}}=+24 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with proper PCB ground plane for thermal dissipation. The current capability depends on the PCB thermal characteristic (PCB ground planes, heatsinks, ventilation, etc.)
The maximum full-scale current per H -Bridge is $\mathrm{I}_{\mathrm{FS}}=2.8 \mathrm{~A}$ and can be set by an external resistor connected from the REF pin to GND. This current is defined as the maximum current setting of the integrated drive regulation circuit.
One logic input (TRQ) allows to quickly change the current setting among two different values for fast torque control.
The MAX22204 features Overcurrent Protection (OCP), Thermal Shutdown (TSD), and Undervoltage Lockout (UVLO). An open drain active low FAULT pin is activated every time a fault condition is detected. During Thermal Shutdown and Undervoltage Lockout, the driver is disabled until normal operating conditions are restored.
The MAX22204 is packaged into a TQFN38 $5 \mathrm{~mm} \times 7 \mathrm{~mm}$ package.

Applications

- Stepper Motor Driver

Benefits and Features

- Two H-Bridges with +65 V Voltage Rating
- Total Rdson (High-Side + Low-Side): $300 \mathrm{~m} \Omega$ Typical ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
- Current Ratings per H-Bridge (Typical at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$):
- $I_{\text {MAX }}=3.8 \mathrm{~A}_{\text {MAX }}$ (Impulsive Current for Driving Capacitive Loads)
- $I_{\text {FSS(MAX })}=2.8 \mathrm{~A}$ (Maximum Full Scale Current Setting for Internal Current Drive Regulation)
- $\mathrm{I}_{\mathrm{RMS}}=2 \mathrm{~A}_{\mathrm{RMS}}$ per Phase $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{M}}=+24 \mathrm{~V}\right)$
- Integrated Current Control
- Full-Scale DAC Current Configurable with External Resistance
- One Logic Input (TRQ) to Quickly Change the Torque among Two Levels
- Internal Current Sensing (ICS) Eliminates External Bulky Resistors and Improves Efficiency
- Built-in-Control with 128-usteps Indexer - STEP/DIR Interface
- Integrated DAC and Sequencer for U-Stepping
- Multiple Decay Modes (Slow, Mixed, Adaptive)
- Fixed OFF Time Configurable with External Resistance
- Current-Sense Output (ISENA, ISENB) Current Monitor
- Fault Indicator Pin ($\overline{\mathrm{FAULT}})$
- Protections
- Overcurrent Protection for each Individual Channel (OCP)
- Undervoltage Lockout (UVLO)
- Thermal Shutdown $\mathrm{T}_{\mathrm{J}}=155^{\circ} \mathrm{C}$ (TSD)
- TQFN38 5mm x 7mm Package (TSSOP38 4.4mm x 9.7 mm Available in the Future)

65V, 3.8A Stepper Motor Driver with Integrated Current-Sense and 128 Usteps Indexer

Simplified Block Diagram

TABLE OF CONTENTS

General Description 1
Applications 1
Benefits and Features 1
Simplified Block Diagram 2
Absolute Maximum Ratings 6
Package Information 6
TQFN $38-5 \mathrm{~mm} \times 7 \mathrm{~mm}$ 6
Electrical Characteristics 6
Pin Configuration 9
Pin Configuration 9
Pin Description 9
Functional Diagrams 11
Detailed Description 12
Sleep Mode (SLEEP Pin) 12
Enable Function (EN pin) 12
Indexer Control Modes 12
Current-Sense Output (CSO) - Current Monitor. 13
Current Drive Regulation 14
Integrated Current-Sense (ICS) 15
Setting the Full-Scale Current - Pin REF 15
Bridge Current Control - Indexer 15
Setting the Fixed OFF_TIME (toff) 16
Operating Modes 16
Setting the Decay Mode 17
Adaptive Decay Mode 17
Protections 20
Overcurrent Protection (OCP) 20
Thermal Shutdown Protection (TSD) 20
Undervoltage Lockout Protection (UVLO) 20
Typical Application Circuits 21
Application Diagram 21
Ordering Information 22
Revision History 23

65V, 3.8A Stepper Motor Driver with Integrated Current-Sense and 128 Usteps Indexer

LIST OF FIGURES

Figure 1. ISEN Current 14
Figure 2. Current Flow During ON and Decay Modes 17
Figure 3. Adaptive Decay Step-Up 18
Figure 4. Adaptive Decay - Algorithm \#1 19
Figure 5. Adaptive Decay Step-Up - Algorithm \#2 20

LIST OF TABLES

Table 1. Step Mode Selection 12
Table 2. Torque TRQ Truth Table 15
Table 3. Lookup Table up to 32 U-Steps 15
Table 4. Decay Mode Truth Table 17

Absolute Maximum Ratings

V_{M} to GND	-0.3V to +70 V
$V_{\text {DD }}$ to GND.	-0.3V to min ($\left.+2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}+0.3 \mathrm{~V}\right)$
PGND to GND	-0.3 V to +0.3 V
OUT	-0.3 V to $\mathrm{V}_{\mathrm{M}}+0.3 \mathrm{~V}$
$V_{\text {CP }}$ to GND	$\mathrm{V}_{\mathrm{M}}-0.3 \mathrm{~V}$ to min ($+74 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}+6 \mathrm{~V}$)
$\mathrm{C}_{P 2}$ to GND $\mathrm{V}_{\mathrm{M}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CP}}+0.3 \mathrm{~V}$
CPP^{1} to GND	-0.3V to $\mathrm{V}_{\mathrm{M}}+0.3 \mathrm{~V}$
FAULT to GN -0.3V to 6V
REF to GND	-0.3V to min (+2.2V, $\left.\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
ROFF to GND	-0.3V to min (+2.2V, $\left.\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$

ISEN_ to GND..............................-0.3 to min (+2.2V, $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
EN to GND -0.3 V to 6 V
STEP, DIR, MODE_ to GND......................................-0.3V to 6V
TRQ to GND ... 0.3 V to 6 V
DECAY to GND.. 0.3 V to 6 V
SLEEP to GND -0.3 V to $\mathrm{min}\left(+70 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}+0.3 \mathrm{~V}\right.$)
Operating Temperature Range $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (Reflow)... $260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

TQFN 38-5mm x 7mm

Package Code	T3857-1C
Outline Number	$\underline{21-0172}$
Land Pattern Number	$\underline{90-0076}$
Thermal Resistance, Single-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$38^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$1^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Four-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$28^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$1^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{M}}=\right.$ from +4.5 V to $+65 \mathrm{~V}, \mathrm{R}_{\text {ROFF }}=$ from $15 \mathrm{k} \Omega$ to $120 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{REF}}=$ from $13 \mathrm{k} \Omega$ to $60 \mathrm{k} \Omega$,
Limits are 100% tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.
, Typical Values are at $\mathrm{V}_{\mathrm{M}}=36 \mathrm{~V}$ and $\mathrm{TA}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Supply Voltage Range	V_{M}		4.5		65	V
Sleep Mode Current consumption	IVm	$\overline{\text { SLEEP }}=$ logic low			20	$\mu \mathrm{A}$
Quiescent Current Consumption	$I_{V M}$	$\overline{\text { SLEEP }}=$ logic high			5	mA
1.8V Regulator Output Voltage	VVDD	$\mathrm{V}_{\mathrm{M}}=+4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA}$		1.8		V
$\mathrm{V}_{\text {DD }}$ Current Limit	$\mathrm{I}_{\text {VDD(LIM) }}$	V_{DD} shorted to GND	18			mA
Charge Pump Voltage	V_{CP}			$\mathrm{V}_{\mathrm{M}}+2.7$		V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{M}}=\right.$ from +4.5 V to $+65 \mathrm{~V}, \mathrm{R}_{\text {ROFF }}=$ from $15 \mathrm{k} \Omega$ to $120 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{REF}}=$ from $13 \mathrm{k} \Omega$ to $60 \mathrm{k} \Omega$,
Limits are 100% tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.
, Typical Values are at $\mathrm{V}_{\mathrm{M}}=36 \mathrm{~V}$ and $\mathrm{TA}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC LEVEL INPUTS-OUTPUTS						
Input Voltage Level High	V_{IH}		1.2			V
Input Voltage Level Low	VIL				0.65	V
Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$			110		mV
Pulldown Current	IPD	Logic supply (V_{L}) $=+3.3 \mathrm{~V}$	16	34	60	$\mu \mathrm{A}$
Open-Drain Output Logic-Low Voltage	V_{OL}	$\mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA}$			0.4	V
Open-Drain Output Logic-High Leakage Current	IOH	$\mathrm{V}_{\mathrm{PIN}}=+3.3 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$
SLEEP Voltage Level High	$\mathrm{V}_{\mathrm{IH}(\overline{\text { SLEEP }} \text {) }}$		0.9			V
$\overline{\text { SLEEP }}$ Voltage Level Low	$\mathrm{V}_{\text {IL }}(\overline{\text { SLEEP }})$				0.6	V
SLEEP Pulldown Input Resistance	RPD($\overline{\text { SLEEP }})$		0.8	1.5		M Ω
OUTPUT SPECIFICATIONS						
Output ON-Resistance Low-Side	RON(LS)			150	270	$\mathrm{m} \Omega$
Output ON-Resistance High-Side	RON(HS)			150	300	$\mathrm{m} \Omega$
Output Leakage	l LEAK	Driver OFF	-12		12	$\mu \mathrm{A}$
Dead Time	t DEAD			100		ns
Output Slew Rate	SR			300		$\mathrm{V} / \mu \mathrm{s}$

PROTECTION CIRCUITS

Overcurrent Protection Threshold	OCP		3.8			A
Overcurrent Protection Blanking Time	tocp			0.8	2	$\mu \mathrm{s}$
Autoretry OCP Time	tretry			3		ms
UVLO Threshold on V_{M}	UVLO	V_{M} rising	3.75	4	4.25	V
UVLO Threshold on VM Hysteris	UVLOHYS			0.12		V
Thermal Protection Threshold Temperature	$\mathrm{T}_{\text {SD }}$			155		${ }^{\circ} \mathrm{C}$
Thermal Protection Temperature Hysteresis	TSD_HYST			20		${ }^{\circ} \mathrm{C}$
CURRENT REGULATION						
REF Pin Resistor Range	RREF		12		60	$\mathrm{k} \Omega$
REF Output Voltage	$\mathrm{V}_{\text {REF }}$			900		mV

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{M}}=\right.$ from +4.5 V to $+65 \mathrm{~V}, \mathrm{R}_{\text {ROFF }}=$ from $15 \mathrm{k} \Omega$ to $120 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{REF}}=$ from $13 \mathrm{k} \Omega$ to $60 \mathrm{k} \Omega$,
Limits are 100% tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.
, Typical Values are at $\mathrm{V}_{\mathrm{M}}=36 \mathrm{~V}$ and $\mathrm{TA}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Full-Scale Current Constant	KIFS				36		KV
Current Regulation Accuracy	DITRIP1	$\mathrm{I}_{\mathrm{FS}}=2.8 \mathrm{~A}$. See Typical Operating Characteristics.	$I_{\text {TRIP }}$ from 1.75A to $I_{\text {FS }}$	-5		5	\%
	DITRIP2		ITRIP from 500 mA to 1.75 A	-10		10	
	DITRIP3		$I_{\text {TRIP }}$ from 250 mA to 500 mA	-15		15	
Fixed OFF - Time Internal	toff	ROFF shorted to V_{DD}		16	20	24	$\mu \mathrm{s}$
Fixed OFF - Time Constant	KTOFF	RROFF from $15 \mathrm{~K} \Omega$ to $120 \mathrm{~K} \Omega$		0.667			$\mu \mathrm{s} / \mathrm{k} \Omega$
PWM Blanking Time	${ }_{\text {t }}$				1.5		$\mu \mathrm{s}$
CURRENT SENSE MONITOR							
ISEN_Voltage Range	$V_{\text {ISEN }}$	Voltage Range at Pin ISEN_		0		1.1	V
Current Monitor Scaling Factor	KISEN	See the ISEN Output Current Equation in the Current Sense Output (CSO) Current Monitor Section.			7500		A/A
Current Monitor Accuracy	DKISEN_{1}	$\mathrm{I}_{\mathrm{FS}}=2.8 \mathrm{~A}$. See Typical Operating Characteristics.	$I_{\text {TRIP }}$ from 1.1A to IFS	-5		+5	\%
	DKISEN_{2}		${ }^{\text {ITRIP }}$ from 500 mA to 1.1 A	-10		+10	
	DKISEN_{3}		ITRIP from 250 mA to 500 mA	-15		+15	
Settling Time	ts	$\mathrm{I}_{\mathrm{FS}}=\mathrm{I}_{\text {MAX }}$		0.5			$\mu \mathrm{s}$
FUNCTIONAL TIMINGS							
Sleep Time	tsLEEP	$\overline{\text { SLEEP }}=1$ to OUT_ tristate			40		$\mu \mathrm{s}$
Wakeup Time From Sleep	twake	$\overline{\text { SLEEP }}=0$ to normal operation				2.7	ms
Enable Time	t_{EN}	Time from EN pin rising edge to driver on				0.6	$\mu \mathrm{s}$
Disable Time	$\mathrm{t}_{\text {DIS }}$	Time from EN pin falling edge to driver off				1.4	$\mu \mathrm{s}$
INDEXER TIMING							
STEP High Time	tsth			1			us
STEP Low Time	${ }_{\text {tSTL }}$			1			us
Setup Time MODE, DIR to STEP	tsetup			200			ns
Hold Time MODE, DIR to STEP	$t_{\text {thold }}$			200			ns

Note 1: Guaranteed by design, not production tested.

Pin Configuration

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	TYPE
$16,22,23$, 28,29	$\mathrm{~V}_{\mathrm{M}}$	Supply Voltage Input. Connect at least $1 \mu \mathrm{~F}$ SMD plus $10 \mu \mathrm{~F}$ electrolytic bypass capacitors to GND. Higher values can be considered depending on application requirements.	Supply
15	$\mathrm{~V}_{\mathrm{CP}}$	Charge Pump Output. Connect a $5 \mathrm{~V}, 1 \mu \mathrm{~F}$ capacitor between V_{CP} and V_{M} as close as possible to the device.	Output
13	$\mathrm{C}_{\mathrm{P} 1}$	Charge Pump Flying Capacitor Pin1. Connect a V_{M}-rated 22 nF capacitor between $\mathrm{C}_{P 1}$ and $\mathrm{C}_{\mathrm{P} 2}$ as close as possible to the device.	Output
14	$\mathrm{C}_{\mathrm{P} 2}$	Charge Pump Flying Capacitor Pin 2. Connect a V_{M}-rated 22 nF capacitor between $\mathrm{C}_{\mathrm{P} 1}$ and CP2 as close as possible to the device.	Output
1	$\mathrm{~V}_{\mathrm{DD}}$	1.8 V LDO Output. Connect a 5V, 2.2 $\mu \mathrm{F}$ to GND close to the device.	Analog Output
17	$\overline{\text { SLEEP }}$	Active Low Sleep Pin	Logic Input
$21,24,27,30$	OUT_	Driver Output Pins.	Output
12	$\overline{\text { FAULT }}$	Open-Drain Output Active Low-Fault Indicator. Connect a $2 \mathrm{~K} \Omega$ resistor to the controller supply voltage.	Open Drain
Output			

Pin Description (continued)

PIN	NAME	FUNCTION	TYPE
10	EN	Logic Input Pin. Enable Pin	Logic Input
$7,8,9$	DECAY_	Logic Input. Set the Decay Mode	Logic Input
11	TRQ	Logic Input. Set Output Current Full-Scale (Torque).	Logic Input
2	STEP	Logic Input. Indexer step logic input. Indexer advances on rising edges of the STEP pin.	Logic Input
3	DIR	Logic Input. Direction Pin	Logic Input
$4,5,6$	MODE_	Logic Input Pins. Set the Decay Mode for the current drive regulation circuit.	Logic Input
36	REF	Programmable Current Analog Input. Connect a resistor from REF to GND to set the full scale current.	Analog Input
37	ROFF	tofF Programmable Off Time Pin. Connect ROFF to VDD to use the internal fixed toFF time. Connect a resistor RROFF from ROFF to GND to set the fixed OFF time to a desired value.	Analog Input
18,38	GND	Analog Ground. Connect to ground plane.	GND
$19,20,25$, $26,31,32$	PGND	Power GND. Connect to ground plane.	GND
EP	EP	Exposed PAD. Connect to GND.	GND

65V, 3.8A Stepper Motor Driver with Integrated Current-Sense and 128 Usteps Indexer

Functional Diagrams

Detailed Description

The MAX22204 is a two-phase stepper motor driver. It integrates two 65V, 3.8A $\mathrm{MAX}^{\mathrm{H}}$-Bridges.
The H-Bridge FETs have very low impedance, resulting in high driving efficiency and minimal heat. The typical total RON (high-side + low-side) is 0.3Ω.
The MAX22204 integrates an accurate current drive regulation circuit and a 128-usteps built-in Indexer controlled by a STEP/DIR interface. The high u-stepping resolution and advanced control technique ensure smooth and quiet operations.

The bridge output current is sensed by a non-dissipative Integrated Current Sensing (ICS) and it is then compared with the desired step threshold current. As soon as the bridge current exceeds the threshold (ITRIP), the device enforces the decay for a fixed OFF-time (tOFF). The non-dissipative ICS eliminates the bulky external power resistors, which are normally required for this function, resulting in a dramatic space and power saving compared with mainstream applications based on the external sense resistor.
The currents proportional to the internally sensed bridge currents are output to pins ISENA and ISENB. By connecting external resistors to these pins, voltages proportional to the bridge currents are generated and can be used for diagnostic purposes.
The maximum output current per H -Bridge is $\mathrm{I}_{\mathrm{MAX}}=3.8 \mathrm{~A}_{\mathrm{MAX}}$ limited by the Overcurrent Protection (OCP). The device delivers up to $2 A_{R M S}$ per phase at $V_{M}=+24 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ with proper PCB ground plane for thermal dissipation. The current capability depends on the PCB thermal characteristic (PCB ground planes, heatsinks, ventilation, etc.).
The maximum full-scale current per H -Bridge is $\mathrm{I}_{\mathrm{FS}}=2.8 \mathrm{~A}$ and can be set by an external resistor connected from the REF pin to GND. This current is defined as the maximum current setting of the embedded current drive regulation circuit.
One logic input (TRQ) allows to quickly change the current setting among two different values for fast torque control.
The MAX22204 features Overcurrent Protection (OCP), Thermal Shutdown (TSD), and Undervoltage Lockout (UVLO). An open-drain active low FAULT pin is activated every time a fault condition is detected.
During Thermal Shutdown and Undervoltage Lockout, the driver is disabled until normal operating conditions are restored.
The MAX22204 is packaged into a small TQFN38 $5 \mathrm{~mm} \times 7 \mathrm{~mm}$ package.

Sleep Mode (SLEEP Pin)

Drive this pin low to enter in the lowest power mode. All outputs are tristated and the internal circuits are biased off. The charge pump is also disabled. A pulldown resistor is connected between SLEEP and GND to ensure the part is disabled whenever this pin is not actively driven. This mode corresponds to the lowest power consumption possible. Waking up from Sleep mode to Normal mode takes up to 2.7 ms maximum.

Enable Function (EN pin)

This logic input enables/disables the output FETs. Drive EN low to tristate the two full bridges. Drive EN high to enable the outputs. The internal sequencer (indexer) remains active even when EN is set low.

Indexer Control Modes

The MAX22204 features an integrated Indexer that supports several different step modes. Logic inputs MODE[2:0] select the step mode as shown in Table 1

Table 1. Step Mode Selection

MODE2	MODE1	MODE0	STEP MODE
0	0	0	Full Step (71\% current)
0	0	1	$1 / 2$ Step
0	1	0	$1 / 4$ Step
0	1	1	$1 / 8$ Step
1	0	0	$1 / 16$ Step

Table 1. Step Mode Selection (continued)

1	0	1	$1 / 32$ Step
1	1	0	$1 / 64$ Step
1	1	1	$1 / 128$ Step

Current-Sense Output (CSO) - Current Monitor

Currents proportional to the internally-sensed motor current are output to pins ISENA and ISENB for H-bridge A and B respectively. The current is sensed when one of the two low side FETs sinks the output current and it is therefore meaningful both during the energizing ($\mathrm{t} O \mathrm{~N}$) phase and during the Slow Decay phase (Brake). In Fast Decay, the current is not monitored and ISEN_ outputs are zero current.
The following equation shows the relationship between the current sourced at ISEN and the output current:

$$
I_{\text {ISEN }}(A)=\frac{I_{\mathrm{OUT}}(A)}{K_{\text {ISEN }}}
$$

Equation - ISEN Output Current

in which $\mathrm{K}_{\text {ISEN }}$ represents the current scaling factor between the output current and its replica at pin ISEN. $\mathrm{K}_{\text {ISEN }}$ is typically 7500 A/A. For instance, if the instantaneous output current is 2 A , the current sourced at ISEN is $266 \mu \mathrm{~A}$.
Figure Figure 1 shows an idealized behavior of the ISEN current when Slow or Fast Decay are used. Blanking times, delays, and rise/fall edges are ignored.

Figure 1. ISEN Current

By connecting an external signal resistor, RISEN, between ISEN and GND, a voltage proportional to the motor current is generated. The voltage built up on $\mathrm{R}_{\text {ISEN }}$ can be used for diagnostic purposes.

Current Drive Regulation

The MAX22204 features embedded Current Drive Regulation (CDR).
The embedded current drive regulation provides an accurate control of the current flowing into the motor windings.

The bridge current is sensed by a non-dissipative Integrated Current Sensing (ICS) circuit and it is then compared with the threshold current (ITRIP). As soon as the bridge current exceeds the threshold, the device enforces the decay for a fixed OFF-time (toff). The device supports different decay modes as described in the following paragraphs.
Once toff elapses, the driver is re-enabled for the next PWM cycle. During current regulation, the PWM duty cycle and frequency depend on the supply voltage, on the motor inductance, and on motor speed and load conditions.
The toff duration can be configured with an external resistor connected to the ROFF pin.

Integrated Current-Sense (ICS)

A non-dissipative current sensing is integrated. This feature eliminates the bulky external power resistors normally required for this function. This feature results in a dramatic space and power saving compared with mainstream applications based on the external sense resistor.

Setting the Full-Scale Current - Pin REF

Connect a resistor from REF to GND to set the full-scale chopping current I_{FS}.
The following equation shows the full-scale current as a function of the $R_{R E F}$ shunt resistor connected to pin REF. The proportionality constant KIFS is typically 36 KV . The external resistor $\mathrm{R}_{\mathrm{REF}}$ can range between $13 \mathrm{~K} \Omega$ and $60 \mathrm{~K} \Omega$, which correspondents to $\mathrm{I}_{\text {FS }}$ setting ranging from about 2.8A down to 0.6 A .

$$
I_{\mathrm{FS}}=\frac{K_{\mathrm{IFS}}(\mathrm{KV})}{R_{\mathrm{REF}}(\mathrm{~K} \Omega)} \times \mathrm{TRQ}(\%)
$$

The current scalar factor TRQ (\%) depends on the status of the logic input TRQ as shown in Table 2.
TQR is a logic input pin, which provides a rapid method to change the Torque with digital IOs.
Table 2. Torque TRQ Truth Table

TRQ	TRQ (\%)
0	100%
1	50%

Bridge Current Control - Indexer

The Step mode is determined by the logic inputs MODE[2:0] (see Table 1)
The MAX22204 features a built-in indexer that supports up to 128-usteps. The indexer sets the bridge currents in the two phases for each Step mode.
At each pulse applied to the STEP pin, the sequencer of the device is increased (DIR input high) or decreased (DIR input low).
Table 3 shows the lookup table for each individual Step mode up to 32 u-stepping. Higher u-stepping modes, such as 64 or 128 u-stepping, are supported and follow a similar pattern with higher step angle resolution
When the driver is enabled (EN pin) or after exiting Sleep mode, the indexer is initialized at its 'home state', which corresponds to 45° angle. At each rising edge of the STEP input, the indexer moves to the next or previous state in the table respectively for DIR=1 or DIR=0.
After a Step mode change, rising edges of the STEP logic input cause the indexer to proceed accordingly with the former Step mode until the first valid state of the new Step mode is found. From that moment on, the indexer starts stepping accordingly with the new Step mode.
Table 3. Lookup Table up to 32 U-Steps

$1 / 32$	$1 / 16$	$1 / 8$	$1 / 4$	$1 / 2$	FULL	COIL A	COIL B	STEP
STEPPING	STEPPING	STEPPING	STEPPING	STEPPING	STEPPING			ANGLE
1	1	1	1	1		100.0%	0.0%	0
2						99.9%	4.9%	3
3	2					99.5%	9.8%	6

Table 3. Lookup Table up to 32 U-Steps (continued)

4						98.9\%	14.7\%	8
5	3	2				98.1\%	19.5\%	11
6						97.0\%	24.3\%	14
7	4					95.7\%	29.0\%	17
8						94.2\%	33.7\%	20
9	5	3	2			92.4\%	38.3\%	23
10						90.4\%	42.8\%	25
11	6					88.2\%	47.1\%	28
12						85.8\%	51.4\%	31
13	7	4				83.1\%	55.6\%	34
14						80.3\%	59.6\%	37
15	8					77.3\%	63.4\%	39
16						74.1\%	67.2\%	42
17	9	5	3	2	1	70.7\%	70.7\%	45
18						67.2\%	74.1\%	48
19	10					63.4\%	77.3\%	51
20						59.6\%	80.3\%	53
21	11	6				55.6\%	83.1\%	56
22						51.4\%	85.8\%	59
23	12					47.1\%	88.2\%	62
24						42.8\%	90.4\%	65
25	13	7	4			38.3\%	92.4\%	68
26						33.7\%	94.2\%	70
27	14					29.0\%	95.7\%	73
28						24.3\%	97.0\%	76
29	15	8				19.5\%	98.1\%	79
30						14.7\%	98.9\%	82
31	16					9.8\%	99.5\%	84
32						4.9\%	99.9\%	87
32	17	9	5			0.0\%	100.0\%	90

Setting the Fixed OFF_TIME (toff)

The current regulation circuit is based on a constant tofF PWM control. When the bridge current exceeds the target $\mathrm{I}_{\text {TRIP }}$ current, an OFF phase begins and Decay modes are activated. The OFF phase has a fixed time duration (tOFF). tOFF can be configured to a desired value by connecting an external resistor (RROFF) to pin ROFF. When the ROFF pin is shorted to $V_{D D}$, the tOFF time is internally set at a fixed value ($20 \mu \mathrm{~s}$ typical).
By connecting an external resistor to the pin ROFF, configure toFF as shown in the following equation, in which R ROFF is an external resistor connected to the ROFF pin (in $\mathrm{K} \Omega$) and KTOFF is an internal constant equal to $0.667 \mu \mathrm{~s} / \mathrm{K} \Omega$.

$$
t_{\mathrm{OFF}}(\mu \mathrm{~s})=R_{\mathrm{ROFF}} \times K_{\mathrm{TOFF}}
$$

$t_{\text {OFF }}$ can be programmed from a range of $10 \mu \mathrm{~s}$ to $80 \mu \mathrm{~s}$.

Operating Modes

During PWM chopping, the driver output alternates the Energizing (ON) and Decay phases. The MAX22204 supports different Decay modes. Slow Decay, Fast Decay, and different combinations between Slow and Fast.

Figure 2 shows the current path in the three different modes of operation.

Figure 2. Current Flow During ON and Decay Modes

Setting the Decay Mode

Three logic input pins allow to configure the Decay Mode during toff. The MAX22204 supports Slow, Fast, and Mixed Decay modes. An Adaptive Decay Mode is also provided. The Adaptive Decay Mode automatically calculates the optimal ratio between the Slow and Fast decay as explained in the Adaptive Decay Mode paragraph.
Table 4 shows the Truth Table for the Decay Mode selection
Table 4. Decay Mode Truth Table

DECAY2	DECAY1	DECAY0	INCREASING STEPS	DECREASING STEPS
0	0	0	Slow	Mixed 30\% Fast
0	0	1	Mixed 30\% Fast	Mixed 30\% Fast
0	1	0	Mixed 60\% Fast	Mixed 60\% Fast
0	1	1	Slow	Slow
1	0	0	Fast	Fast
1	0	1	Adaptive 1	Adaptive 1
1	1	0	Adaptive 2	Adaptive 2
1	1	1	Adaptive 3	Adaptive 3

Adaptive Decay Mode

The MAX22204 features three adaptive decay modes.

When the adaptive decay modes are used, the MAX22204 dynamically determines the ratio between Slow and Fast decay. The controller has to satisfy different and often conflicting requirements: to minimize the ripple for lower power consumption and better control accuracy, to ensure quick response time and low distortion of the pseudosinusoidal current waveform, to avoid generating sub-harmonic, which may fall in the audible range, etc.
The three adaptive decay algorithms provide different types of optimization. In general, the first and third algorithms are preferable for low-speed applications in which the ripple needs to be minimized. The second algorithm is recommended for high-speed applications, thanks to its fast tracking and stable characteristics.
All the three algorithms are based on current measurements during the energizing phase (ton) and during the slow decay phase (t SLOW).
The algorithms distinguish three operating conditions.
Tracking-Up Phase: As a consequence of a STEP command, the current must be quickly increased to a new upper target level (STEP UP).
Tracking-Down Phase: As a consequence of a STEP command, the current must be quickly decreased to a new lower target level (STEP DW).
Settling/Steady-State Phase: Once a current target level is reached, the current stabilizes. Ripple must be minimized.
All the three algorithms behave the same during the Tracking-Up Phase: When a step-up command is received, the previous cycle is completed and then an ON time ($\mathrm{t} O \mathrm{~N}$) is enforced until the current reaches the new target level. See Figure 3.

Figure 3. Adaptive Decay Step-Up
ALGORITHM \#1 - DECAY[2:0]=101,

The first algorithm minimizes the ripple during the Settling/Steady-State phase.

1) Tracking-Down Phase (Step Down): A mixed mode with 30\% Fast Decay and 70\% Slow Decay is used. When, during a Slow Decay Interval, the current is found lower than the new target, a ton phase is enforced causing the current to reach the desired level.
2) Settling/Steady-State Phase: Variable fixed slow decay ratios are used to minimize the ripple. Initially, a Slow Decay is enforced for a fixed OFF time (tOFF). In the following cycles, the ON time interval (t_{ON}) is monitored cycle by cycle. If $t_{O N}$ is found equal to $t_{O N}$ (MIN), a mixed mode with 10% Fast Decay is applied to the next chopping cycle.
The Fast Decay percentage dynamically increases with $+10 \%$ steps if $t_{O N}$ in the previous cycle is found equal to ton(MIN).
The Fast Decay percentage dynamically decreases with -10% steps if $t_{O N}$ in the previous cycle is found longer than ton(MIN).
To facilitate the convergence of the algorithm, the Fast Decay percentage is not allowed to go back below 10\%
Figure 4 graphically illustrates the behavior.

Figure 4. Adaptive Decay - Algorithm \#1

ALGORITHM \#2 - DECAY[2:0]=110,

The second algorithm privileges dynamic response over the ripple containment. Compared with the first algorithm, a higher Fast Decay percentage is used. During the Settling/Steady-State Phase, the Fast Decay percentage increases similarly to the First Algorithm. Differently from Algorithm \#1, the Fast Decay percentage can only be increased and it is never decreased. When compared with Algorithm \#1, this approach results in a higher ripple but with faster settling time.

1) Tracking-Down Phase (Step Down): A mixed mode with 60% Fast Decay and 40% Slow Decay is used. When, during a Slow Decay Interval, the current is found lower than the new target, a toN phase in enforced causing the current to reach the desired level.
2) Settling/Steady-State Phase: Variable fixed slow decay ratios are used to minimize the ripple. Initially, a Slow Decay is enforced for a fixed OFF time (tOFF). In the following cycles, the ON time interval ($\mathrm{t} O \mathrm{~N}$) is monitored cycle by cycle. If $t_{O N}$ is found equal to $t_{O N(M I N)}$, a mixed mode with 10% Fast Decay is applied in the next chopping cycle.
The Fast Decay percentage dynamically increases with $+10 \%$ steps if toN in the previous cycle is found equal to ton(MIN).

The Fast Decay percentage is kept constant if toN in the previous cycle is found longer than $t_{O N(M I N)}$. Figure 5 graphically illustrates the behavior.

Figure 5. Adaptive Decay Step-Up - Algorithm \#2

ALGORITHM \#3 - DECAY[2:0]=111,

Algorithm \#3 is similar to Algorithm \#1, the only difference being that during the Tracking-Down Phase (Step Down), the mixed decay ratio is not kept constant but depends on the amplitude of the step. For small step amplitudes, a low Fast Decay percentage is used. For relative large step amplitudes, a higher Fast Decay percentage is used.
When u-stepping control is used, steps close to the peak of the sinusoidal current waveform have small amplitudes and hence low Fast Decay percentages, whereas steps close to the zero crossing have larger amplitudes and hence high Fast Decay percentages. When compared to Algorithm \#1, this approach minimizes the undershoots at each step down.

Protections

Overcurrent Protection (OCP)

An OCP protects the device against short circuits to the rails (supply voltage and ground) and across the load terminals. The OCP threshold is set at 3.8A minimum. If the output current is larger than the OCP threshold for longer than the OCP blanking time, an OCP event is detected. When an OCP event is detected, the H-Bridge is immediately disabled, and a fault indication is output on the pin FAULT. The H-Bridge is kept in a high impedance mode for 3 ms (see $t_{R E T R Y}$ specification). The H -Bridge is then re-enabled according to the current state. If the short circuit is still present, this cycle repeats. Otherwise, normal operation resumes. Avoid prolonged operation under the short-circuit failure mode as a prolonged OCP auto-retry affects the device reliability.

Thermal Shutdown Protection (TSD)

If the die temperature exceeds $155^{\circ} \mathrm{C}$ (typical value), a fault indication is output on pin $\overline{\mathrm{FAULT}}$ and the driver is tristated until the junction temperature drops below $135^{\circ} \mathrm{C}$. After that, the driver is re-enabled.

Undervoltage Lockout Protection (UVLO)

The device UVLO on V_{M} is set at 4.25 V maximum. When a UVLO event occurs, a fault indication is output on pin FAULT and driver outputs are tristated. Normal operation resumes (and the FAULT pin deasserts) as soon as the supply voltages are back in the nominal operating range.

Typical Application Circuits

Application Diagram

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PIN-PACKAGE
MAX22204ATU +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	38 TQFN
MAX22204AUU $+\mathrm{T}^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	38 TSSOP

+ Denotes a lead(Pb)-free/RoHS-compliant package.
T Denotes tape-and-reel.
* Denotes future product. Contact factory for availability.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$8 / 21$	Initial release	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E SLA7026M MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801 LB11851FA-BH NCV70627DQ001R2G

